

D017/D018/D019
 ID020/D084/D085
 SERVICE MANUAL

LANIER
 RICOH
 5ЕVII

D017/D018/D019/ D020/D084/D085 SERVICE MANUAL

It is the reader's responsibility when discussing the information contained within this document to maintain a level of confidentiality that is in the best interest of Ricoh Americas Corporation and its member companies.

NO PART OF THIS DOCUMENT MAY BE REPRODUCED IN ANY FASHION AND DISTRIBUTED WITHOUT THE PRIOR PERMISSION OF RICOH AMERICAS CORPORATION.

All product names, domain names or product illustrations, including desktop images, used in this document are trademarks, registered trademarks or the property of their respective companies.
They are used throughout this book in an informational or editorial fashion only and for the benefit of such companies. No such use, or the use of any trade name, or web site is intended to convey endorsement or other affiliation with Ricoh products.

Abstract

WARNING

The Service Manual contains information regarding service techniques, procedures, processes and spare parts of office equipment distributed by Ricoh Americas Corporation. Users of this manual should be either service trained or certified by successfully completing a Ricoh Technical Training Program.

Untrained and uncertified users utilizing information contained in this service manual to repair or modify Ricoh equipment risk personal injury, damage to property or loss of warranty protection.

Ricoh Americas Corporation

LEGEND

PRODUCT CODE	COMPANY			
	GESTETNER	LANIER	RICOH	SAVIN
D017	MP 2550B	LD425B	Aficio MP2550B	9025B
D018	MP 2550SP	LD425SP	Aficio MP2550SP	9025SP
D019	MP 3350B	LD433B	Aficio MP 3350B	9033B
D020	MP 3350SP	LD433SP	Aficio MP 3350SP	$9033 b S P$
D084	MP 2851SP	LD528SP	Afficio MP2851SP	9228 S
D085	MP 3351SP	LD533SP	Afficio MP3351SP	9233SP

DOCUMENTATION HISTORY

REV. NO.	DATE	COMMENTS
$*$	$01 / 2010$	Original Printing

D017/D018/D019/D020/D084/D085 TABLE OF CONTENTS

PRODUCT INFORMATION

1. PRODUCT INFORMATION 1-1
1.1 SPECIFICATIONS 1-1
1.2 MACHINE CONFIGURATION 1-2
1.2.1 SYSTEM CONFIGURATION AND OPTIONS 1-2
1.3 GUIDANCE FOR THOSE WHO ARE FAMILIAR WITH PREDECESSOR PRODUCTS 1-6
1.4 OVERVIEW 1-7
1.4.1 MECHANICAL COMPONENTS 1-7
1.4.2 PAPER PATH 1-9
1.4.3 DRIVE LAYOUT. 1-10
INSTALLATION
2. INSTALLATION 2-1
2.1 INSTALLATION REQUIREMENTS 2-1
2.1.1 ENVIRONMENT 2-1
2.1.2 MACHINE LEVEL 2-1
2.1.3 MINIMUM SPACE REQUIREMENTS 2-2
2.1.4 POWER REQUIREMENTS 2-3
2.2 COPIER INSTALLATION 2-4
2.2.1 POWER SOCKETS FOR PERIPHERALS. 2-4
2.2.2 INSTALLATION FLOW CHART 2-4
2.2.3 ACCESSORY CHECK 2-6
2.2.4 INSTALLATION PROCEDURE 2-8
Tapes and Retainers 2-8
Developer 2-9
Re-assembly 2-11
Toner Bottle 2-12
Emblem, Decals 2-13
Completion 2-13
SP Settings 2-14
App 2 Me Setting (D084/D085 only) 2-15
2.2.5 TRANSPORTING THE MACHINE 2-16
2.3 PAPER FEED UNIT (D331) 2-17
2.3.1 ACCESSORY CHECK 2-17
2.3.2 INSTALLATION PROCEDURE 2-18
SP Settings 2-20
2.4 LCT (B391) 2-21
2.4.1 ACCESSORY CHECK 2-21
2.4.2 INSTALLATION PROCEDURE 2-21
SP Setting 2-24
2.5 ARDF (D366) 2-25
2.5.1 COMPONENT CHECK 2-25
2.5.2 INSTALLATION PROCEDURE 2-25
2.6 INTERCHANGE UNIT (D371) 2-29
2.6.1 COMPONENT CHECK 2-29
2.6.2 INSTALLATION PROCEDURE 2-30
2.7 1-BIN TRAY UNIT (D367) 2-31
2.7.1 COMPONENT CHECK 2-31
2.7.2 INSTALLATION PROCEDURE 2-32
2.8 SHIFT TRAY (D385) 2-35
2.8.1 COMPONENT CHECK 2-35
2.8.2 INSTALLATION PROCEDURE 2-36
2.9 BYPASS FEED UNIT (D370) 2-38
2.9.1 COMPONENTS CHECK 2-38
2.9.2 INSTALLATION PROCEDURE 2-39
2.10 DUPLEX UNIT (D369) 2-41
2.10.1 ACCESSORY CHECK 2-41
2.10.2 INSTALLATION PROCEDURE 2-42
2.11 BRIDGE UNIT (D368) 2-45
2.11.1 COMPONENT LIST 2-45
2.11.2 INSTALLATION PROCEDURE 2-46
2.12 1000-SHEET FINISHER (B408) 2-48
2.12.1 ACCESSORY CHECK 2-48
2.12.2 INSTALLATION PROCEDURE 2-49
2.13 1000-SHEET BOOKLET FINISHER (B793) 2-51
2.13.1 ACCESSORY CHECK 2-51
2.13.2 INSTALLATION PROCEDURE 2-52
2.14 PUNCH UNIT (B807) 2-56
2.14.1 COMPONENT CHECK 2-56
2.14.2 INSTALLATION 2-57
2.15 500-SHEET FINISHER (D372) 2-62
2.15.1 ACCESSORY CHECK 2-62
2.15.2 INSTALLATION PROCEDURE 2-63
2.16 PLATEN COVER (B406) 2-65
2.17 KEY COUNTER (B452) 2-66
2.17.1 INSTALLATION PROCEDURE 2-66
2.18 HEATERS 2-69
2.18.1 ANTI-CONDENSATION HEATER (SCANNER UNIT) 2-69
Installation Procedure 2-69
2.18.2 TRAY HEATER (COPIER) 2-70
2.18.3 TRAY HEATER (OPTIONAL PAPER TRAY UNIT) 2-72
2.18.4 TRAY HEATER (OPTIONAL LCT). 2-75
2.19 COPY DATA SECURITY UNIT (B829) 2-79
2.19.1 ACCESSORIES 2-79
2.19.2 INSTALLATION PROCEDURE 2-80
2.20 HARD DISK (D362) 2-82
2.20.1 ACCESSORY CHECK 2-82
2.20.2 INSTALLATION 2-82
After Installing the HDD 2-83
2.21 MECHANICAL COUNTER 2-84
2.21.1 ACCESSORY CHECK 2-84
2.21.2 INSTALLATION 2-84
2.22 KEY COUNTER INTERFACE UNIT 2-86
2.22.1 INSTALLATION PROCEDURE 2-86
2.23 CONTROLLER OPTIONS 2-88
2.23.1 CONTROLLER BOARD SLOTS 2-88
Interface Board, SD Card Slots 2-88
Board Slot 2-90
SD Card Slots 2-90
2.23.2 IEEE 1284 INTERFACE BOARD (B679) 2-92
Accessories 2-92
Installation 2-92
2.23.3 IEEE 802.11A/G (D377) 2-93
Accessories 2-93
Installation 2-93
User Tool Settings for IEEE 802.11a/g 2-95
SP Mode Settings for IEEE 802.11a/g Wireless LAN 2-97
2.23.4 BLUETOOTH UNIT (B826) 2-97
Accessories 2-97
Installation 2-98
2.23.5 GIGABIT ETHERNET (G831) 2-99
Accessories 2-99
Installation 2-99
2.23.6 FILE FORMAT CONVERTER TYPE E (D377) 2-100
Accessory Check 2-100
Installation 2-100
2.23.7 POSTSCRIPT 3 UNIT (D383) 2-101
Accessories 2-101
Installation 2-101
2.23.8 HDD ENCRYPTION UNIT 2-102
Installation 2-102
Recovery from a Device Problem 2-105
More about HDD Encryption Unit (D377) 2-107
2.23.9 DATA OVERWRITE SECURITY UNIT (D362) 2-110
Accessory Check 2-110
Before You Begin 2-110
Seal Check and Removal 2-111
DOS Installation 2-111
2.23.10 BROWSER UNIT TYPE D (D377) 2-114
Accessories 2-114
Installation 2-114
2.23.11 VM CARD TYPE F (D377) 2-116
Accessories 2-116
Installation 2-116
2.23.12 IPDS UNIT 2-117
Accessories 2-117
Installation 2-117
2.23.13 PRINTER AND P/S OPTIONS (ONLY FOR D017/D019) 2-119
Overview 2-119
Main Units 2-120
Separate Options 2-120
Enhance Options 2-120
Kit Contents 2-121
Printer, Printer/Scanner Unit Installation 2-123
Printer Enhance, Scanner Enhance Options 2-126
PREVENTIVE MAINTENANCE
3. PREVENTIVE MAINTENANCE 3-1
3.1 PM TABLES 3-1
3.2 MAIN MOTOR DRIVE GEAR 3-2
REPLACEMENT AND ADJUSTMENT
4. REPLACEMENT AND ADJUSTMENT 4-1
4.1 SPECIAL TOOLS AND LUBRICANTS 4-1
4.1.1 SPECIAL TOOLS 4-1
4.1.2 LUBRICANTS 4-1
4.2 GENERAL CAUTIONS 4-2
4.2.1 PCU (PHOTOCONDUCTOR UNIT). 4-2
4.2.2 TRANSFER ROLLER UNIT 4-2
4.2.3 SCANNER UNIT 4-3
4.2.4 LASER UNIT 4-3
4.2.5 FUSING UNIT 4-3
4.2.6 PAPER FEED 4-3
4.2.7 OTHERS 4-4
4.3 SCANNER UNIT 4-5
4.3.1 EXPOSURE GLASS 4-5
4.3.2 ORIGINAL LENGTH/WIDTH SENSORS 4-6
4.3.3 EXPOSURE LAMP 4-7
Reassembling 4-9
4.3.4 SCANNER MOTOR 4-10
4.3.5 SENSOR BOARD UNIT (SBU) 4-11
Monochrome Scanner Unit (D017/D019) 4-11
Color Scanner Unit (D018/D020/D084/D085) 4-12
When reassembling 4-13
4.3.6 EXPOSURE LAMP STABILIZER 4-13
4.3.7 FRONT SCANNER WIRE 4-14
Reinstalling the Front Scanner Wire 4-14
4.3.8 REAR SCANNER WIRE 4-17
Reinstalling the Rear Scanner Wire 4-17
4.3.9 TOUCH PANEL POSITION ADJUSTMENT 4-18
4.4 LASER UNIT 4-19
4.4.1 CAUTION DECAL LOCATIONS 4-19
4.4.2 LASER UNIT 4-20
4.4.3 POLYGON MIRROR MOTOR 4-22
4.4.4 LD UNIT 4-22
4.4.5 LASER SYNCHRONIZATION DETECTOR 4-23
4.5 PHOTOCONDUCTOR UNIT (PCU) 4-24
4.5.1 PCU REMOVAL 4-24
4.5.2 PICK-OFF PAWLS 4-25
4.5.3 OPC DRUM 4-25
4.5.4 CHARGE ROLLER, CLEANING ROLLER 4-27
4.5.5 CLEANING BLADE 4-28
4.5.6 DEVELOPER 4-29
PCU Reassembly 4-32
4.5.7 AFTER REPLACEMENT OF PCU COMPONENTS 4-33
4.6 TRANSFER UNIT 4-35
4.6.1 TRANSFER ROLLER UNIT 4-35
4.6.2 IMAGE DENSITY SENSOR 4-36
4.7 FUSING/EXIT 4-37
4.7.1 FUSING UNIT 4-37
4.7.2 THERMISTORS 4-38
4.7.3 THERMOSTATS 4-38
4.7.4 HOT ROLLER AND FUSING LAMPS 4-40
Reinstallation 4-41
4.7.5 PRESSURE ROLLER/CLEANING ROLLER 4-43
4.7.6 PAPER EXIT SENSOR/PAPER OVERFLOW SENSOR 4-44
4.8 PAPER FEED 4-45
4.8.1 FEED ROLLER: TRAY 1 4-45
4.8.2 FEED ROLLER: TRAY 2 4-46
4.8.3 FRICTION PAD 4-46
4.8.4 PAPER END SENSOR 4-47
4.8.5 PAPER TRAY LIFT MOTORS 4-48
4.8.6 REGISTRATION CLUTCH 4-49
4.8.7 PAPER FEED CLUTCHES 4-50
Lower Paper Feed Clutch 4-50
Upper Paper Feed Clutch 4-50
4.8.8 RELAY CLUTCHES 4-51
4.8.9 UPPER/LOWER PAPER SIZE SENSORS 4-52
4.8.10 REGISTRATION SENSOR 4-53
4.8.11 UPPER, LOWER RELAY SENSORS 4-56
4.8.12 DUST COLLECTION BIN 4-57
4.9 PCBS AND OTHER ITEMS 4-58
4.9.1 CONTROLLER BOARD 4-58
Before replacing the controller board in the model without HDD 4-58
Replacement Procedure 4-58
After installing the controller board 4-60
4.9.2 NVRAM 4-60
4.9.3 BCU BOARD 4-62
4.9.4 POWER PACK 4-63
4.9.5 MAIN MOTOR 4-63
4.9.6 PSU 4-64
4.9.7 SIO 4-65
Monochrome Scanner Unit (D017/D019) 4-65
Color Scanner Unit (D018/D020/D084/D085) 4-66
4.9.8 SIU 4-67
4.9.9 IPU 4-68
4.9.10 HDD 4-69
4.10 COPY ADJUSTMENTS: PRINTING/SCANNING 4-71
4.10.1 PRINTING 4-71
Registration - Leading Edge/Side-to-Side 4-71
Blank Margin 4-73
Main Scan Magnification 4-74
Parallelogram Image Adjustment 4-74
4.10.2 SCANNING 4-76
Registration: Platen Mode 4-76
Magnification 4-77
4.10.3 ADF IMAGE ADJUSTMENT 4-78
Registration 4-78
Sub Scan Magnification 4-79
4.10.4 TOUCH SCREEN CALIBRATION 4-80
SYSTEM MAINTENANCE
5. SYSTEM MAINTENANCE 5-1
5.1 SERVICE PROGRAM MODE 5-1
5.1.1 SP TABLES 5-1
5.1.2 SERVICE MODE LOCK/UNLOCK 5-1
5.1.3 SERVICE PROGRAM MODE OPERATION 5-2
Overview 5-2
Entering and Exiting SP mode 5-2
SP Mode Button Summary 5-2
Switching Between SP Mode and Copy Mode for Test Printing 5-3
Selecting the Program Number 5-3
5.1.4 COMMONLY USED SP CODES AND FEATURES 5-5
Test Pattern Printing (SP2902) 5-5
SMC Data Lists (SP5990) 5-7
Memory All Clear (SP5801) 5-8
APS Output Display (SP4301) 5-10
Nip Band Width Measurement (SP1109) 5-11
Software Reset 5-12
System Setting Reset 5-12
Copier Setting Reset 5-13
5.1.5 SERVICE PROGRAM MODE TABLES 5-14
Service Table Key 5-14
5.2 FIRMWARE UPDATE 5-15
5.3 NVRAM DATA UPLOAD/DOWNLOAD 5-17
5.3.1 UPLOADING NVRAM DATA (SP5-824) 5-17
5.3.2 DOWNLOADING NVRAM DATA (SP5-825) 5-17
5.4 USER TOOLS 5-18
5.4.1 UP MODE INITIAL SCREEN: USER TOOLS/COUNTER DISPLAY5-18
5.4.2 SYSTEM SETTINGS 5-18
5.4.3 COPIER/DOCUMENT SERVER FEATURES 5-19
5.4.4 PRINTER, FACSIMILE, SCANNER SETTINGS 5-19
5.4.5 INQUIRY 5-20
5.4.6 COUNTER 5-20
5.5 LED AND DIP SWITCHES 5-21
5.5.1 LEDS 5-21
Controller 5-21
BCU 5-21
5.5.2 DIP SWITCHES 5-22
Controller 5-22
BCU 5-22
5.6 USING THE DEBUG LOG 5-23
5.6.1 SWITCHING ON AND SETTING UP "SAVE DEBUG LOG". 5-23
5.6.2 RETRIEVING THE DEBUG LOG FROM THE HDD 5-27
5.6.3 RECORDING ERRORS MANUALLY 5-27
5.6.4 DEBUG LOG CODES 5-28
SP5857-015 Copy SD Card-to-SD Card: Any Desired Key 5-28
SP5857-016 Create a File on HDD to Store a Log 5-28
SP5857-017 Create a File on SD Card to Store a Log 5-28
TROUBLESHOOTING
6. TROUBLESHOOTING 6-1
6.1 SERVICE CALL CONDITIONS 6-1
6.2 SELF-DIAGNOSTIC MODE 6-2
6.2.1 SELF-DIAGNOSTIC MODE AT POWER ON 6-2
Self-Diagnostic Test Flow Chart 6-3
6.2.2 DETAILED SELF-DIAGNOSTIC MODE 6-4
Purpose 6-4
Executing Detailed Self-Diagnosis 6-4
6.3 PAPER FEED TROUBLESHOOTING 6-6
6.4 SKEWED IMAGE 6-7
6.5 IMAGE PROBLEMS 6-8
6.5.1 SKEWED, TRAPEZOID AND PARALLELOGRAM IMAGES 6-8
Skewed Images 6-8
Trapezoid Images 6-8
Parallelogram Images 6-10
6.5.2 CHECKING IMAGES WITH THE TRIMMING PATTERN 6-11
6.5.3 CORRECTING THE IMAGES 6-12
Correcting Skewed Images 6-12
Correcting Trapezoid Images 6-17
Correcting Parallelogram Images 6-18
6.6 ELECTRICAL COMPONENT DEFECTS 6-19
6.6.1 SENSORS 6-19
6.6.2 SWITCHES 6-27
6.7 BLOWN FUSE CONDITIONS 6-28
ENERGY SAVING
7. ENERGY SAVING 7-1
7.1 ENERGY SAVE 7-1
7.1.1 ENERGY SAVER MODES. 7-1
Timer Settings 7-2
Return to Stand-by Mode 7-2
Recommendation 7-2
7.1.2 ENERGY SAVE EFFECTIVENESS 7-3
7.2 PAPER SAVE 7-5
7.2.1 EFFECTIVENESS OF DUPLEX/COMBINE FUNCTION 7-5
8. Duplex: 7-5
9. Combine mode: 7-5
10. Duplex + Combine: 7-6
D017 Series 7-6

D017/D018/D019/D020/D084/D085 SERVICE MANUAL APPENDICES

SEE D017/D018/D019/D020/D084/D085 SERVICE MANUAL APPENDICES SECTION FOR DETAILED TABLE OF CONTENTS

B391 LARGE CAPACITY TRAY PS500

SEE SECTION B391 FOR DETAILED TABLE OF CONTENTS

B408 1000-SHEET FINISHER SR790

SEE SECTION B408 FOR DETAILED TABLE OF CONTENTS

B793 BOOKLET FINISHER SR3000

SEE SECTION B793 FOR DETAILED TABLE OF CONTENTS

D331 PAPER FEED UNIT PB3030

SEE SECTION D331 FOR DETAILED TABLE OF CONTENTS

D361-D510 FAX OPTION TYPE 3350-3351

SEE SECTION D361 FOR DETAILED TABLE OF CONTENTS

D366 ARDF DF3030

SEE SECTION D366 FOR DETAILED TABLE OF CONTENTS

D367 1-BIN TRAY BN3030
SEE SECTION D367 FOR DETAILED TABLE OF CONTENTS

D368 BRIDGE UNIT BU3020

SEE SECTION D368 FOR DETAILED TABLE OF CONTENTS

D369 DUPLEX UNIT AD3000

SEE SECTION D369 FOR DETAILED TABLE OF CONTENTS

D370 BYPASS TRAY BY3000

SEE SECTION D370 FOR DETAILED TABLE OF CONTENTS

D371 INTERCHANGE UNIT TYPE 3350

SEE SECTION D371 FOR DETAILED TABLE OF CONTENTS

D372 500-SHEET FINISHER SR3050

SEE SECTION D372 FOR DETAILED TABLE OF CONTENTS

D383 PRINTERISCANNER OPTION

SEE SECTION D383 FOR DETAILED TABLE OF CONTENTS

D385 INTERNAL SHIFT TRAY SH3010

SEE SECTION D385 FOR DETAILED TABLE OF CONTENTS

Read This First

Safety, Conventions, Trademarks

Safety

Prevention of Physical Injury

1. Before disassembling or assembling parts of the machine and peripherals, make sure that the machine and peripheral power cords are unplugged.
2. The plug should be near the machine and easily accessible.
3. Note that some components of the machine and the paper tray unit are supplied with electrical voltage even if the main power switch is turned off.
4. If any adjustment or operation check has to be made with exterior covers off or open while the main switch is turned on, keep hands away from electrified or mechanically driven components.
5. If the [Start] key is pressed before the machine completes the warm-up period (the [Start] key starts blinking red and green), keep hands away from the mechanical and the electrical components as the machine starts making copies as soon as the warm-up period is completed.
6. The inside and the metal parts of the fusing unit become extremely hot while the machine is operating. Be careful to avoid touching those components with your bare hands.
7. To prevent a fire or explosion, keep the machine away from flammable liquids, gases, and aerosols.

Health Safety Conditions

1. Never operate the machine without the ozone filters installed.
2. Always replace the ozone filters with the specified types at the proper intervals.
3. Toner and developer are non-toxic, but if you get either of them in your eyes by accident, it may cause temporary eye discomfort. Try to remove with eye drops or flush with water as first aid. If unsuccessful, get medical attention.

Observance of Electrical Safety Standards

1. The machine and its peripherals must be installed and maintained by a customer service representative who has completed the training course on those models.

Safety and Ecological Notes for Disposal

1. Do not incinerate toner bottles or used toner. Toner dust may ignite suddenly when exposed to an open flame.
2. Dispose of used toner, developer, and organic photoconductors in accordance with local regulations. (These are non-toxic supplies.)
3. Dispose of replaced parts in accordance with local regulations.
4. When keeping used lithium batteries in order to dispose of them later, do not put more than 100 batteries per sealed box. Storing larger numbers or not sealing them apart may lead to chemical reactions and heat build-up.

ACAUTION

- The danger of explosion exists if a battery of this type is incorrectly replaced.

Replace only with the same or an equivalent type recommended by the manufacturer. Discard used batteries in accordance with the manufacturer's instructions.

Handling Toner

- Work carefully when removing paper jams or replacing toner bottles or cartridges to avoid spilling toner on clothing or the hands.
- If toner is inhaled, immediately gargle with large amounts of cold water and move to a well ventilated location. If there are signs of irritation or other problems, seek medical attention.
- If toner gets on the skin, wash immediately with soap and cold running water.
- If toner gets into the eyes, flush the eyes with cold running water or eye wash. If there are signs of irritation or other problems, seek medical attention.
- If toner is swallowed, drink a large amount of cold water to dilute the ingested toner. If there are signs of any problem, seek medical attention.
- If toner spills on clothing, wash the affected area immediately with soap and cold water. Never use hot water! Hot water can cause toner to set and permanently stain fabric.
- Always store toner and developer supplies such as toner and developer packages, cartridges, and bottles (including used toner and empty bottles and cartridges) out of the reach of children.
- Always store fresh toner supplies or empty bottles or cartridges in a cool, dry location that is not exposed to direct sunlight.

Laser Safety

The Center for Devices and Radiological Health (CDRH) prohibits the repair of laser-based optical units in the field. The optical housing unit can only be repaired in a factory or at a location with the requisite equipment. The laser subsystem is replaceable in the field by a qualified Customer Engineer. The laser chassis is not repairable in the field. Customer engineers are therefore directed to return all chassis and laser subsystems to the factory or service depot when replacement of the optical subsystem is required.

©WARNING

- Use of controls, or adjustment, or performance of procedures other than those specified in this manual may result in hazardous radiation exposure.

WARNING FOR LASER UNIT

WARNING:

Turn off the main switch before attempting any of the procedures in the Laser Unit section. Laser beams can seriously damage your eyes.

CAUTION MARKING:

Safety Precautions for This Machine

Before moving the mainframe:

- Disconnect all peripheral units (finisher, LCT, etc.) from the mainframe.
- Pull the slide handles out of the mainframe and use them to lift the mainframe.

Conventions and Trademarks

Conventions

Symbol	What it means
CT	Core Tech Manual
S	Screw
(5)	Connector
(3)	C-ring
C-ring	Harness clamp
FFC	Flat Film Connector

SEF (Short Edge Feed)

The notations "SEF" and "LEF" describe the direction of paper feed. The arrows indicate the direction of paper feed.

In this manual "Horizontal" means the "Main Scan Direction" and "Vertical" means the "Sub Scan Direction" relative to the paper feed direction.

Warnings, Cautions, Notes

In this manual, the following important symbols and notations are used.

©WARNING

- A Warning indicates a potentially hazardous situation. Failure to obey a Warning could result in death or serious injury.

©CAUTION

- A Caution indicates a potentially hazardous situation. Failure to obey a Caution could result in minor or moderate injury or damage to the machine or other property.

Important

- Obey these guidelines to avoid problems such as misfeeds, damage to originals, loss of valuable data and to prevent damage to the machine
Note
- This information provides tips and advice about how to best service the machine.

Trademarks

- Microsoft ${ }^{\circledR}$, Windows ${ }^{\circledR}$, and MS-DOS ${ }^{\circledR}$ are registered trademarks of Microsoft Corporation in the United States and /or other countries.
- PostScript ${ }^{\circledR}$ is a registered trademark of Adobe Systems, Incorporated.
- $P C L^{\circledR}$ is a registered trademark of Hewlett-Packard Company.
- Ethernet ${ }^{\circledR}$ is a registered trademark of Xerox Corporation.
- PowerPC ${ }^{\circledR}$ is a registered trademark of International Business Machines Corporation.
- Other product names used herein are for identification purposes only and may be trademarks of their respective companies. We disclaim any and all rights involved with those marks.

PRODUCT INFORMATION

REVISION HISTORY		
Page	Date	Added/Updated/New
		None

1. PRODUCT INFORMATION

1.1 SPECIFICATIONS

See "Appendices" for the following information:

- General Specifications
- Optional Equipment

1.2 MACHINE CONFIGURATION

1.2.1 SYSTEM CONFIGURATION AND OPTIONS

No.	Item	Comments
1	Main Machine D017/D018/D019/D020/D084/D085	
2	ARDF (D366)	
3	Platen Cover (B406)	Required for Item 5, 7
4	Interchange Unit (D371)	
5	Duplex Unit (D369)	Requires Item 4
6	Bypass Tray (D370)	
7	1-Bin Tray (D367)	Internal Shift Tray (D385)

Machine Configuration

No.	Item	Comments
9	Paper Tray Unit (D331)	
10	LCT (B391)	Required for Items 12,13,14
11	Bridge Unit (D368)	Requires Item 11
12	$500-$ Sheet Finisher (D372)	Requires Item 11
13	$1000-$ Sheet Finisher (B408)	Requires Item 11
14	Punch Unit (B807)	order separately
15	Copy Data Security Unit (B829)	PCB (installed on BCU)
16	Fax Unit (D361 for D017/D018D019/D020,	See Fax manual
17	Interface Board Controller Options	See Note 1
18	SD Card MFP Options	See Note 2

Machine Configuration

Note 1:

The following interface boards are available for installation.

Important

- There is only one board slot on the back of the machine. Only one of these options can be installed.
These options can be installed at any time.

Interface Board
Bluetooth Interface Unit Type 3245 (B826)
File Format Converter Type E (D377)
IEEE1284 Interface Board Type A (B679)
IEEE802.11a/g Interface Unit Type J (D377) -or- IEEE802.11g Interface Unit Type K (D377)
Gigabit Ethernet Type 7300 (G381)

Note 2:

The following options are provided on SD cards.

- Two SD card slots are available. If more than two options need to be installed, the applications can be moved to one SD card with SP5873-1.
- Due to copyright restrictions, the PostScript Unit (D383) cannot be moved to another SD card. However, other applications can be moved onto the PostScript 3 SD card. (For more, see the Printer/Scanner Option manual.)
- VM Card Type F is standard for D084/D085 models.

These options can be installed at any time.

SD Cards
Browser Unit Type D (D377)
Data Overwrite Security Unit Type I (D362)
HDD Encryption Option (D377)
PostScript3 Unit Type 3350 (D383)
IPDS Unit Type 3350 (D383)
VM Card Type F (D377)*1 only for D017/D018/D019/D020 models

*1: VM card is installed in the D084/D085 models by default. The VM Card Type F which is supplied as an option is different from the VM card in the D084/D085 models.

- VM Card Type F: No "App 2 Me" application installed
- VM card in the D084/D085 models: "App 2 Me" application installed

1.3 GUIDANCE FOR THOSE WHO ARE FAMILIAR WITH PREDECESSOR PRODUCTS

The D084/D085 series are successor models to the D017/D018/D019/D020 series. If you have experience with the predecessor products, the following information will be of help when you read this manual.

Different Points from Predecessor Products

	D084/D085	D017/D018/D019/D020
Model Line Up	2 models $28 \mathrm{cpm} / 33 \mathrm{cpm}$	2 models $25 \mathrm{cpm} / 33 \mathrm{cpm}$
VM Card	Standard	Option
Scanner	Color only	Color and B/W

1.4 OVERVIEW

1.4.1 MECHANICAL COMPONENTS

1. 2nd scanner	14. Transfer roller
2. Original width sensor	15. Development roller
3. Exposure lamp	16. ID sensor
4. st scanner	17. Registration roller
5. Original length sensor	18. Friction pad
6. Lens	19. Paper feed roller
7. Scanner motor	20. Bottom plate
8. SBU board	21. Tray heater
9. Exit roller	22. Polygon mirror motor
10. Fusing hot roller	23. Laser unit
11. Fusing pressure roller	24. Toner supply bottle holder
12. Cleaning unit	25. Drum charge roller
13. OPC drum	26. Scanner home position sensor

1.4.2 PAPER PATH

1. Optional ADF
2. Optional 1-bin Tray
3. Optional Interchange Unit
4. Optional Duplex Unit
5. Optional By-pass Feed Tray
6. Optional Paper Tray Unit
7. Optional 1000-sheet Finisher
8. Optional Bridge Unit

1.4.3 DRIVE LAYOUT

1. Scanner Drive Motor
2. Main Motor
3. Registration Clutch
4. Upper Paper Feed Clutch
5. Upper Transport Clutch
6. Lower Paper Feed Clutch
7. Lower Transport Clutch

INSTALLATION

REVISION HISTORY		
Page	Date	Added/Updated/New
$114 \sim 116$	$06 / 13 / 2011$	Updated Browser Unit Type D (D377-17)
$114 \sim 115$	$10 / 12 / 2011$	Important note Browser Unit Type D (D377-17)

2. INSTALLATION

2.1 INSTALLATION REQUIREMENTS

2.1.1 ENVIRONMENT

1. Temperature Range: $10^{\circ} \mathrm{C}$ to $32{ }^{\circ} \mathrm{C}\left(50^{\circ} \mathrm{F}\right.$ to $\left.89.6^{\circ} \mathrm{F}\right)$
2. Humidity Range: 15% to $80 \% \mathrm{RH}$
3. Ambient Illumination: Less than 1,500 lux (do not expose to direct sunlight.)
4. Ventilation: Room air should turn over at least $30 \mathrm{~m}^{3} / \mathrm{hr} /$ person
5. Ambient Dust: Less than $0.10 \mathrm{mg} / \mathrm{m}^{3}$
6. Avoid an area which is exposed to sudden temperature changes. This includes:

- Areas directly exposed to cool air from an air conditioner.
- Areas directly exposed to heat from a heater.

7. Do not place the machine in an area where it will be exposed to corrosive gases.
8. Do not install the machine at any location over $2,000 \mathrm{~m}(6,500 \mathrm{ft}$.) above sea level.
9. Place the copier on a strong and level base. (Inclination on any side should be no more than 5 mm .)
10. Do not place the machine where it may be subjected to strong vibrations.

2.1.2 MACHINE LEVEL

Front to back: Within 5 mm (0.2") of level
Right to left: Within 5 mm (0.2") of level

Installation Requirements

2.1.3 MINIMUM SPACE REQUIREMENTS

Place the copier near the power source, and provide clearance as shown:

A: In Front: Over 750 mm (29.6"), B: Left: Over 100 mm (0.4")
C: To Rear: Over 100 mm (0.4"), D: Right: Over 100 mm (0.4")

E: 640 mm (25.2"), F: 550 mm (21.7"), G: 1137 mm (44.8")

- The 750 mm recommended for the space at the front is only for pulling out the paper tray. If an operator stands at the front of the copier, more space is required.

2.1.4 POWER REQUIREMENTS

©CAUTION

- Make sure that the wall outlet is near the copier and easily accessible.
- Make sure the plug is firmly inserted in the outlet.
- Avoid multi-wiring.
- Be sure to ground the machine.

1. Input voltage level

- $120 \mathrm{~V}, 60 \mathrm{~Hz}$: More than 12 A
- 220 V to $240 \mathrm{~V}, 50 \mathrm{~Hz} / 60 \mathrm{~Hz}$: More than 7 A
- $110 \mathrm{~V}, 50 \mathrm{~Hz} / 60 \mathrm{~Hz}$: More than 13 A

2. Permissible voltage fluctuation: 10%
3. Do not set anything on the power cord.

2.2 COPIER INSTALLATION

2.2.1 POWER SOCKETS FOR PERIPHERALS

©CAUTION

- Rating voltages for peripherals.

ADF

Rating voltage output connector
for accessory Max. DC24V

Make sure to connect the cables to the correct sockets.

2.2.2 INSTALLATION FLOW CHART

The following flow chart shows how to install the optional units more efficiently.

2.2.3 ACCESSORY CHECK

Check the quantity and condition of the accessories in the box against the following list:

No.	Description	$\begin{aligned} & \text { D017/D018 } \\ & \text { D019/D020 } \end{aligned}$	D084/D085
1	Paper Tray Decal	1	1
2	Emblem Cover	1	1
3	Emblem	1	1
4	Model Name Decal	1	1
5	End Fence	1	1
6	HDD Caution Decal (-17, -29 only)	1	-
7	Operating Instructions - About This Machine	1	1
8	Operating Instructions - Troubleshooting	1	1
9	Quick Reference Guide - Copy	1	1
10	Quick Reference Guide - Printer	1	1
11	Quick Reference Guide - Scanner	1	1
12	Quick Reference Guide - App 2 Me	-	1
13	CD-ROM Operation Instruction - User	1	1
14	CD-ROM Operation Instruction Administrator	1	1
15	CD-ROM Operation Instruction - App 2 Me	-	1
16	CD-ROM - SDK	-	1
17	CD-ROM - Printer/Scanner	-	1
18	CD-ROM - Printer	1	-

Copier Installation

No.	Description	D017/D018 D019/D020	D084/D085
19	CD-ROM - Scanner	1	-
20	CD-ROM - P2600	1	1
21	CD-ROM - Driver (-19 only)	1	1
22	CD-ROM - Font	1	-
23	Cloth Holder	1	1
24	Cloth - DF Exposure Glass	1	1
25	Ferrite Core	1	1

2.2.4 INSTALLATION PROCEDURE

Tapes and Retainers

\triangle CAUTION

- Unplug the machine power cord before you start the following procedure.

If the optional paper tray or the optional LCT is going to be installed now, put the copier on the paper tray unit or the LCT first, then install these options, then install the copier.

\downarrow Note

- Keep the shipping retainers after installing the machine. They will be reused if the machine is moved to another location in the future.

1. Remove the tapes and the shipping retainer on the exterior of the copier.
2. Install the end fence.

Developer

1. Spread the vinyl sheet provided with the developer kit on a flat surface.
2. Open the right door $[A]$.
3. Open the front door $[\mathrm{B}]$.
4. Push the latch [C] and remove the PCU [D].

5. Remove the front screw $[A]\left({ }^{(1)} x 1\right)$
6. Remove the rear screws $[B](\hat{\xi} \times 2)$
7. Release the rear tab [C] then front tab [D], then separate the top and bottom.

太 Important

- Be sure to release the rear tab first and the front tab second.

8. Open the developer pack $[A]$.
9. While turning the black gear $[B]$, slowly move the pack left and right and pour half of the developer over the auger [C].
10. Continue to turn the black gear until the developer is level.
11. While continuing to turn the black gear, slowly move the pack left and right and pour the remaining half of the developer over the auger until the developer is level.
※ Important

- Be careful. Do not spill developer on the gears and sponges.
- If you accidentally spill developer on the gears or sponges, remove it with a magnet or the tip of a magnetized screwdriver.

Re-assembly

1. Make sure that all of the holes and tabs are engaged at $[A],[B],[C]$, and $[D]$. Then push down to lock the tabs on the front and rear end of the PCU.
2. Make sure that the holes for the screws on the front and rear end of the PCU are aligned correctly. If the holes are not aligned correctly, make sure that the tabs at the front, rear, and left side of the PCU are engaged correctly.

太 Importart

- Reattach the rear screws $\left(\begin{array}{ll} \\ (2)\end{array}\right)$ first, then reattach the front screw $\left(\begin{array}{l}\end{array}\right)$.
- Do not push down on the top of the PCU when you attach the rear and front screws

Toner Bottle

1. Raise the toner bottle holder lever [A], push lever [B] down, and pull the toner bottle holder [C] out.
2. Shake the toner bottle [D].
\square
Nole

- Do not remove the toner bottle cap [E] until after shaking.

3. Unscrew the bottle cap [E] and insert the bottle into the holder.

\downarrow Nole

- Do not touch the inner bottle cap [F].

4. Reposition the holder and press down the holder lever to secure the bottle.
5. Open the right cover.

6. Rotate the green fusing pressure lever [G] to the up position.

Emblem, Decals

1. Attach the emblem $[A]$ and panel $[B]$ to the front door [C].

- Push the panel in until the emblem and panel move into their positions. You will hear a click.

2. Adjust the side guides and end guide to match the paper size.

Nole

- To move the side guides, first pull out the tray fully, then push down the green lock at the rear of the tray.

Completion

1. If the optional bridge unit will not be installed, swing the sensor feeler [A] out.
2. Install the optional ARDF or the optional platen cover (see p.2-25 "ARDF (D366)" or

Copier Installation
p.2-65 "Platen Cover (B406)").

3. If the HDD will be installed for a D017-17, -29 or D019-17, -29 model, attach the HDD caution decal $[B]$ to the front cover.

SP Settings

1. Connect the copier and turn the machine on.
2. Go into the SP mode and do SP2801 (Developer Initialization).
3. Do SP1912 and SP1913 to set automatic paper size selection for the upper and lower tray.

1912	1: Tray: Auto Paper Size Detection	Upper Tray
1913	2: Tray: Auto Paper Size Detection	Lower Tray
1	Size 1: B5/Exe Landscape	
2	Size 2: A5/HLT	[0 to $1 / 0$ / 1] 0: ISO (A3, A4, A5, etc.) 1: USA (DLT, LT, EXE, etc.)
3	A4/LT	A4/LG
5	A3/LT	

4. Enable the NIB and/or USB function.

- To enable the NIB function, enter the SP mode and set SP5985-001 (On Board NIC) to "1"(Enable).
- To enable the USB function, enter the SP mode and set SP5985-002 (On Board USB) to "1"(Enable).

5. Exit SP mode.
6. Do some test copies to make sure that the machine operates correctly.

App 2 Me Setting (D084/D085 only)

D084/D085 modes have VM Card including "App 2 Me" provider by default. Do the following procedure if a customer want to use the "App 2 Me ".

1. Press "User Tools" key on the operation panel.
2. Touch the "Extended Feature Settings" button twice.
3. Touch the "App 2 Me " line in the Startup Setting tab.
4. Touch the "Extended Feature Info" tab on the LCD.
5. Touch the "App 2 Me line.
6. Set the setting of "Auto Start" to "On".
7. Touch the "Exit" button.
8. Exit the "User Tools" settings.

Update Procedure for App 2 Me Provider

1. Push the "User/Tools" key.
2. If an administrator setting is registered for the machine, step 2 and 3 are required.

Otherwise, skip to step 4.
3. Push the "Login/Logout" key.
4. Login with the administrator user name and password.
5. Touch "Extended Feature Settings" twice on the LCD.
6. Touch the each application. Then, the status will be changed to "Stop".
7. Turn off the machine. And then remove the VM Card.

Copier Installation

```
BMy Computer
$ Preload (C:)
| SD_Card (D:)
gminit.d
```

```module
\(\square \square\) sdk
    # 16974092
    Gap
    # common
    G dsdk
        | dist
                        337051920
        \square work
        Flot
                            d377i501
```

8. Prepare newer App 2 Me Provider zip file from Firmware Download Center. Unzip the zip file. (The folder name is "337051920".) And then copy the App 2 Me Provider folder in the specified path of VM card. The path is "SD_Card Drive¥ sdk¥dsdk¥dist¥337051920" as shown above.
9. Turn the SD card label face to the rear of the machine. Then push it slowly into slot 2 until you hear a click.
10. Turn on the main power switch.
11. Press the "User Tools" key on the operation panel.
12. Touch the "Extended Feature Settings" button twice.
13. Touch the "Extended Feature Info" tab on LCD.
14. Touch the "App2Me" line.
15. Set the setting of the "Auto Start" to "On".
16. Touch the "Exit" button.
17. Exit the "User Tools/Counter" settings.

2.2.5 TRANSPORTING THE MACHINE

1. Do SP 4806-001 to move the scanner carriage from the home position. This prevents dust from falling into the machine during transportation.

2.3 PAPER FEED UNIT (D331)

2.3.1 ACCESSORY CHECK

Check the quantity and condition of the accessories against the following list.

No.	Description	Quantity
1	Securing Bracket	2
2	Screw - M4 x 8	4

2.3.2 INSTALLATION PROCEDURE

©CAUTION

- Unplug the machine power cord before starting the following procedure.
- The handles of the main machine for lifting must be inserted inside the machine and locked unless these handles are used for the installation or relocation of the main machine.
- You need two or more persons to lift the copier. The copier is highly unstable when lifted by one person, and may cause human injury or property damage.

1. Remove the strips of tape.
2. Put the copier $[A]$ on the paper tray unit $[B]$.
\downarrow Nole

- When you install the copier, be careful not to pinch the cable [C].

3. Remove the connector cover $\left.[A]\left(\begin{array}{l}(1) \\ M\end{array}\right] \times 8\right)$.
4. Connect the cable $[B]$ to the copier, as shown.
5. Attach a securing bracket [C] to each side of the paper tray unit, as shown ($\times 1$: $M 4 \times 8$ each).
6. Re-install the connector cover.

7. Remove the 1 st and 2 nd paper trays $[A]$
8. Fasten the paper tray unit at $[B]\left(\xi^{\prime} \times 2 M 4 \times 8\right)$.
9. Reinstall the all paper trays.
10. Attach the appropriate paper tray number decal and paper size decal to the each handle of the trays.

- The paper tray number and size sheet is in the accessory box of the main machine.

Paper Feed Unit (D331)

11. Rotate the adjuster [A] until the machine cannot be pushed across the floor.
12. Load paper into the paper trays and set the side fences and bottom fence.

SP Settings

1. Connect the copier and turn the machine on.
2. Do SP1914 and SP1915 to set automatic paper size detection for the upper and lower tray of the paper tray unit.

1914	3: Tray: Auto Paper Size Detection	Upper Tray
1915	4: Tray: Auto Paper Size Detection	Lower Tray
1	Size 1: B5/Exe Landscape	
2	Size 2: A5/HLT	[0 to $1 / 0 / 1]$
3	A4/LT	0: ISO (A3, A4, A5, etc.) $1:$ USA (DLT, LT, EXE, etc.)
4	A4/LG	A3/LT
5	AST	

3. Exit SP mode.
4. Do some test copies to make sure that the machine operates correctly.

2.4 LCT (B391)

2.4.1 ACCESSORY CHECK

Check the quantity and condition of the accessories against the following list.

No.	Description	Quantity
1	Securing Bracket	2
2	Screw $-\mathrm{M} 4 \times 10$	4
3	Paper Size Decal	1

2.4.2 INSTALLATION PROCEDURE

\triangle CAUTION

- Unplug the machine power cord before starting the following procedure.
- The handles of the main machine for lifting must be inserted inside the machine and locked, unless these handles are used for the installation or relocation of the main machine.
- You need two or more persons to lift the copier. The copier is highly unstable when lifted by one person, and may cause human injury or property damage.

LCT (B391)

1. Remove the strips of tape.
2. Set the copier $[A]$ on the LCT [B].

- When installing the copier, Be careful not to pinch the cable [C].

3. Remove the connector cover [A] (rivet screw x 1).
4. Connect the cable [B] to the copier, as shown.
5. Attach a securing bracket [C] to each side of the LCT, as shown (
6. Re-install the connector cover.

7. Remove the 1st and 2nd paper trays, and then secure the LCT with two screws (1), (2).
8. Load paper into the LCT.
9. Reinstall the 1st and 2nd paper trays.

b391i502
10. Attach the appropriate paper tray number decal [A] and paper size decal [B] to the LCT tray cover.
\downarrow Note

- The paper tray number decal is in the accessory box for the main copier.

11. Rotate the adjuster [A] until the machine cannot be pushed across the floor.
12. Load paper into the paper tray and turn on the main switch.

SP Setting

1. Connect the copier and turn the machine on.
2. Do SP1914 to set automatic paper size detection for the LCT.

1914	3: Tray: Auto Paper Size Detection	
1	Size 1: B5/Exe Landscape	$\begin{aligned} & \text { [0 to } 1 \text { / } 0 \text { / 1] } \\ & \text { 0: ISO (A3, A4, A5, etc.) } \\ & \text { 1: USA (DLT, LT, EXE, etc.) } \end{aligned}$
2	Size 2: A5/HLT	
3	A4/LT	
4	A4/LG	
5	A3/LT	

3. Exit SP mode.
4. Do some test copies to make sure that the machine operates correctly.

2.5 ARDF (D366)

2.5.1 COMPONENT CHECK

Check the quantity and condition of the accessories against the following list.

No.	Description	Q'ty
1	ARDF	1
2	Stamp Cartridge	1
3	Knob Screw	2
4	Stud Screw	2
5	Attention Decal-Top Cover	1

2.5.2 INSTALLATION PROCEDURE

\triangle CAUTION

- Unplug the copier power cord before starting the following procedure.

1. Remove the all tapes and shipping retainers.

2. Insert the two stud screws $[A]$ on the top of the machine.

3. Mount the ARDF [A] by aligning the screw keyholes [B] of the ARDF support plate over the stud screws.
4. Slide the ARDF toward the front of the machine.
5. Secure the ARDF with the two knob screw [C].

6. Install the stamp cartridge $[A]$ in the ARDF.

7. Peel off the platen sheet $[A]$ and place it on the exposure glass.
8. Align the rear left corner (of the platen sheet) with the corner [B] on the exposure glass.
9. Close the ARDF.
10. Open the ARDF and check that the platen sheet is correctly attached.

ARDF (D366)

11. Attach the decal $[A]$ to the top cover as shown. Choose the language you want.
12. Plug in and turn on the main power switch of the machine, and then check the ARDF operation.
13. Make a full size copy. Check that the registrations (side-to side and leading edge) and image skew are correct. If they are not, adjust the registrations and image skew, referring to the service manual ("Copy Adjustments" in the "Replacements and Adjustments").

2.6 INTERCHANGE UNIT (D371)

2.6.1 COMPONENT CHECK

Check the quantity and condition of the components against the following list.

No.	Description	Quantity
1	Interchange Unit	1
2	Tapping Screw M3 $\times 6$	2

2.6.2 INSTALLATION PROCEDURE

©CAUTION

- Unplug the copier power cord before starting the following procedure.

1. Remove all tapes.

2. Open the right cover $[A]$ of the copier.
3. Remove the right upper cover $[B]\left(\begin{array}{l} \\ (C)\end{array}\right)$
4. Remove the front right cover [C] (hook)
5. Slide out the exit cover [D].

6. Install the interchange unit $\left.[A]\left(\sum^{2}\right) \times 2\right)$.
7. Connect the two harnesses $[\mathrm{B}]$.

2.7 1-BIN TRAY UNIT (D367)

2.7.1 COMPONENT CHECK

Check the quantity and condition of the components against the following list.

No.	Description	Qty
1	1-Bin Tray Guide	1
2	1 Bin Tray Unit	1
3	Tapping Screw M3 x 8	1
4	Sub-tray	1
5	Tray Guide	1
6	Tray	1

D367i101

2.7.2 INSTALLATION PROCEDURE

©CAUTION

- Unplug the copier power cord before starting the following procedure.

\downarrow Note

- Before installing this 1-bin tray unit, the optional interchange unit (D371) must be installed.

1. Remove all tapes.

2. If the optional bridge unit has been installed, open the right jam removal cover [A] of the bridge unit.
-or-
If the optional bridge unit is not installed, skip this step.
3. If the duplex unit has not been installed go to Step 7 .

If the duplex unit has been installed...

4. Remove the front right cover $[\mathrm{A}]$.

5. Remove the duplex tray $[A]$ and duplex tray guide $[B]$.
6. Remove the duplex guide $[C]\left(\begin{array}{l}(1)\end{array}\right)$.

Install the 1-Bin Tray

7. Remove plate $[\mathrm{A}](\mathrm{B} \times 2)$
8. Attach the 1-bin tray guide $[B]\left(\begin{array}{l}(\hat{8} \times 2)\end{array}\right.$

1-Bin Tray Unit (D367)

9. Install the 1-bin tray unit $[A]\left(\theta^{*} \times 1, ~=1\right)$
10. Re-install the front right cover.

11. Install the tray guide $[A]$.
12. Install the tray $[B]$.
13. Install the sub-tray [C].
14. Turn on the main power switch and check the 1-bin tray unit operation.

2.8 SHIFT TRAY (D385)

2.8.1 COMPONENT CHECK

Check the quantity and condition of the components against the following list.

No.	Description	Q'ty
1	Shift Tray Unit	1
2	Stepped Screw	1
3	Paper Guide - Large	2
4	Paper Guide - Small	1

2.8.2 INSTALLATION PROCEDURE

\triangle CAUTION

- Unplug the copier power cord before starting the following procedure.

1. Remove all tapes.
2. Remove the plate [A]. with nippers.
3. Install the large paper guide [B] and two small paper guides [C], as shown.

4. Install the stepped screw [A].
5. Install the shift tray unit [B], as shown.

- Set the shift tray on the stepped screw.
- The shift tray must be installed under the paper guide [C] installed in step 3.

6. Connect the cable [D] to the copier.
7. Turn on the main power switch. Then select the shift tray with the user tool

- System Settings - General Features - Output: Copier (and Output: Document Server, Facsimile, Printer): Enable the shift tray - you can also enable the standard tray (internal Tray 1), 1-bin tray (internal tray 2), or the finisher proof tray.

8. Check the shift tray operation.

2.9 BYPASS FEED UNIT (D370)

2.9.1 COMPONENTS CHECK

Check the quantity and condition of the components against the following list.

No.	Description	Quantity
1	By-pass Tray Unit	1
2	Connector Cover	1
3	Tapping Screw	2

2.9.2 INSTALLATION PROCEDURE

\triangle CAUTION

- Disconnect the copier power cord before you start this procedure.

1. Remove all tapes.

\downarrow Nole

- These removed screws will be used in steps 3 and 5 .

3. Install the by-pass tray unit $[A]()^{7} \times 4$: two of these are removed in Step 2).
4. Connect the cable $[B]$ to the machine.
5. Install the connector cover [C] ($\boldsymbol{G}^{3} \times 1$: this screw is removed in Step 2).

6. Open the right cover $[A]$.
7. Release the rear link $[B]$ ($3>1) \times 1$.

8. Rotate the rear link shaft [A] clockwise by 360 degrees to strengthen the spring tension.
9. Reattach the rear link (3) $\times 1$).
10. Close the right cover.
11. Turn the main power switch on and check the by-pass tray function.
12. Make a copy from the by-pass tray. Then check the registration.

2.10 DUPLEX UNIT (D369)

2.10.1 ACCESSORY CHECK

Check the quantity and condition of the components against the following list.

No.	Description	Quantity
1	Duplex Unit	1
2	Connector Cover	1
3	Tapping Screw - M3x8	1
4	Clip	1
5	Tapping Screw - M3x6	1
7	Duplex Guide	1
8	Duplex Tray	1
9	Link Bracket	1
	Duplex Tray Guide	1

d369i101a

2.10.2 INSTALLATION PROCEDURE

©CAUTION

- Unplug the copier power cord before starting the following procedure.
\downarrow Note
- Before installing the duplex unit, the optional interchange unit (D371) must be installed.

1. Remove all tapes.

2. Remove the connector cover $[A]\left(\begin{array}{l}(1)\end{array}\right)$.
\square

- Keep this screw. This screw will be used in step 12.

3. Open the right cover $[B]$ of the optional paper tray unit or LCT and right cover [C].
4. Release the rear link [D] from the right cover ($3>\times 1$).

5. Release the front link [A] from the mainframe.
6. Remove the right cover [B].

7. Turn up the rear link [A] of the main machine.
8. Install the duplex unit [B].
9. Install the link bracket $[D]\left(\bar{\theta}^{2} \times 1: M 3 x 6\right)$.
10. Attach the front link [C] of the duplex unit to the main machine.

11. Attach the link $[A]$ to the shaft $[B]$ and secure it with the clip.
12. Connect the cable [C] and install the connector cover [D] (

Duplex Unit (D369)

\downarrow Nole

- This screw is removed in step 2.
- Steps 13 and 14 described below are not required if the 1-Bin Tray has been installed.

D369i107
13. Install the duplex guide $[A]\left(\theta^{\top} \times 1\right.$: $\left.M 3 \times 8\right)$.
14. Install the duplex tray guide [B] and duplex tray [C].
15. Turn on the main power switch and check the duplex unit function.

2.11 BRIDGE UNIT (D368)

2.11.1 COMPONENT LIST

Check the quantity and condition of the components against the following list.

No.	Description	Quantity
1	Bridge Unit	1
2	Securing Plate	1
3	Shoulder Screw	1
4	Knob Screw	1

2.11.2 INSTALLATION PROCEDURE

\triangle CAUTION

- Unplug the copier power cord before starting the following procedure.

1. Remove all tapes.
2. Loosen the screw [A] and remove the front right cover [B].
3. If the sensor feeler [C] is out, fold it away into the machine.

4. Remove the cover [A].
5. Install the bridge unit $[\mathrm{B}]$ (1 shoulder screw, 1 knob screw).
6. Reinstall the front right cover [C].
7. Connect the cable $[\mathrm{D}]$ to the main machine.
8. Attach the securing plate [E], as shown.

Nole

- Do not attach it with a screw; This is done when securing the front stand for the optional finisher.

9. Install the optional finisher (refer to the finisher installation procedure).

2.12 1000-SHEET FINISHER (B408)

2.12.1 ACCESSORY CHECK

Check the quantity and condition of the accessories against the following list.

No.	Description	Q'ty	For this model
1	Staple Position Decal	1	\checkmark
2	Rear Joint Bracket	1	\checkmark
3	Front Joint Bracket	1	\checkmark
4	Screw - M4 x 14	4	* (Use 3)
5	Knob Screw - M4 x 10	1	\checkmark
6	Copy Tray	1	\checkmark
7	Knob Screw - M3 x 8	1	\checkmark
8	Screw - M3 x 8	1	\checkmark
9	Rear Joint Bracket	1	---
10	Grounding Plate	1	\checkmark

\downarrow = Necessary, --- = Not necessary

2.12.2 INSTALLATION PROCEDURE

\triangle CAUTION

- Unplug the main machine power cord before starting the following procedure.

The following options must be installed before you install this finisher:

- Bridge Unit (D368)
- Paper Tray Unit (D331) or LCT (B391)

b408i102

1. Unpack the finisher and remove the tapes.

\downarrow Nole

- Be sure to keep screw $[A]$. It will be needed to secure the grounding plate in step 4.

2. Install the front joint bracket $[A]\left(A^{\prime} \times 2 ; M 4 \times 17\right)$ and rear joint bracket $[B]\left(\begin{array}{l}\text {; }\end{array}\right.$ M4×17).
3. Remove the left stand $[C]\left(\begin{array}{l}(1)\end{array}\right)$.

\qquad

- Use the screw removed in step 1 and the screw from the accessory box.

5. Open the front door $[B]$. Then pull the locking lever $[C](\hat{G} \times 1$; knob $M 3 \times 8)$.
6. Align the finisher on the joint brackets, and lock it in place by pushing the locking lever.
7. Secure the locking lever ($(\hat{\xi} \times 1 ;$ knob $M 3 \times 8$) and close the front door.
8. Install the copy tray $[\mathrm{D}](\mathrm{B} \times 1$; knob $\mathrm{M} 4 \times 10)$.
9. Connect the finisher cable $[E]$ to the main machine.

10. Attach the staple position decal [A] to the ARDF as shown.
11. Turn on the ac switch and check the finisher operation.

2.13 1000-SHEET BOOKLET FINISHER (B793)

2.13.1 ACCESSORY CHECK

Check the quantity and condition of the components against the following list.

No.	Description	Quantity	For This Model
1	Rear Joint Bracket	1	No
2	Front Joint Bracket	1	Yes
3	Rear Joint Bracket	1	Yes
4	Grounding Plate	1	Yes
5	Upper Output Tray	1	Yes
6	Cushion	1	Yes
7	Lower Output Tray	1	Yes
8	Short Knob screw	1	Yes
9	Long Knob screw	2	Yes
10	Screw (M3 x 8)	4	Yes (Use all)
11	Screw (M4 x 14)		

2.13.2 INSTALLATION PROCEDURE

©CAUTION

- Unplug the machine power cord before starting the following procedure.

Some optional units must be installed before installing this finisher (B793). Refer to the following:

- D368 and either B391 or D331

1. Unpack the finisher and remove all tapes and packing materials from the finisher.

2. Open the front door $[A]$ of the 1000 -sheet booklet finisher, and then pull out the jogger unit [B].
3. Remove all tapes and packing materials from the inside of the finisher.

4. Attach the cushions $[A]$ to the finisher.

\downarrow Nole

- Make sure that the cushions are placed within 0 to $1 \mathrm{~mm}[\mathrm{~B}]$ from the edge of the cover or frame.

5. Install the ground plate [C] on the finisher [D] ($\mathrm{E}^{2} \times \mathrm{M} \times 8$).

6. Attach the rear joint bracket $[A]\left(\xi^{\top} \times 1 ; M 4 \times 14\right)$.
7. Attach the front joint bracket $[B]\left(\begin{array}{ll}(1)\end{array} \times 2 \times 14\right)$.
8. Remove the left support [C] from the optional paper tray unit or LCT.

9. Slowly push the finisher to the left side of the machine, keeping its front door open until the brackets $[A][B]$ go into their slots.
10. Push the lock lever [C], and then secure it (Long knob screw x 1).
11. Close the front door of the finisher.
12. Connect the finisher connector [D] to the machine.

13. Install the upper output tray $[A]$ (short knob screw $\times 1$).
14. Install the lower output tray [B].
15. Turn on the main power switch of the machine.
16. Check the 1000 -sheet booklet finisher operation.

2.14 PUNCH UNIT (B807)

2.14.1 COMPONENT CHECK

Check the quantity and condition of the components against the following list.

No.	Description	Q'ty
1	Punch Unit	1
2	Punch Drive Motor	1
3	Hopper Full Sensor Arm	1
4	Sub-scan Registration Sensor Unit	1
5	Sunch Unit Stay	1
7	Hopper	1
8	Screw	1
9	Step Screw	1
10	Spring	1

2.14.2 INSTALLATION

©CAUTION

- Unplug the main machine power cord before starting the following procedure. If the 1000-sheet booklet finisher has been installed, disconnect it and pull it away from the machine.

1. If the finisher is connected to the machine, disconnect it.
2. Open the top cover $[A]$ and then release the guide arm $[B](3) \times 1)$.
3. Open the front door [C].
4. Pull the hook [D] up then remove the knob [E].
5. Timing belt cover [F$]$.

6. Rear cover of the 1000-sheet booklet finisher [G] ($\times 2$).

Punch Unit (B807)

7. Cover bracket $[\mathrm{H}]\left(\boldsymbol{\theta}^{\top} \times 1\right)$
8. Remove the paper guide plate $[I]$ from the rear side $\left(\begin{array}{l}\left(\theta^{2} \times 4\right)\end{array}\right.$

9. Install the punch unit stay $[\mathrm{J}]$ from the front side $\left(\begin{array}{ll}\left.()^{\prime}\right)\end{array}\right)$.
10. Install the sub-scan registration sensor guide $[K]$ from the top $\left(\mathcal{G}^{7} \times 1\right)$.

11. Remove the bracket [L] from the punch unit $\left(\hat{\sigma}^{\top} \times 1\right)$.

12. Install the punch unit $[M]$ along the punch unit stay from the rear side.
13. Make sure to put the punch unit stay pin [N] through the hole

14. Connect the harnesses $[P]$ to the main $P C B$.
15. Put the harnesses $[Q]$ through the hole $[R]$ in the rear frame (包 $\times 1$).

16. Install the punch drive motor [S] on the rear frame ($\left(\begin{array}{l}\text { (}\end{array}\right.$).
17. Connect the drive motor harness [T] to the harness from the punch unit (炰 $\times 1$).
18. Connect the home position sensor harness from the punch unit to the home position sensor [U].

19. Install the sub-scan registration sensor unit $[V]$ from the rear side $\left(\begin{array}{l}(1)\end{array}\right)$.
20. Route and connect the harnesses as shown (饱 $\times 2$).

21. Install the hopper full sensor arm $[\mathrm{W}]\left(\mathrm{G}^{2} \times 1\right.$, spring $\left.\times 1\right)$.
22. Connect the harness from the sub-scan registration sensor unit to the hopper full sensor [X].

23. Install the hopper [Y$]$ from the front side.
24. Reinstall the timing belt cover and knob.
25. Reinstall the rear cover ($\hat{\theta}^{-} \times 2$).
26. Close the front door and top cover.
27. Install the 1000-sheet booklet finisher on the copier.
28. Plug in and turn on the main power switch.
29. Check the 1000-sheet booklet finisher operation.

2.15 500-SHEET FINISHER (D372)

2.15.1 ACCESSORY CHECK

Check the quantity and condition of the accessories against the following list.

No	Description	Q'ty	For This Model
1	Unit Holder	1	Yes
2	Shift Tray	1	Yes
3	Holder Bracket	1	Yes
4	Screw: M3 $\times 8$	4	Yes (Use 2)
5	Screw: M3 $\times 6$	4	Yes
6	Screw: M4 $\times 14$	4	Nos (Use 3)
7	Screw: M4 $\times 20$	2	No
8	Support Bracket	2	No
9	Support Bracket Cover		

2.15.2 INSTALLATION PROCEDURE

ACAUTION

- Unplug the main machine power cord before starting the following procedure.

\downarrow Note

- Before you install the 500 -sheet finisher, the optional bridge unit (D368) must be installed.

1. Unpack the finisher and remove the tapes.

\square

- Make sure that the bracket $[\mathrm{B}]$ is installed in the bridge unit.

d372i103

3. Install the 500-sheet finisher [A].
4. Install the holder bracket $[B]\left(\begin{array}{l}\text {; }\end{array} \mathrm{M} 3 \times 6\right)$.
5. Connect the finisher cable [C].

6. Install the shift tray $\left.[A]()^{2} \times 2-M 3 \times 8\right)$.
7. Turn on the main power switch and check the finisher operation.

2.16 PLATEN COVER (B406)

1. Install the platen cover $[A]\left(\theta^{2} \times 2\right)$.

2.17 KEY COUNTER (B452)

2.17.1 INSTALLATION PROCEDURE

©CAUTION

- Disconnect the copier power cord before you start this procedure.

1. Cut off the part [A] of the right over.

2. Remove the rear cover $[A]\left(\Theta^{3} \times 5\right)$

3. Hold the key counter plate nuts $[A]$ on the inside of the key counter bracket $[B]$ and insert the key counter holder [C].
4. Secure the key counter holder to the bracket ($\mathrm{G}^{(1)}$).
5. Install the key counter cover $[D]\left(\begin{array}{l}(1)\end{array}\right)$.

6. Connect the harness of the key counter to the connector [A] inside the machine.
7. Reattach the rear cover $\binom{(1)}{$\hline} .

Key Counter (B452)

8. Peel off the double-sided tape on the key counter bracket and attach the key counter to the scanner right cover [A].
9. Reassemble the machine.
10. Use the User Tools to enable the counter function for the following modes:

- Copy mode
- Document server mode
- Fax mode
- Scanner mode
- Printer mode

2.18 HEATERS

2.18.1 ANTI-CONDENSATION HEATER (SCANNER UNIT)

Installation Procedure

1. Rear cover (see p.4-7 "Exposure Lamp" in the "Replacement and Adjustment" section)
2. Open the ARDF or platen cover.
3. Glass cover [A] (C 4)
4. ARDF exposure glass [B]
5. Rear scale [C] $\left(\begin{array}{l}(1)\end{array}\right)$
6. Exposure glass with left scale [D]

7. Move the scanner carriage to the right side by rotating the scanner motor [E].
8. Install the heater [F] in the scanner unit (5) $\times 1$, hook)

Heaters
9. Put the connector [G] through the cutout.
10. Connect it to the connector $[\mathrm{H}]$ (blue and red cords) in the frame of the machine.
11. Reassemble the machine.

2.18.2 TRAY HEATER (COPIER)

©CAUTION

- Disconnect the copier power cord before you start this procedure.

1. Remove:

- Connector cover [A]
- Rear upper cover $[B]\left(\begin{array}{l}(1)\end{array}\right)$
- Rear lower cover [C] ($\hat{\theta}^{*} \times 4$)

2. Slide out the 1st and 2nd paper trays.
3. Pass the connector $[A]$ through the opening $[B]$.
4. Install the tray heater assembly $[\mathrm{C}]\left(\hat{G}^{2} \times 1\right)$.

5. Route the heater cable [B] as shown.
6. Clamp the heater cable at [C] as shown.
7. Connect the heater cable to the ac cable at [D].

Heaters

2.18.3 TRAY HEATER (OPTIONAL PAPER TRAY UNIT)

\triangle CAUTION

- Disconnect the copier power cord before you start this procedure.

1. Remove the joint brackets $[A]\left(\theta^{2} \times 1\right.$ each $)$.
2. Remove the rear cover $[B]$ for the optional paper tray unit $\left(\xi^{7} \times 2\right)$.

3. Remove the cable guide $[A]\left(\xi^{2} \times 1\right)$.

4. Slide out the two paper trays from the optional paper tray unit.
5. Pass the connector $[A]$ through the opening $[B]$.
6. Install the tray heater assembly $[C]\left(\begin{array}{l}(1)\end{array}\right)$.

7. Remove the heater harness cover [A] (rivet screw $\times 1$).

Heaters

8. Clamp the cables [A], as shown.
9. Join the connectors [B].
10. Reinstall the cable guide.
11. Reinstall the rear cover for the optional paper tray unit.

12. Turn the heater harness cover upside down and reinstall it in the rear cover of the main machine.

丈 Important

- Make sure that cutout $[A]$ is directed downward. Otherwise, the rear cover of the main machine pinches the heater harness and breaks it.

13. Reinstall the two paper trays into the optional paper tray unit.

14. Remove the $2 n d$ paper tray of the copier.
15. Remove two screws $[A]$ and install the screws $[B]$ which were removed in step 11.
16. Reinstall the 2 nd paper tray of the copier.

2.18.4 TRAY HEATER (OPTIONAL LCT)

© CAUTION

- Disconnect the copier power cord before you start this procedure.

1. Remove two joint brackets $[A]$ ($\times 1$ each).
2. Remove the rear cover for the LCT [B] ($\hat{G}^{\top} \times 2$).

Heaters

3. Slide out the paper tray [A].
4. Push the stopper [B] on both slide rails and remove the paper tray.

5. Pass the connector $[A]$ through the opening $[B]$.
6. Install the tray heater [C] $\left(\begin{array}{l}\left(\theta^{7} \times 1\right)\end{array}\right.$.

7. Install five clamps (或 $\times 5$).
8. Connect the cable tray heater cable [A].

b089i253
9. Route the cable and clamp it.
10. Remove the connector cover of the copier $[A]$.
11. Join the connectors [B].
12. Reinstall the connector cover of the copier.

Heaters

13. Remove two screws [A] from the rear side of the LCT.
14. Reinstall the rear cover of the LCT.
15. Reinstall the paper tray.

16. Remove the 2 nd paper tray of the copier.
17. Remove two screws $[A]$ and install the screws $[B]$ which were removed in step 13.
18. Reinstall the 2nd paper tray of the copier.

2.19 COPY DATA SECURITY UNIT (B829)

NOTE: For only D017/D018/D019/D020

2.19.1 ACCESSORIES

Check the accessories and their quantities against the following list:

No.	Description	Quantity
1	Bracket (Not used for the B205 series copiers)	1
2	Screws	4
3	FFC (Short) (Not used)	1
4	Harness (Not used)	1
5	FFC (Long)	1
6	Connection Cable	1
7	Harness Clamp	1
8	ICIB	1
9	Bracket	

2.19.2 INSTALLATION PROCEDURE

©CAUTION

- Turn off the main power switch and disconnect the copier power cord before you start this procedure.

1. Remove these parts: (see p.4-58 "Controller Board" in "Replacement and Adjustment")

- Controller board plastic cover ($\hat{G}^{*} \times 1$).
- FCU faceplate (O $^{(1)} \times 3$)
- Controller board unit ($\mathrm{G}^{2} \times 3$)

2. Remove these parts: (see p.4-48 "Paper Tray Lift Motors" in "Replacement and Adjustment")

- Paper tray unit connector cover (B^{-1} x1
- Disconnect the paper tray unit or LCT (if it is installed) (5)
- Rear cover ($\hat{G}^{*} \times 1$).

3. Pull the controller board partially out of the left slot to disconnect it from the IPU.

4. Remove the IPU $[A]$ from the main machine.
\square
\downarrow Nole

- The board for this option is installed on the back of the IPU board.

5. Attach the harness clamp $[B]$.
6. Attach the ICIB [C] ($\times 4$)
7. Connect the cable [D] between the ICIB [C] and the IPU Board [A].
8. Connect the flat film connector [E] to the ICIB and IPU boards.
9. Reinstall the IPU board.
10. Turn on the machine.
11. Enable the Copy Data Security function:

- [User Tools]> System Settings> Administrator Tools> Data Security for Copying

2.20 HARD DISK (D362)

2.20.1 ACCESSORY CHECK

No.	Description	Q'ty	For D017ID019
1	HDD Unit	1	\checkmark
2	Screw	3	\checkmark
3	Keytop: Copy	2	\checkmark
4	Keytop: Document Server	2	\checkmark
5	Knob Screw	3	---

$\checkmark=$ Necessary, --- = Not necessary

2.20.2 INSTALLATION

1. Remove the plastic application cover (C 1).
2. Remove the controller board. (See p.4-58 in the "Replace and Adjustment".)

3. Attach the HDD unit $[\mathrm{A}]$ to the controller board bracket ($\mathrm{E}^{2} \times 2, \mathrm{E}^{2} \times 3$).
4. Reinstall the controller board with the HDD.

After Installing the HDD

1. Do SP5832-001 to format the hard disk.
2. Do SP5853-001 to copy the preset stamp data from the firmware to the hard disk.
3. Do SP5846-040 to copy the address book to the hard disk from the controller board.
4. Do SP5846-041 to let the user get access to the address book.
5. Turn the main power switch off/on.

2.21 MECHANICAL COUNTER

This counter is only used for NA models.

2.21.1 ACCESSORY CHECK

No.	Description	Q'ty
1	Mechanical counter	1

2.21.2 INSTALLATION

©CAUTION

- Unplug the machine power cord before starting the following procedure.

1. Remove the front right cover $[A]$. ($\times 1$, Hook $\times 1$)
2. Remove the front cover [B] (L-brackets $x 2$).
3. Remove the front inner cover $[C]\left(\begin{array}{l}(1)\end{array}\right)$.

4. Connect the harness $[A]$ to the mechanical counter.

d017i516
5. Push the mechanical counter $[A]$ into the machine.
6. Reassemble the machine.

2.22 KEY COUNTER INTERFACE UNIT

2.22.1 INSTALLATION PROCEDURE

1. Disconnect the DF I/F cable [A] if the ARDF is installed.
2. Remove the rear cover $[B]\left(\begin{array}{l}(0)\end{array}\right)$

3. Attach the studs $[A](x 4)$ in the holes on the controller box.
4. Install the key counter interface board on the four studs $[A]$.
5. Connect the harness to "CN3" [B] on the key counter interface board.
6. Connect the other terminal of the harness to "CN345" [C] on the IOB (谘 $\times 1$).

7. Cut off the part [A] of the scanner right cover.
8. Connect the harness from the counter device to "CN4" on the key counter interface board.
9. Reassemble the machine.

2.23 CONTROLLER OPTIONS

2.23.1 CONTROLLER BOARD SLOTS

Interface Board, SD Card Slots

The machine controller box has one board slot and two SD card slots.

- Only one interface board option can be installed.
- Only two SD cards are available for applications and maintenance.

Board Slots

No.	Name	Description
1	ISDN	Jack for ISDN connection (Japan Only)
2	Line 3	Not used. (G4 is not available for installation outside Japan at this time.)
3	Line 1	Jack for the main telephone line from the outside for connection to Fax Option (D361).

No.	Name	Description
4	TEL1	Jack for telephone connection
5	Line 2	Jack for a 2nd line connection to the Fax Interface Unit (D361) (G3) when this option is installed.
6	Board Slot	Optional interface boards are installed here.
7	SD Card Slot 1	For options provided on SD cards. The application SD card (with the exception of the HDD Encryption unit or VM SD card) should be installed in Slot 1. If more than one application is to be used, move the applications to the same SD card with SP5873.
8	SD Card Slot 2	For options provided on SD cards and servicing. The VM application, HDD Encryption Unit and Browser Unit SD cards must be installed in Slot 2 (lower). However, HDD Encryption Unit and Browser Unit SD cards do not need to be kept in SD slot 2 (these can be removed after installing).
9	USB-B	Built-in for connection of USB devices (USB 2.0)
10	Ethernet	Standard LAN connection point. 100BaseT LAN
11	Green LED	Lights when the network is connected and operating.
12	Orange LED	Indicates the current transmission speed: ON: 100Base OFF: 10Base

- Only two SD Card slots are available for applications.
- To install more applications, they must be moved onto one SD Card. (See Moving an Application to Another SD Card)

Board Slot

The following optional interface boards are available. There is only one board slot so only one can be installed.

No.	Interface Board
B679	IEEE1284 Interface Board Type A (B679)
B826	Bluetooth Interface Unit Type 3245 (B826)
D377	File Format Converter Type E (D377)
D377	IEEE802.11a/g Interface Unit Type J/K (D377)
G831	Gigabit Ethernet Type 7300 (G831)

SD Card Slots

The following options are provided on SD cards.

- Two SD card slots are available.
- The VM application, HDD Encryption Unit and Browser Unit SD cards must be installed in Slot 2 (lower). However, HDD Encryption Unit and Browser Unit SD cards do not need to be kept in SD slot 2 (these can be removed after installing).
- Other applications should be installed in Slot 1 (upper). If more than one application is required, move the applications onto one SD card with SP5873-1.
- Due to limitations, the VM Card (D377) can be neither merged nor moved to another SD card. This card must be installed in Slot 2 (lower).
- Due to copyright restrictions, the PostScript3 Unit (D383) cannot be moved to another SD card. However, other applications can be moved onto the PostScript 3 SD card.

No.	SD Card Applications for All Models
D362	Data Overwrite Security Unit Type I (D362)
D377	Browser Unit Type D (D377)
D377	HDD Encryption Unit (D377)

No.	SD Card Applications for All Models
D377	VM Card Type E (D377)
D383	PostScript3 Unit Type 3350 (D383)
D383	IPDS Unit Type 3350 (D383)

No.	SD Card Applications for D017ID019 Models
D383	Printer Enhance Option Type 3350 (D383)
D383	Printer Unit Type 3350 (D383)
D383	Printer/Scanner Unit Type 3350 (D383)
D383	RPCS Printer Unit Type 3350 (D383)
D383	Scanner Enhance Option Type 3350 (D383)

2.23.2 IEEE 1284 INTERFACE BOARD (B679)

Accessories

Check the accessories and their quantities against the following list:

No	Description	Quantity
1	IEEE 1284 Interface Board B679	1

Installation

©CAUTION

- Turn off the main power switch and disconnect the power supply cord.

1. Remove the application cover (C 1).
2. Remove the cover $[A]$ of the board slot $\left(\theta^{2} x 1\right)$.
3. Install the interface board $[B]$ ($\xi^{*} \times 2$ knob screws).

- Use a screwdriver to tighten the knob-screws. Do not tighten manually, because this can disconnect the board.

4. Reattach the application cover (C) .

- Important

- If the 500 -Sheet Finisher is installed, remove it before you attach the parallel cable. Install the finisher again after you connect the parallel cable.

2.23.3 IEEE 802.11A/G (D377)

Accessories

Check the accessories and their quantities against the following list:

No	Description	Quantity
1	IEEE 802.11a/g Interface Board	1
2	Antenna Cables	2
3	Antenna Clamps	8

Installation

\triangle CAUTION

- Turn off the main power switch and disconnect the power supply cord.

d017i507

1. Remove the plastic application cover ($\left(\hat{\theta^{2}} \times 1\right)$.
2. Remove the cover $[A]$ of the board slot ($\left(\hat{\theta^{\prime}} \times 1\right)$.
3. Insert the interface card $[B]$ as shown above.

- Use a screwdriver to tighten the knob-screws. Do not tighten manually, because this can disconnect the board.

4. Look at the markings on the antenna bracket.

- ANT1. Antenna 1 transmits and receives. It must be installed on the front left corner of the main machine. (The core on the Antenna 1 cable is black.)
- ANT2. Antenna 2 only receives. It is installed on the rear right corner of the machine.

Important

- To assure reliable data sending and receiving, Antenna 1 must be installed on the front left corner of the machine.

5. Remove the seals from of the cable clamps and attach them to the left side of the machine as shown above.
6. Attach Antenna $1[A]$ to the left front corner of the machine. (The core on the Antenna 1 cable is black.)
7. Set the cable of Antenna 1 in the clamps and close them.
8. Remove the seals from the cable clamps and attach them to the rear of the machine as shown above.
9. Attach Antenna $2[B]$ to the right rear corner of the machine.
10. Set the cable of Antenna 2 in the clamps and close them.

User Tool Settings for IEEE 802.11a/g

Go into the User Tools mode and do the procedure below. These settings take effect every time the machine is powered on.

\downarrow Note

- You cannot use IEEE 802.11a/g if you use Ethernet.

1. Press the "User Tools" key.
2. On the touch panel, touch "System Settings".
\downarrow Nole

- The Network I/F (default: Ethernet) must be set for either Ethernet or wireless LAN.

3. Select "Interface Settings"> "Network"> "Network I/F Setting"
4. Press "IEEE 802.11". Only the wireless LAN options show.
5. Set the Communication Mode. Select either "802.11 Ad hoc", "Ad hoc" or "Infrastructure".
6. Enter the SSID setting. (The setting is case sensitive.)
7. Set the Channel. You need this setting when Ad Hoc Mode is selected.

- Range: 1 to 14 (default: 11)
- The allowed range for the channel settings may vary for different countries.

8. Do the WEP (Encryption) Setting.

- The WEP (Wired Equivalent Privacy) setting is designed to protect wireless data transmission. The same WEP key is required on the receiving side in order to unlock encoded data. There are 64 bit and 128 bit WEP keys.
- WEP: Select "Active" or "Inactive". ("Inactive" is the default.)
- Range of Allowed Settings: 64-bit (10 characters) or 128 -bit (26 characters)

Controller Options

9. Set the Transmission Speed.

- Press the Next button to show more settings. Then select the transmission speed for the mode: Auto, $11 \mathrm{Mbps}, 5.5 \mathrm{Mbps}, 2 \mathrm{Mbps}, 1 \mathrm{Mbps}$ (default: Auto). This setting should match the distance between the closest machine or access point. This depends on which mode is selected.
- For the Ad Hoc Mode, this is the distance between the machine and the closest PC in the network. For the Infrastructure Mode, this is the distance between the machine and the closest access point.

11 Mbps	140 m (153 yd.)
5.5 Mbps	$200 \mathrm{~m}(219 \mathrm{yd})$.
2 Mbps	270 m (295 yd.)
1 Mbps	$400 \mathrm{~m}(437 \mathrm{yd})$.

10. Press "Return to Default" to initialize the wireless LAN settings. Press "Yes" to initialize the following settings:

- Transmission mode
- Channel
- Transmission Speed
- WEP
- SSID
- WEP Key

SP Mode Settings for IEEE 802.11a/g Wireless LAN

The following SP commands and UP modes can be set for IEEE 802.11a/g.

SP No.	Name	Function
5840006	Channel MAX	Sets the maximum range of the channel settings for the country.
5840007	Channel MIN	Sets the minimum range of the channels settings allowed for your country.
5840011	WEP Key Select	Used to select the WEP key (Default: 00).
UP mode	Name	Function
	SSID	Used to confirm the current SSID setting.
	WEP Key	Used to confirm the current WEP key setting.
	WEP Mode	Used to show the maximum length of the string that can be used for the WEP Key entry.

2.23.4 BLUETOOTH UNIT (B826)

Accessories

Check the accessories and their quantities against the following list:

No	Description	Quantity
1	Bluetooth Unit B826	1
2	PCl Card	1
3	Cap	1

Installation

©CAUTION

- Turn off the main power switch and disconnect the power supply cord.

1. Remove the plastic application cover (C 1).
2. Remove the cover $[A]$ of board slot (
3. Attach the interface board $[B]$ to the controller board (${ }^{-1} \times 2$ knob screws).

- Use a screwdriver to tighten the knob-screws. Do not tighten manually, because this can disconnect the board.

4. Install the Bluetooth card [C] in the slot in the Bluetooth unit.
5. Insert the antenna [D] into the Bluetooth card.
6. Attach the antenna cap [E].

2.23.5 GIGABIT ETHERNET (G831)

Accessories

Check the accessories and their quantities against the following list:

No	Description	Quantity
1	Gigabit Ethernet (G381)	1
2	Ferrite Core	1

Installation

1. Switch the machine off.

2. Remove the plastic application cover (G 1).
3. Remove the board cover $[A]\left(\sigma^{2} \times 2\right)$.
4. Insert the Gigabit Ethernet Board $[B]$ into the slot and fasten it with the screws.
5. Switch the machine on.
6. Print a configuration page to confirm that the machine recognizes the installed board for USB2.0:

User Tools > Printer Features > List/Test Print > Configuration Page

2.23.6 FILE FORMAT CONVERTER TYPE E (D377)

Accessory Check

Check the accessories and their quantities against this list:

	Description	Q'ty
1.	File Format Converter (MLB: Media Link Board)	1

Installation

1. Switch the machine off.
2. Remove the plastic application cover (C 1).
3. Remove the board slot cover $[A]\left(\begin{array}{ll}\left(\theta^{2}\right.\end{array} x\right)$.
4. Touch a metal surface to discharge any static electricity from your hands.
5. Set the interface board $[B]$ in the open slot.
6. Confirm that the board is inserted completely, then fasten it $\left(\begin{array}{l}\left.()^{2}\right)\end{array}\right.$
7. Turn the machine power on.
8. Enter the SP mode and do SP5990 to print an SMC Report.
9. Read the report and confirm that the interface board is installed correctly.
10. Scan a document to the document server.
11. Access Web Image Monitor and confirm that the document can be downloaded.

2.23.7 POSTSCRIPT 3 UNIT (D383)

Accessories

Check the accessories and their quantities against the following list:

No	Description	Quantity
1	PostScript 3 Emulation SD Card (D383)	1
2	Decal	1

Installation

©CAUTION

- Turn off the main power switch and disconnect the power supply cord.

d017i502

1. Remove the plastic application cover $[\mathrm{A}]\left(\begin{array}{l}\left.()^{2}\right)\end{array}\right)$.
2. Insert the SD card $[B]$ into Slot 1 (upper slot).
3. Reattach the plastic application cover ($\left(_{8} \times 1\right.$).
4. Attach the "Adobe PostScript 3" decal to the front cover.

2.23.8 HDD ENCRYPTION UNIT

Installation

Seal Check and Removal

1. Check the box seals [1] on each corner of the box.

- Make sure that a tape is attached to each corner.

2. Open the box.

Installation Procedure

1. Make sure that the following settings are not at the factory default settings:

- Supervisor login password
- Administrator login name
- Administrator login password
\star Importart
- These settings must be set up by the customer before the encryption option can be installed.

2. Confirm that "Admin. Authentication" is on:
[User Tools]> "System Settings"> "Administrator Tools"> "Administrator Authentication Management"> "Admin. Authentication"> "On"
If this setting is "Off" tell the customer that this setting must be "On" before you can do the installation procedure.
3. Confirm that "Administrator Tools" is selected and enabled:
[User Tools]> "System Settings"> "Administrator Tools"> "Administrator Authentication Management"> "Available Settings

- "Available Settings" is not displayed until "Admin. Authentication" is switch on. If this setting is not selected tell the customer that this setting must be selected before you can do the installation procedure.

4. For models which have the VM card, do the followings:

- Press "User Tools" button to enter the User Tools mode.

- Press "Extended Feature Settings" on the LCD.

- Press "Extended Feature Settings" on the LCD again.

- Press "Startup Setting" tab.
- Stop all SDK applications with touching application lines.

Controller Options

- Exit the UP mode, and then turn off the machine.
- Remove the VM card from the SD card slot 2.

d017i502

5. Remove the plastic application cover $[A]\left(\begin{array}{l}(8)\end{array}\right)$.
6. Insert the SD card in SD card [B] Slot 2 (lower).

* Important
- The encryption SD card must be installed in Slot 2 (lower).

7. Turn on the main power switch.
8. Enter the SP mode.
9. Select SP5878-002 (Option Setup - Encryption Option), and then touch [Execute].
10. Turn off the main power switch.
11. Remove the SD card.
12. Attach the slot cover $[A]\left(\begin{array}{l}(1)\end{array}\right)$.
13. Switch the machine on.

Recovery from a Device Problem

Restoring the encryption key

When replacing the controller board for a model in which the HDD encryption unit has been installed, updating the encryption key is required.

1. Prepare an SD card which is initialized.
2. Make the "restore_key" folder in the SD card.
3. Make an "nvram_key.txt" file in the "restore_key" folder in the SD card.
4. Ask an administrator to input the encryption key (this has been printed out earlier by the user) into the "nvram_key.ttt" file.
5. Remove only the HDD unit (p.4-69).
6. Turn on the main power switch.
7. Confirm that the prompt on the LCD tells you to install the SD card (storing the encryption key) in the machine.
8. Turn off the main power switch.
9. Insert the SD card that contains the encryption key into slot 2.
10. Turn on the main power switch, and the machine automatically restores the encryption key in the flash memory on the controller board.
11. Turn off the main power switch after the machine has returned to normal status.
12. Remove the SD card from slot 2.
13. Reinstall the HDD unit.

Controller Options

Clearing the NVRAM

When replacing the controller board for a model in which the HDD encryption unit has been installed and a customer has lost the encryption key, clearing the NVRAM is required to recover the HDD encryption unit.

1. Prepare an SD card which is initialized.
2. Make the "restore_key" folder in the SD card.
3. Make an "nvram_key.txt" file in the "restore_key" folder in the SD card.
4. Input "nvclear" into the "nvram_key.txt" file.
5. Turn on the main power switch.
6. Confirm that the prompt on the LCD tells you to install the SD card (storing the encryption key) in the machine.
7. Turn off the main power switch.
8. Insert the SD card that contains "nvclear" into slot 2.
9. Turn on the main power switch, and the machine automatically restores the encryption key in the flash memory on the controller board.
10. Turn off the main power switch after the machine has returned to normal status.
11. Remove the SD card from slot 2.
12. Turn on the main power switch.
13. Initialize the NVRAM (SP5801-001) and HDD unit (SP5832-001) with SP mode.
14. The user must enable the HDD encryption unit with a user tool.

More about HDD Encryption Unit (D377)

Overview

The HDD Encryption unit encodes user data and machine settings to prevent this data from being stolen if somebody steals the hard disk. To activate this unit, an administrator must enable the unit with the user mode after installation by a customer engineer. Also, if
"Administrator Authentication Management" is not turned on, this function is not displayed in the menu on the LCD.

Encrypted Data

The data to be encrypted are shown below:

User Data in the HDD

- Address book data* ${ }^{2}$
- User authentication data
- Stored document data
- Security log data*2
- Network I/F setting data*1
- User mode setting data* ${ }^{2}$
- Temporary data on the HDD

Machine Data in the NVRAM

- Machine settings data* ${ }^{11}$

At installation, an administrator can choose one of three settings to determine what happens to the data that is already in the NVRAM and HDD unit.

1. "File System Data Only" encrypts the items indicated with *1 and *2 in the table above and deletes other data.
2. "Format All Data" encrypts the item indicated with *1 in the table above and deletes other data.
3. "All Data" encrypts all data in the table above.

Controller Options

Procedure Flow

d009d504
[A]

[A]: The CE (customer engineer) installs the unit [A], then an administrator uses the activating function. The administrator prints out the encryption key $[\mathrm{B}]$. The administrator keeps the encryption key information [C] in a safe place.

Encryption Key

After this unit is installed and activated, an encryption key is printed out, and stored in a flash memory chip on the controller board. The encryption key is also copied to each device (NVRAM, HDD) to be encoded by this unit. The printed encryption key must be safeguarded by the administrator. The customer engineer must not see or ask for the key.

Encryption Key Restoration

If the controller board becomes defective [A] and needs to be replaced, "Encryption key restoring" is required in order to use the data on the NVRAM and HDD.

- This is because this encryption function works properly only when the keys in the controller board, NVRAM and HDD match.
- SC858, 859 or 878 occurs if there is a problem with restoring or updating the encryption key. (For details of how to update the encryption key, refer to the Operating Instructions.)
- The customer engineer then asks an administrator to input the encryption key [B] into an SD card [C].
- Encryption key restoration is completed [D] after installation (by the CE) and activation by the administrator.

2.23.9 DATA OVERWRITE SECURITY UNIT (D362)

Accessory Check

Check the accessories and their quantities against the table below.

No	Description	Quantity
1	Data Overwrite Security SD Card	1
2	Operating Instructions CD-ROM	1
3	Comments Sheet (17 languages)	2

Before You Begin

1. Confirm that the Data Overwrite Security unit SD card is the correct type for the machine. The correct type for this machine is "Type I".
2. Make sure that the following features have been set up:

- Supervisor login password
- Administrator login name
- Administrator login password
- Important
- These settings must be set up by the customer before the DOS option can be installed.

3. Confirm that "Admin. Authentication" is on:
[User Tools]> "System Settings"> "Administrator Tools"> "Administrator Authentication Management"> "Admin. Authentication"> "On"

If this setting is "Off" tell the customer that this setting must be "On" before you can do the installation procedure.
4. Confirm that "Administrator Tools" is selected and enabled:
[User Tools]> "System Settings"> "Administrator Tools"> "Administrator Authentication Management"> "Available Settings

If this setting is not selected tell the customer that this setting must be selected before you can do the installation procedure.

- "Available Settings" is not displayed until Step 2 has been done.

Seal Check and Removal

1. Check the box seals [1] on each corner of the box.

- Make sure that a tape is attached to each corner.
- The surfaces of the tapes must be blank. If you see "VOID" on the tapes, do not install the components in the box.

2. If the surfaces of the tapes do not show "VOID", remove them from the corners of the box.

3. When you remove each seal, the "VOID" marks [2] can be seen. In this condition, they cannot be reattached to the box.

DOS Installation

1. Switch off the machine.
2. Disconnect the network cable.
3. Turn the main power switch on.
4. Turn the operation switch and main power switch off.

Controller Options

d017:502
5. Remove the plastic application cover $[A]\left(\hat{G}^{\top} \times 1\right)$.
6. Insert the SD card $[B]$ in SD Slot 1 (upper).
7. Reconnect the network cable, if the network is connected to the copier.
8. Turn the main power switch on.
9. Do SP5878-1 (Option Setup - Data Overwrite Security) and touch [EXECUTE].
10. Go out of the SP mode, turn the operation switch off, then turn the main power switch off.
11. Turn the machine power on.
12. Make sure the ROM number and firmware version in area [a] of the diagnostic report are the same as those in area [b].

- [a]: "ROM Number/Firmware Version" - "HDD Format Option"
- [b]: "Loading Program" - "GW5a_zoffym"

| Diagnostic Report: | "ROM No. / Firmware
 Version" [a] | "Loading Program" [b] |
| :--- | :--- | :--- |\quad| DataOverwriteSecurity Unit |
| :--- | | HDD Format Option: |
| :--- |
| D3775912A / 1.01m |\quad| GW5a_zoffym: |
| :--- |
| D3775912A / 1.01m |

13. Push [User Tools] and select System Settings> Administrator Tools> Auto Erase Memory Setting> On.
14. Exit from User Tools mode.

15. Check the display and make sure that the overwrite erase icon $[A]$ is displayed.
16. Make a Sample Copy.
17. Check the overwrite erase icon.

- The icon [B] changes to [C] when job data is stored in the hard disk.
- The icon goes back to its usual shape [B] after this function has completed a data overwrite operation to the hard disk.

18. Do SP5990-005 (SP print mode - Diagnostic Report).
19. Look at the report:

- Under "[ROM No./Firmware Version]" check the number and version number listed for "HDD Format Option".
- Under "[Loading Program]" check the option number and version number listed for "GW_zoffy".
- These two version numbers should be identical.

20. Exit SP mode.

2.23.10BROWSER UNIT TYPE D (D377-17)

Accessories

Check the accessories and their quantities against the table below.

Description	Qt'y
1. Browser Unit D377-17 SD Card	1

Important: The Browser Option can only be installed on one machine. Once the installation is complete it cannot be installed on any other machine after that, even if it is uninstalled from the original machine.

Installation

1. For models which have the VM card, do the following. Then continue with step 3:

- Press "User tools" button to enter the User Tools mode.
- Press "Extended Feature Settings" on the LCD.
- Press "Extended Feature Settings" on the LCD again.
- Press "Start up" tab.
- Stop all SDK applications with touching application lines.
- Exit UP mode, turn off the machine and unplug the power cord
- Remove the slot cover for SD Cards.
- Remove the SD card (VM/JAVA) from SD Slot 2.

2. Turn OFF the machine and unplug the main machine power cord.
3. Remove the SD Card Cover [A] and then turn the Browser SD Card $[B]$ label face to the rear of the machine. Then push it slowly into slot 2 until you hear a click.
4. Plug in and turn ON the Main Power Switch.
5. Push the "User Tools" key.

If an administrator setting is registered for the machine, steps 6 and 7 are required. Otherwise, skip to step 8.

6. Push the "Login/Logout" key.
7. Login with the administrator user name and password.
8. Touch "Extended Feature Settings" twice on the LCD.
9. Touch "Install" on the LCD.
10. Touch "SD Card".
11. Touch the "Browser" line.
12. Under "Install to", touch "Machine HDD" and touch "Next".
13. When you see "Ready to Install", check the information on the screen to confirm your previous selection.
14. Touch "OK". You will see "Installing the extended feature... Please wait." and then "Completed".
15. Touch "Exit" to go back to the setting screen.
16. Touch "Change Allocation".
17. Touch "Browser" line.
18. Press one of the hard keys, which you want to use for the Browser Unit. By default, this function is assigned to the "Other Functions" key (bottom key of the function keys).
19. Touch "OK".
20. Touch "Exit" twice to go back to the copy screen.
21. Turn OFF the main power switch.
22. Install the function key for "Browser Unit" to the place you chose in step 18.
23. Turn ON the Main Power Switch.
24. When the reaches the Ready condition, press the key that you installed in Step 22. NOTE: A message will be displayed confirming that the Browser Option was successfully installed.
25. Turn OFF the Main Power Switch.
26. Remove the SD Card from slot 2.
27. Reinstall the JAVA Card in slot 2.
28. Attach the Slot Cover [A].
29. Ask the customer to keep the SD Card in a safe place after you have installed the application program from the card to the HDD. This is because:

- The SD Card is the only proof that the user is licensed to use the application program.
- You may need to check the SD card and its data to solve a problem in the future.

2.23.11 VM CARD TYPE F (D377)

This option is only for D017/D018/D019/D020 models.

Accessories

Check the accessories and their quantities against the table below.

Description	Q'ty
1. VM SD Card	1
2. Decal	1

Installation

d017i502

1. Switch the machine off.
2. Remove the plastic application cover $[A]$ (${ }^{(1)}$).
3. Insert the SD card [B] into SD Slot 2 (lower).

* Important
- This SD card must be inserted into Slot 2, the lower slot.

2.23.12 IPDS UNIT

Accessories

Check the accessories and their quantities against the table below.

No.	Description	Q'ty
1	IPDS Emulation SD Card	1
2	Decal	1

Note

- Only one slot (C1) is available for SD cards that contain applications. If you want to use more than one application, merge all applications into one SD card (SP5873-001).

Installation

1. Check the software version.

- Make sure the following versions are installed:

Firmware Name	Version	Firmware Number
System/Copy (For D018/D020/ D084/D085 models)	V1.13 or later	D0205331K
System/Copy (For D017/D019 models)	V1.13 or later	D0195331K
NCS	V7.14 or later	D0205334B
Websys	V1.09 or later	D0205335B
Printer	V4.732 or later	D0195336A
IPDS		D0205338D

2. If necessary, update the firmware to the version(s) listed above.
3. Turn OFF the main switch.

d017i502
4. Remove the application cover $[\mathrm{A}](\mathrm{G} \times 1)$.
5. Insert the IPDS SD Card [B] into Slot C1.

- If Slot C1 is occupied, insert it in to Slot C2, then merge this application into the SD card in Slot C1.
\star Important
- Pushing in the SD Card releases it for removal. Make sure the SD Card is inserted and locked in place. If it is partially out of the slot, push it in gently until it locks in place.

6. Reattach the cover and turn ON the main switch.
7. Do one of the following ("A" or "B") to enable the IPDS function.
A. [Enable the IPDS function via telnet]
8. Connect the machine via telnet.
9. Execute the following commands:
msh> set ipds up
***If you want to stop the function.
msh> set ipds down
B. [Enable the IPDS option via WeblmageMonitor]
10. Log in to WeblmageMonitor.
11. Change the setting to enable IPDS.

12. Attach the decal $[A]$ as shown in the photo above.

- Line up the left side of the decal with the left edged of the main power switch. ([B]: 10 mm or more)

2.23.13PRINTER AND PIS OPTIONS (ONLY FOR D017ID019)

Overview

This section describes the installation of the following items:

- RPCS Printer Unit
- Printer Unit
- Printer/Scanner Unit
- 256 MB Memory. Optional memory is required for each unit.
- HDD unit
- Printer Enhance Option
- Scanner Enhance Option

Main Units

The three main units are:

- RPCS Printer Unit Type 3350. For customers who require only basic copying and printing and the RPCS printer language. The HDD is not required but the 256 MB memory must be installed.
- Printer Unit Type 3350. For customers who do not require the extended scanning features but need more printing capability (both RPCS and PCL printer languages are provided). The 256 MB memory is required.
- Printer/Scanner Unit Type 3350. For customers who require the full range of DS features (advanced scanning and printing features such as "scan-to" solutions, virtual mailboxes, PCL, etc.). The 256 MB memory unit is required.

Separate Options

There are three separate options: HDD, 256 MB memory and PS3.

- HDD. Provided with the following kits: Printer Enhance Option, Printer Unit, and Printer/Scanner Unit. Refer to the illustration above. If an HDD has already been installed as a separate item, the HDD unit in the machine does not need to be replaced with the HDD from the kit.
- 256 MB memory. Not provided with any option. However, every unit (RPCS, Printer Unit, P/S unit) requires installation of the 256 MB memory.
- PostScript 3 Unit. The PS3 option can be used with the RPCS Unit, the Printer Unit, or the Printer/Scanner Unit.

Enhance Options

There are two enhance options:

- Printer Enhance Option Type 3350. Updates the RPCS unit by adding PCL.
- Scanner Enhance Option Type 3350. Updates the RPCS unit or Printer Unit by adding the advanced scanning features.

Kit Contents

Check the accessories and their quantities against the list below and the illustration on the next page. This is a common list for all the kits.

Common Accessory Table

This common accessory table lists all the items of the following units and options for the D017/D019:

- RPCS: RPCS Printer Unit
- PU: Printer Unit
- P/S: Printer/Scanner Unit
- PEO: Printer Enhance Unit
- SEO: Scanner Enhance Unit

	Description	Q'ty	Kit Contents				
			RPCS	PU	PIS	PEO	SEO
	256 MB Memory*1	1	No	No	No	No	No
1.	HDD*2	1	No	Yes	Yes	Yes	No
2.	Screws	2	No	Yes	Yes	Yes	
3.	SD Card	1	Yes	Yes	Yes	Yes	Yes
4.	NA Keytop Set*3	1	Yes	Yes	Yes	Yes	Yes
	EU Keytop Set*3	1	Yes	Yes	Yes	Yes	Yes
5.	Ferrite Core	1	No	Yes	Yes	Yes	Yes

*1: The 256 Memory is a separate option and it is not provided in the kits. However, one memory unit is required for the installation of every print unit.
*2: The HDD can be installed anytime as a separate option. If an HDD unit has already been installed, it does not need to be replaced with the HDD unit from the Printer Enhance Option, Printer Unit, or Printer/Scanner Unit kit.
*3: The number of keytops provided varies:

Controller Options

Kit	Keytops			
	Copy	Document Server	Printer	Scanner
RPCS Unit	1	-	1	
Printer Unit	1	1	1	1
Printer/Scanner	1	1	1	
Unit	-	1	-	1
Printer Enhance Unit	-	-		
Scanner Enhance Unit	-			

Printer, Printer/Scanner Unit Installation

©CAUTION

- Turn off the main power switch and disconnect the power supply cord.

1. Remove the application cover $\left.[A]()^{(} \times 1\right)$.
2. Remove the controller board $[B]\left(\begin{array}{ll}(\end{array}\right)$.

d017i501
3. Install the 256 MB memory $[\mathrm{A}]$.

Controller Options

4. Attach the HDD unit [A] to the controller board bracket ($\mathrm{E}^{2} x 2, \mathrm{~A}^{2} \mathrm{x} 3$).
5. Reinstall the controller board with the HDD.

d017i502a
6. Insert the SD card [A] in SD card Slot 1 (upper).
7. Cycle the machine power off/on.
8. Format the HDD with SP5832-1.
9. Do SP5853 to copy the preset stamp data from the firmware to the hard disk.
10. Do SP5846-040 to copy the address book to the hard disk from the controller board.
11. Do SP5846-041 to let the user get access to the address book.
12. Reattach the application cover (B).

13. Attach the ferrite core $[A]$ to the LAN cable $[B]$.
14. Connect the LAN cable to the "NIC" connection.
15. Connect the USB cable to the "USB" connection.

16. Remove the 1st, 2nd, 4th, and 5th blank key tops.

- The 3rd blank keytop from the top is reserved for the "Fax" keytop. Do not remove it at this time.

Controller Options

17. Replace the blank keytops with the keytops received in the kit from top to bottom:

- 1st Copy
- 2nd Document Server
- 4th Printer
- 5th Scanner

18. Connect the machine power cord and turn the main power switch on.
19. Enable the NIB and/or USB function.

- To enable the NIB function, enter the SP mode and set SP5985-001 (On Board NIC) to "1" (Enable).
- To enable the USB function, enter the SP mode and set SP5985-002 (On Board USB) to "1" (Enable).

20. If there was no HDD in the machine before you installed the Printer Enhance Option, Printer Unit, or Printer/Scanner Unit:

- Do SP5846 41 so the user can use the address book.
- Do SP5853 to copy the preset stamp data to the hard disk. Then turn the main power switch off/on
- These SPs must be done immediately after installation of an HDD unit in a machine that previously had no HDD.
- The first time the machine power is turned on with the new HDD installed, the system automatically takes the address book from the NVRAM and writes it on the new HDD. However, only the system administrator can use the new address book on the HDD at this time.
- If you do SP5846 41 immediately after power on, then all users can use the address book.

\downarrow Note

- It is not necessary to format the new hard disk after installation.

Printer Enhance, Scanner Enhance Options

Accessory Check

Refer to the "Common Accessory Table"

Installation

The installation of the printer enhance option and scanner enhance option is done with SP5873 001 (Application Move).

- If you are going to update the RPCS unit with both the printer and scanner enhance options, the order of execution is not important.

1. Turn off the copier.
2. Remove the cover ($\hat{\theta}^{2}$).
3. Confirm that the RPCS Unit or Printer Unit SD card is in the upper slot.
4. Put the option SD Card (Printer Enhance Option or Scanner Enhance Option) in the lower slot.
5. Turn the copier on.
6. Go into the SP mode and select SP5873-1.
7. Touch "Execute".
8. Obey the instructions on the display and touch "Execute" to start.
9. When the display tells you copying is completed, touch "Exit", then turn the machine off.
10. Remove the option SD card from the lower slot.
11. Turn the copier on.
12. Go into the User Tools mode and confirm that update was successful. User Tools> System Settings> Administrator Tools> Firmware Version> Next
13. Turn the copier off and reattach the SD card slot cover.
14. Return the copied SD card to the customer for safekeeping, or tape it to the faceplate of the controller.

To undo an option update

1. Turn the main switch off.
2. Confirm that the RPCS Unit or Printer Unit SD card is in the upper slot.
3. Put the empty SD card (Printer Enhance Option or Scanner Enhance Option D383) in the lower slot.
4. Turn the main switch on.
5. Go into the SP mode and do SP5873-2 (Undo Exec).
6. Obey messages on the operation panel to complete the procedure.
7. Turn the main switch off.
8. Remove the restored SD card from the lower slot.
9. Turn the main switch on.
10. Go into the User Tools mode and confirm that undo was successful.

User Tools> System Settings> Administrator Tools> Firmware Version> Next
11. Turn the copier off again, then reattach the cover.

Important Notes About SD Cards
Here are some basic rules about moving an application to another SD card.

Controller Options

- The authentication data is moved with the application program to the target SD card.
- Once an application has been moved from the original SD card, the original SD card cannot be used unless the application is restored to the SD card with SP5873-2 (Undo Execute).
- SD cards must be stored in a safe location at the customer site The empty SD card serves as proof of purchase and is the only evidence that the customer is licensed to use the application program.
- Before storing the card from which an application has been copied, label it carefully so that you can identify it easily if you need to do the undo procedure later.

If PostScript3 is not used...

Move all applications which the customer wants onto one SD card. The destination card should have the largest amount of space available so it can hold as many other applications as possible.
\pm Important

- The VM Card can be neither merged nor moved to another SD card. This card must be installed in Slot 2 (lower).

SD Card Options	SD Card Size	Module Size
Printer/Scanner Unit Type 3350	32 MB	9.3 MB
RPCS Printer Unit Type 3350	32 MB	6.3 MB
Printer Unit Type 3350	32 MB	8.3 MB
Printer Enhance Option Type 3350	16 MB	4 MB
Scanner Enhance Option Type 3350	16 MB	3 MB
DataOverwriteSecurity Unit Type I	16 MB	4 MB
PostScript3 Unit Type 3350	64 MB	14.6 MB
IPDS Unit Type 3350	32 MB	13.5 MB

If PostScript3 is used...

Move all applications to the PostScript3 SD card.

PREVENTIVE MAINTENANCE

REVISION HISTORY			
Page	Date	Added/Updated/New	
		None	

3. PREVENTIVE MAINTENANCE

3.1 PM TABLES

See "Appendices" for the following information:

- PM Tables

3.2 MAIN MOTOR DRIVE GEAR

At every EM lubricate the main motor drive gear [A] with silicone grease G501.

REPLACEMENT AND ADJUSTMENT

REVISION HISTORY		
Page	Date	Added/Updated/New
		None

4. REPLACEMENT AND ADJUSTMENT

4.1 SPECIAL TOOLS AND LUBRICANTS

4.1.1 SPECIAL TOOLS

No.	Part No.	Description	Q'ty	Availability
1	A0069104	Scanner Positioning Pins (4 pins/set)	1	Common - D017/D018/019/D020
2	A2929500	Test Chart S5S (10 pcs/set)	1	Common - General
3	VSSM9000	Digital Multimeter FLUKE 87	1	Common - General
4	A2309003	Adjustment Cam - Laser Unit	1	Common - D017/D018/019/D020
5	A2679002	Positioning Pin - Laser Unit	1	Common - D017/D018/019/D020
6	B6455010	SD-Card	1	Common - General
7	B6456830	USB Reader/Writer	1	Common - General
8	G0219350	Loop-back Connector	1	Common - General

4.1.2 LUBRICANTS

No.	Part No.	Description	Q'ty	Availability
1	A2579300	Grease Barrierta S552R	1	Common - General
2	52039502	Silicone Grease G-501	1	Common - General

4.2 GENERAL CAUTIONS

4.2.1 PCU (PHOTOCONDUCTOR UNIT)

The PCU consists of the OPC drum, development unit, charge roller, and cleaning unit. Follow the cautions below when handling a PCU.

- Never touch the drum surface with bare hands. When the drum surface is touched or becomes dirty, wipe it with a dry cloth or clean it with wet cotton. Wipe with a dry cloth after cleaning with the cotton.
- Never used alcohol to clean the drum; alcohol dissolves the drum surface.
- Store the PCU in a cool, dry place away from heat.
- Never expose the drum to corrosive gases such as ammonia gas.
- Never shake the used PCU. Doing so may cause toner and/or developer to spill out.
- Dispose of used PCUs in accordance with local regulations.
- Turn off the main power switch and disconnect the power cord before you start any of the procedures in this section. To prevent toner leakage, never loosen or remove the screws shown in the illustration below.

4.2.2 TRANSFER ROLLER UNIT

- Never touch the transfer roller surface with bare hands.
- Take care not to scratch the transfer roller as the surface is easily damaged.

4.2.3 SCANNER UNIT

- Clean the exposure glass with alcohol or with glass cleaner to reduce the amount of static electricity on the surface of the glass.
- Use a blower brush or a cotton pad with water to clean the mirrors and lens.
- Do not bend or crease the exposure lamp flat cable.
- Do not disassemble the lens unit. Doing so will throw the lens and the copy image out of focus.
- Do not turn any of the CCD positioning screws. Doing so will throw the CCD out of position.

4.2.4 LASER UNIT

- Do not loosen the screws that secure the LD drive board to the laser diode casing. Doing so will throw the LD unit out of adjustment.
- Do not adjust the variable resistors on the LD unit, as they are adjusted in the factory.
- The polygon mirror and F-theta mirror are very sensitive to dust.
- Do not touch the glass surface of the polygon mirror motor unit with bare hands.

4.2.5 FUSING UNIT

- After installing the fusing thermistor, make sure that it is in contact with the hot roller and that the hot roller can rotate freely.
- Be careful not to damage the edges of the hot roller strippers or their tension springs.
- Do not touch the fusing lamp and rollers with bare hands.
- Make sure that the fusing lamp is positioned correctly and that it does not touch the inner surface of the hot roller.

4.2.6 PAPER FEED

- Do not touch the surface of the paper feed roller.
- To avoid paper misfeeds, the side fences and end fences of the paper tray must be positioned correctly to align with the actual paper size.

General Cautions

4.2.7 OTHERS

- The toner bottle should be replaced while the main switch is on.
- If the optional tray, drum, and optics anti-condensation heaters have been installed, keep the copier power cord plugged in, even when the copier main switch is turned off. This keeps the heaters energized.

4.3 SCANNER UNIT

4.3.1 EXPOSURE GLASS

1. Glass cover $[\mathrm{A}](\mathrm{G} \times 4)$
2. ARDF exposure glass [B]

3. Exposure glass with left scale [D]

\downarrow Note

- Position the white marker $[E]$ at the rear-left corner and the blue marker at the front-left corner when you reattach the ARDF exposure glass.

4.3.2 ORIGINAL LENGTH/WIDTH SENSORS

1. Exposure glass with left scale (p.4-5 "Exposure Glass")
2. Original length sensor bracket $[A]\left(\right.$| (1) |
| :--- |
| $\times 1)$ |
3. Original length sensors $[B]$ (snap, $\mathrm{E}=1$ each)
4. The number of the original length sensors depends on the model; 3 for EU, 2 for others.
5. Original width sensors [C] (snap, $\times 1$, (${ }^{(1)}$ x1 each)

4.3.3 EXPOSURE LAMP

1. Remove:
[A] Harness cover (($^{(1)}$
[B] Rear cover ($\mathrm{E}^{\mathrm{G}} \mathrm{x} 4$)
[C] Scanner rear cover (($^{(1)}$)
[D] Scanner left cover (${ }^{(1)}$ x2)
[E] Scanner right cover (E 2)
[F] Scanner front cover ($\mathrm{E}^{(1)} \times 3$)

[H] Support cover (Tab x1)

d017r915
2. Remove:
[A] Rear stay (
[B] Left stay (雨 $^{2} 3$)
[C] Front stay ($\left(\begin{array}{c}\text { (}\end{array}\right.$ 5)

3. Disconnect the connector [A] (氯 $\mathrm{x} 2, \mathrm{H} \times 1$).

4. Remove the pulley $[A]$.
5. Hold down the snap [B]

Reassembling

1. Run the cable so that there is no slack.
2. Slide clamp $[A]$ to adjust the cable slack.

4.3.4 SCANNER MOTOR

1. Rear cover (p.4-7 "Exposure Lamp")
2. Scanner motor assembly $[A]\left(\hat{\theta}^{*} \times 2\right.$, 5×1, spring $\times 1$)
3. Scanner motor $[B]\left(\xi^{*} \times 2\right)$

4.3.5 SENSOR BOARD UNIT (SBU)

Monochrome Scanner Unit (D017/D019)

1. Remove:

- Exposure glass ($\mathrm{p} .4-5$)
[A] SBU cover (${ }^{(1)} \times 3$)
[B] Original length sensor bracket ($\mathrm{C}^{(1)}$, 氯 x1)

2. Remove:

Color Scanner Unit (D018/D020/D084/D085)

1. Remove:

- Exposure glass (~p.4-5)
[A] SBU cover (${ }^{(1)} \times 3$)
[B] Cover ($\mathrm{B}^{(1)}$

2. Remove:
[A] Sensor board unit (

When reassembling

Adjust the following SP modes after you replace the sensor board unit:

- SP4-008 (Sub Scan Mag)
- SP4-010 (Sub Mag Reg.)
- SP4-011 (Main Scan Reg)
- SP4-688 (DF: Density Adjustment). This SP code adjusts the density level if the ID of outputs made in the DF and Platen mode is different.
For more details, see Image Adjustment: Scanning.

4.3.6 EXPOSURE LAMP STABILIZER

1. Remove:

- Rear cover (p.4-7 "Exposure Lamp")

Exposure lamp stabilizer [A] (Standoff x1, 気 m 2) (Monochrome Scanner Unit (D017/D019))
-or-
Exposure lamp stabilizer $[1]\left(\begin{array}{c}(1)\end{array}\right) \times 2$) (Color Scanner Unit (D018/D020/D084/D085))

4.3.7 FRONT SCANNER WIRE

1. Exposure glass (p.4-5)
2. Front frame (p.4-7 "Exposure Lamp")
3. Front scanner wire clamp [A]
4. Front scanner wire bracket $[B]\left(\hat{\xi^{2}} \times 1\right)$
5. Front scanner wire and scanner drive pulley $[C]\left(\begin{array}{l}(1)\end{array}\right)$

Reinstalling the Front Scanner Wire

1. Position the center ball $[A]$ in the middle of the forked holder.
2. Pass the right end (with the ball) $[B]$ through the square hole. Pass the left end (with the ring) $[C]$ through the notch.
3. Wind the right end counterclockwise (shown from the machine's front) five times. Wind the left end clockwise twice.

- The two red marks [D] come together when you have done this. Stick the wire to the pulley with tape. This lets you easily handle the assembly at the time of installation.

4. Install the drive pulley on the shaft [E].

- Do not attach the pulley to the shaft with the screw at this time.

5. Insert the left end into the slit [F]. The end should go via the rear track of the left pulley [G] and the rear track of the movable pulley [H].

6. Hook the right end onto the front scanner wire bracket [I]. The end should go via the

Scanner Unit

front track of the right pulley [J$]$ and the front track of the movable pulley $[\mathrm{K}]$.

- Do not attach the scanner wire bracket with the screw at this time.

7. Remove the tape from the drive pulley.
8. Insert a scanner-positioning pin [L] through the 2nd carriage hole [M] and the left holes [N] in the front rail. Insert another scanner positioning pin [O] through the 1st carriage hole $[P]$ and the right holes in the front rail $[Q]$.
9. Insert two more scanner positioning pins through the holes in the rear rail.
10. Screw the drive pulley to the shaft $[\mathrm{S}]$.
11. Screw the scanner wire bracket to the front rail $[R]$.
12. Install the scanner wire clamp [T].
13. Pull out the positioning pins.

\downarrow Nole

- Make sure the 1st and 2nd carriages move smoothly after you remove the positioning pins. Do steps 8 through 13 again if they do not.

4.3.8 REAR SCANNER WIRE

Reinstalling the Rear Scanner Wire

1. Position the center ball $[A]$ in the middle of the forked holder.
2. Pass the left end (with the ball) $[B]$ through the drive pulley notch.
3. Pass the right end (with the ring) [C] through the drive pulley notch.
4. Wind the left end $[B]$ clockwise (from the machine front) five times.
5. Wind the right end $[\mathrm{C}]$ counterclockwise twice.

- The two red marks [D] come together after winding.. Attach the wire to the pulley with tape. This lets you easily handle the assembly at installation.

6. Install the drive pulley on the shaft.

\downarrow Nole

- Do not attach the pulley on the shaft with the screw at this time.

7. Install the wire.
\downarrow Note

- The winding of the wire on the three pulleys at the rear of the scanner should be the same as the winding on the three pulleys at the front. This must show as a mirror image.
- At the front of the machine, the side of the drive pulley with the two windings must face the front of the machine.
- At the rear of the machine, it must face the rear.

4.3.9 TOUCH PANEL POSITION ADJUSTMENT

The touch panel must be recalibrated if it is not functioning correctly or after replacing these items:

- Operation panel
- Controller board

Do not use items [2] to [9] on the Self-Diagnostic Menu. These items are for design use only.

1. Press [Clear], press [1] [9] [9] [3], press 5 times to open the Self-Diagnostics menu.

[6] Touch Screen Test [7] Riomi Checksum Test [./*] Next [\#] Exit
b178r548a
2. On the touch screen press Touch Screen Adjust (or press [1]).
3. Use a pointed (not sharp) tool to press the upper left mark ${ }^{\circ} \mathrm{k}$.

b178r549
4. Press the lower right mark when ${ }_{0}$ shows.
5. Touch a few spots on the touch panel to make sure that the marker + shows exactly where the screen is touched.
6. Press Cancel. Then start from Step 2 again if the + mark does not show where the screen is touched.
7. Press [\#] OK on the screen (or press [\#]) when you are finished.
8. Touch [\#] Exit on the screen to close the Self-Diagnostic menu. Save the calibration settings.

4.4 LASER UNIT

仓WARNING

- Turn off the main power switch and disconnect the power cord before you start any of the procedures in this section. Laser beams can seriously damage your eyes.

4.4.1 CAUTION DECAL LOCATIONS

The caution decal is located in the laser section as shown below.

4.4.2 LASER UNIT

\triangle WARNING

- Turn off the main power switch and disconnect the power cord before you start this procedure in this section. Laser beams can seriously damage your eyes.

1. Remove:

- 500-Sheet finisher
- Bridge unit
- Optional shift tray (or 1-Bin tray)

2. Remove:
[A] Upper front cover (C , Hook x1)
[B] Front cover (Pins x2)
[C] Inner cover (C 5)

b205r903
3. Remove:
[A] Copy tray (Hook x1)

4. Remove:
[A] Toner bottle
[B] Laser unit (($^{\circ} \times 2$, 気 $\times 2$)

4.4.3 POLYGON MIRROR MOTOR

1. Remove the laser unit ($\mathrm{p} \cdot 4-20$).

2. Remove the heat $\operatorname{sink}[A]\binom{\left(\theta^{2}\right.}{x}$.
3. Replace the polygon mirror motor $\left.[B]\left(\hat{G}^{\top} \times 4, ~=1\right) \times 1\right)$.

- When you install the new polygon mirror motor, do not touch the surface of the mirror with bare hands.

4.4.4 LD UNIT

1. Remove the laser unit ($\mathrm{p} \cdot 4-20$).
[B]: Do not adjust

2. Replace the LD unit $\left.[A]()^{(} \times 3, ~=1\right)$.
\downarrow Nole

- Do not remove the screws [B].
- Do not touch any variable resistors on the LD unit.

4.4.5 LASER SYNCHRONIZATION DETECTOR

1. Remove the laser unit $\mathrm{p} .4-20$).

2. Remove the heat $\operatorname{sink}[A]\left(\mathcal{E}^{2} \times 4\right)$.
3. Remove the laser unit cover $[\mathrm{B}]\binom{(\pi)}{\times 3}$.

4. Remove the bracket [C] (C).
5. Replace the laser synchronization detector $[D]\left(\theta^{7} \times 1\right)$.

4.5 PHOTOCONDUCTOR UNIT (PCU)

©CAUTION

- Turn off the main power switch and disconnect the power cord before you start any of the procedures in this section. To prevent toner leakage, never loosen or remove the screws shown in the illustration below.

4.5.1 PCU REMOVAL

1. Open the right cover $[A]$ and front cover $[B]$.
2. Pull the PCU [D] out a small distance while you push the release lever [C], then remove the PCU.

- Do not touch the drum surface with bare hands.

4.5.2 PICK-OFF PAWLS

1. Remove the PCU. (p.4-24)
2. Hold the pawl [A] by its sides, pull it down and slowly twist it away from the PCU.

4.5.3 OPC DRUM

1. Remove the PCU. ($\mathrm{p} .4-24$)

2. Front cover $\left.[A]()^{\prime} \times 2\right)$
3. Rear cover $[B]$ ($\times 3$, Coupling $\times 1$)
4. Top part [C]
5. Bottom part [D]

Photoconductor Unit (PCU)

6. Drum [E] (White clip $\times 1[F]$)

4.5.4 CHARGE ROLLER, CLEANING ROLLER

1. Remove the PCU. (p.4-24)
2. Remove the OPC drum. (p.4-25)

3. Front stud $[A]$
4. Rear shoulder screw $[B]\left(\begin{array}{l}\text { (}\end{array}\right)$
5. Release the front and rear springs [C].
6. Remove the roller assembly [D] (Springs x2, Arms x2, Rollers x2)
7. Charge roller [E]
8. Cleaning roller [F]

Re-installation: Charge Roller

- Put the end of the charge roller with the wide bevel [G] at the front of the PCU.
- The ends of the cleaning roller [F] are the same (put either end at the front).
- Make sure that the front stud of the roller assembly is put in the correct position.
- Install the front stud before you tighten the rear shoulder screw. Make sure that the head of the stud is put in the correct position.

4.5.5 CLEANING BLADE

1. Remove the PCU. ($\mathrm{p} .4-24$)
2. Remove the OPC drum. ($\mathrm{p} .4-25$)
3. Remove the charge roller and cleaning roller. $\mathrm{p} .4-27$)

4. Cleaning blade $[A]$ ($\times 2$)

Reinstallation: Cleaning Blade

- To prevent damage to the new cleaning blade and OPC drum, apply some toner to the edge of the new blade $[B]$.
- Install the new blade. Remove some toner from the edge of the old blade with your finger, and apply it evenly along the full length of the new blade.

4.5.6 DEVELOPER

1. Spread the vinyl sheet provided with the developer kit on a flat surface.
2. Separate the top and bottom parts of the PCU. (p.4-25 "OPC Drum")
3. Set the bottom on the vinyl sheet.

4. Remove the front screw $[A]\left(\begin{array}{ll}(1)\end{array}\right)$
5. Remove the rear screws $[B]\left(\theta^{2} \times 2\right)$.
6. Release the front tab $[C]$.
7. Release the rear tab [D].
8. Separate the top $[E]$ and bottom $[F]$ of the development unit.

9. Turn the gears [G] to remove the developer from the bottom half.

10. Remove the development roller $[\mathrm{H}]$ from the development unit.
× Important

- At reinstallation, make sure that the mylar is positioned as shown.

11. Turn the development roller gear [l] to remove toner from around the development roller.
12. Assemble the development unit.
\star Important

- Dispose of the used developer according to the local laws and regulations regarding the disposal of such items.

13. Open the developer pack [J]
14. While turning the black gear [K], slowly move the pack left and right and pour half of the developer over the auger [L].
15. Continue to rotate the black gear until the developer is level.

While continuing to turn the black gear, slowly move the pack left and right and pour the remaining half of the developer over the augur until the developer is level.

Important

- Be careful. Do not spill developer on the gears or sponges.
- If you accidentally spill developer on the gears or sponges, remove it with a magnet or the tip of a magnetized screwdriver.

PCU Reassembly

Reassemble the PCU in this order:

1. Connect the pawl $[A]$
2. Frame pawls [B], front and rear
3. Set the rear cover and front cover [C]

- Never touch the lever [D] until after the top screw has been fastened.

4. Screws ($\times 3$), coupling $\times 1[E]$

- Never press down on the top of the PCU when you reattach the rear or front cover.

5. Lower screw ($\left(\mathrm{G}^{\top} \times 1\right)[\mathrm{F}]$

- Always install the lower screw first to maintain the correct gap between the rollers.

6. Top screw (C 1) [G]

- Lift and lower the lever [D] to make sure that the shutter opens fully and operates smoothly.

7. Make sure that all of the holes and tabs on are engaged at $[\mathrm{H}],[\mathrm{I}],[\mathrm{J}]$, and $[\mathrm{K}]$. Then push down to lock the tabs on the front and rear end of the PCU.
8. Make sure that the holes for the screws on the front and rear end of the PCU are aligned correctly. If the holes are not aligned correctly, make sure that the tabs at the front, rear, and left side of the PCU are engaged correctly.

4.5.7 AFTER REPLACEMENT OF PCU COMPONENTS

Do this procedure after you replace the PCU components and developer.

1. Assemble the PCU and install it in the machine.
2. Turn the machine on.
3. If you replaced developer, go into the SP mode and do SP2801 (Developer Initialization).
4. Make 5 sample copies.
5. Check the copies.

- If the copies are clean (no black dots), the replacement is completed.
-or-
- If you see black dots of toner that fell on the copies, go to the next step.

6. Remove the PCU from the machine.

7. Lightly tap the top of the PCU $[A]$ with a screwdriver at 8 locations. These locations must be at equal intervals. Tap 2 or 3 times at each location, to make the toner fall into the development section.
8. Install the PCU in the machine.
9. Turn the machine on, and close the front door. After the machine turns the development roller for 10 seconds, go to the next step.
10. Open and close the door two more times. The total rotation time is 30 seconds.
11. If you replaced PCU components:

- If $\mathrm{A} 4 / 8_{1 / 2}$ " $\times 11^{\prime \prime}$ paper is installed, make 4 copies or prints.
- If $A 3 / 11^{\prime \prime} \times 17$ " paper is installed, make 2 copies or prints.
- To make solid black prints, use SP2902 Pattern \#8.
\downarrow Nole
- This step is not necessary if only the developer was replaced.

4.6 TRANSFER UNIT

©CAUTION

- Turn off the main power switch and disconnect the power cord before you start any of the procedures in this section.

4.6.1 TRANSFER ROLLER UNIT

1. Open the right cover [A].
2. Remove the transfer roller unit $[B]$ (Hook $\times 1$).
\qquad

- Do not touch the transfer roller surface.

4.6.2 IMAGE DENSITY SENSOR

1. Open the right cover.
2. Remove:
[A] Transfer roller
[B] Roller guide (3) x1, 댕N $\times 1$)

3. Remove:
[A] Image density sensor (\varliminf^{l} x1).
4. Initialize the new sensor with SP2935.

4.7 FUSING/EXIT

©CAUTION

- Turn off the main power switch and disconnect the power cord before you start any of the procedures in this section.

4.7.1 FUSING UNIT

©CAUTION

- Allow time for the unit to cool before doing the following procedure.

1. Release the duplex unit, if it has been installed, and open the right cover.
2. Remove the fusing unit $[A]\left(\hat{G}^{\top} \times 2\right)$.

4.7.2 THERMISTORS

1. Remove the fusing unit. ($\mathrm{p} .4-37$)

2. Remove the plates $[A]$ ($\times 1$ each).
3. Replace the thermistors $[B](\mathrm{C}) \mathrm{x} 1)$.

4.7.3 THERMOSTATS

1. Remove the fusing unit. ($\mathrm{p} .4-37$)

2. Remove the fusing upper cover $[A](\times 4)$.

$d 017 r 504$
3. Remove:
[A] Pressure spring
[B] Pressure spring
[C] Ground wire (($^{(1)}$)
[D] Hot roller stripper bracket (C) .

b205r936
4. Remove:
[A] Thermostat cover (Tap x2).
[B] Plate (${ }^{(1)} \times 2$, spring washers).

5. Remove:
[A] Thermostat holders x2 (($^{2} \times 3$ each.).
[B] Thermostats $\times 4$

4.7.4 HOT ROLLER AND FUSING LAMPS

1. Remove the fusing unit. (p.4-37)
2. Remove these parts: (p.4-38 "Thermostats").

- Fusing upper cover.
- Pressure springs.
- Hot roller stripper bracket.

3. Remove the fusing lamps $\left(\begin{array}{ll} \\ & x 4\end{array}\right)$ and hot roller assembly $[A]$.

\downarrow Nole

- Do not touch the surface of the fusing lamp with bare hands.

4. Replace the hot roller $[B]$ (C-rings $\times 2$, Gear $\times 1$, Bushings $\times 2$).

- When you reattach the C-rings, the flat sides must face the bearing/roller. (The little hooks [C] must face away from the bearing/roller).

Reinstallation

1. At the rear (gear-side), attach the C-ring so that the opening [A] is 90 degrees from the D-cut sections $[B]$ of the fusing roller.
[C]

2. Apply enough grease at [C] so the metal surface is not visible.

3. The grease should be visible after reattaching the bushing [D].

Important

- Before you install the new hot roller, peel off 3 cm (1 inch) from both ends of the protective sheet on the new roller.
- Do not touch the surface of the rollers.
- When reinstalling the fusing lamp, secure the front screws first.
- Be careful not to damage the surface of the hot roller.

4.7.5 PRESSURE ROLLER/CLEANING ROLLER

1. Remove the fusing lamp and hot roller assembly. p.4-40 "Hot Roller and Fusing Lamps")

2. Replace the pressure roller $[A](5 \times 1$, Bushings $\times 2$, Spring $\times 1)$.
3. Replace the cleaning roller $[B]$.

- Apply grease (Barrierta) to the inner surface of the bushing for the pressure roller.
- Do not touch the surface of the rollers.

4.7.6 PAPER EXIT SENSOR/PAPER OVERFLOW SENSOR

1. Remove the front upper cover $[A]\left(\begin{array}{l}(1) \\ \end{array}\right.$
2. Remove the exit cover [B].

\downarrow Note

- If the optional one-bin tray unit and/or interchange unit have been installed, remove them.

3. Remove the cover [C].
4. Replace the exit sensor [D] ($\mathrm{C}_{\mathrm{N}} \mathrm{x} 1$).
5. Replace the overflow sensor [E] ($\mathrm{E}^{\mathrm{l}} \mathrm{x} 1$).

4.8 PAPER FEED

©CAUTION

- Turn off the main power switch and disconnect the power cord before you start any of the procedures in this section.

4.8.1 FEED ROLLER: TRAY 1

1. Pull out the paper tray $1[\mathrm{~A}]$.
2. Pull up the stopper $[\mathrm{B}]$.
3. Paper feed roller [C]
\downarrow Note

- Do not touch the roller surface with bare hands.
- After reinstalling the feed roller, reset $[\mathrm{B}]$ to its former position.

4.8.2 FEED ROLLER: TRAY 2

1. Pull out the paper tray 1 and $2[\mathrm{~A}]$.
2. Pull up the stopper $[\mathrm{B}]$.
3. Paper feed roller [C]

Note

- Do not touch the roller surface with bare hands.
- After reinstalling the feed roller, reset the stopper [B].

4.8.3 FRICTION PAD

1. Pull out the paper tray.
2. Friction pad $[A]$ (spring $\times 1$)

4.8.4 PAPER END SENSOR

1. Paper cassette
2. Bracket $[A]\left({ }^{2} \times 1,5 \times 1\right)$
3. Paper end sensor $[B]$ (Hook $x 1$)

4.8.5 PAPER TRAY LIFT MOTORS

1. Remove the paper tray.

2. Remove:
[A] Connector cover ($\left(\hat{\xi^{2}} \times 1\right.$) and disconnect the cable.
[B] Rear cover (${ }^{(1)} \times 4$).
[C] Lower rear cover (${ }^{(1)} \times 4$).

4.8.6 REGISTRATION CLUTCH

1. Remove the connector cover and the rear cover.
p.4-48 "Paper Tray Lift Motors")
2. Remove the duplex connector cover and lower rear cover. (p.4-48 "Paper Tray Lift Motors")

3. Remove the fly wheels $[A]\left(\begin{array}{ll} \\ \end{array}\right]$).
4. Remove the registration clutch $[B](\varsigma \times 1, ~ ¢=1)$.

Paper Feed

4.8.7 PAPER FEED CLUTCHES

Lower Paper Feed Clutch

1. Remove the rear cover.
2. Remove the lower rear cover.

3. Replace the lower paper feed clutch $[\mathrm{A}](3) \times 1,5 \times 1)$.

Upper Paper Feed Clutch

1. Disconnect the connectors $[B]$ for the $B C U$ board as shown ($(\mathbb{C}) \times 15$).
2. Remove 4 screws [C] securing the BCU board bracket then swing down the BCU board bracket [D].

3. Remove the bracket $[E]\left(\begin{array}{ll}(1)\end{array}\right)$.
4. Replace the upper paper feed clutch $[\mathrm{F}](32) \times 1, \mathrm{~m} \times 1$).

4.8.8 RELAY CLUTCHES

1. Remove:

- Rear connector cover (${ }^{(1)} \times 1$)
- Rear cover ($\boldsymbol{\theta}^{-1} \times 4$)
- Lower rear cover ($\hat{\sigma}^{*}$ x4)

d017r950

2. Remove:

Paper Feed

4.8.9 UPPER/LOWER PAPER SIZE SENSORS

1. Pull out the paper tray 1 and/or 2.
2. Remove:

- Relay connector cover ($\hat{\theta}^{(} \times 1$, 気 F 1)
- Rear upper cover ($\hat{\theta}^{*} \times 4$)

3. Remove:
[A] Tray 1 paper size sensor bracket (${ }^{(1)} \times 1$)

- Tray paper size sensor ($\mathrm{E}^{\circ} \times 1$, Pawls $\times 4$)
-or-
[B] Tray 1 paper size sensor bracket (${ }^{(1)} \times 1$)
- Tray paper size sensor (C^{2} x 1 , Pawls $\times 4$)

4.8.10 REGISTRATION SENSOR

1. Open the right cover of the optional paper tray unit or LCT.

2. Open the right cover [A].
3. Release the rear link $[B]$ from the right cover $(3) \times 1)$.
4. Release the front link [C] from the mainframe.
5. Remove the right cover [D].

If the duplex unit is installed:

6. Disconnect the right hinge $[A](3>) \times 1)$
7. Remove the connector cap $[B]\left(\begin{array}{ll}(1)\end{array}\right)$.
8. Disconnect the duplex unit harness [C] (5) C).

Paper Feed

9. Disconnect the arm [A], then disconnect the snap hinges $[B]$ and $[C]$.

10. Remove:
[A] Transfer roller
[B] Transfer roller guide (3) $x 1$, (${ }^{5}$ x1)

d017r957
11. Remove the guide plate $[A]()^{2} \times 2$, 氯 $\times 2$,

12. Remove:
[A] Registration roller ((3) $\times 2$, Bushings $\times 2$)
[B] Registration sensor bracket (C (1)
[C] Registration sensor (Pawls x4)

4.8.11 UPPER, LOWER RELAY SENSORS

1. Remove:

- Right cover
-or-
- Duplex unit if it is installed (See the previous section)

2. Remove:
[A] Upper cover
[B] Upper relay sensor (Bracket $\hat{\theta}^{2}$ x1, H) Pawls C 4)
[C] Lower cover
[D] Lower relay sensor (Bracket $\times 1, \mathrm{~F}_{\mathrm{Fl}}^{\mathrm{g}} \mathrm{x}$, Pawls $\times 4$)

4.8.12 DUST COLLECTION BIN

1. Remove:
[A] Front door (L-brackets x2)
[B] Dust collection bin ($\left(_{\theta^{*}} \times 1\right.$)
2. Tap the dust collection bin above a sheet of paper, to remove the paper dust.
3. Use a dry cloth to clean the inside of the dust collection bin.

4.9 PCBS AND OTHER ITEMS

©CAUTION

- Turn off the main power switch and disconnect the power cord before you start any of the procedures in this section.

4.9.1 CONTROLLER BOARD

Important

- If you intend to replace the NVRAMs, upload their contents to an SD card with SP5824 before you remove them and replace them with new ones. Never remove the NVRAMs until after you have uploaded their contents.

Before replacing the controller board in the model without HDD

When you replace the controller board in a model without a HDD, address book data can be copied from an old controller board to a new controller board using an SD card.
Copy the address book data to an SD card from the flash ROM on the controller board with SP5846-051 if possible.

Replacement Procedure

1. Remove:
[A] Controller plastic cover ($\left(\theta^{2}\right)$
[B] FCU faceplate (\quad (
[C] Controller board unit ($\times 3$)
太 Important

- Before touching the controller board, always touch a metal surface to discharge any static that has accumulated on your hands.

2. Remove:
[A] Faceplate ($\left(\hat{\theta^{2}} \times 3\right.$)
[B] Controller board ($\mathrm{E}^{\mathrm{C}} \times 4$)

* Importart
- Make sure that the thermal conductive sheet [C] is attached to the bracket after replacement of this procedure.

3. Remove:
[A] Upper brace
[B] Lower brace
[C] NVRAM x2
4. Remove the NVRAMs from the old board and install them on the new board.

PCBs and Other Items

* Importart
- The NVRAM chips must always be replaced as a pair.

5. If you have replaced the controller board, set the DIP switches on the new controller board to the same settings as the old board.

After installing the controller board

1. For a model without a HDD, do SP5846-052 to copy back the address book to the flash ROM on the controller board from the SD card to which you have already copied the address book data if possible.
2. For a model in which the HDD encryption unit has been installed, restoring the encryption key is required. Refer to "Recovery from a Device Problem" in the installation procedure for HDD Encryption Unit.
3. Turn the main power switch off/on.

4.9.2 NVRAM

The following data stored in the NVRAM will not be saved to the SD card when you perform an NVRAM data upload (SP5824).

- Total counter value
- C/O, P/O counter values
- Duplex, A3/DLT/Over 420mm, Stapler, and Scanner counter values
- Engine SP data

Therefore, whenever you perform an NVRAM upload/download, make sure to print out the SP Data List before you perform SP5801-001 (Memory Clear: All Clear) or SP5801-002 (Memory Clear: Engine).

1. Do SP5990 001 to print the SMC report.
2. Stop all SDK applications if the VM card is installed p.2-102 "HDD Encryption Unit").
3. Turn off the main switch.
4. Remove the controller board cover ($\left(\theta^{*} \times 1\right)$.
5. Remove the VM card from SD card slot C 2 if it is installed.
6. Put the SD card in SD card slot C2.
7. Turn on the main switch.
8. Do SP5824.
9. Touch "Execute" to start to upload the NVRAM data.
10. Turn off the main switch and remove the SD card.
11. Remove the controller board (C 1).
12. Remove the NVRAM (x2) and replace them with the new chips.

- Both NVRAM chips must be replaced.

13. Install the controller board.
14. Put the SD card with the NVRAM data in SD card slot C2.
15. Turn on the machine.
16. Do SP5801 to initialize the new NVRAM.
17. To download the NVRAM data from the SD card in C2, do SP5825.
18. Touch "Execute" to start to download the NVRAM data.
19. Turn off the main switch and remove the SD card.
20. Turn on the machine.
21. Do SP5990 001 to print another SMC report.
22. Compare this new SMC report with the report you printed in Step 1. If any of the SP settings are different, input the SP settings of the first report.
23. Do SP5907 and input the brand and model name of the machine for Windows Plug \& Play capability.

- If the HDD encryption unit has been installed, the HDD encryption unit and encrypted data cannot be recovered. For details, refer to "Recovery from a Device Problem" in the installation procedure of the p.2-102 "HDD Encryption Unit".

4.9.3 BCU BOARD

1. Remove the rear cover. p.4-48 "Paper Tray Lift Motors")

2. Remove the NVRAM $[B]$ from the old board and install it on the new board.
3. Set the DIP switches on the new BCU board to the same settings as the old board.

4.9.4 POWER PACK

1. Remove the rear cover.
2. Swing down the BCU board bracket. (p.4-50 "Paper Feed Clutches")
3. Remove the power pack $\left.[A]\left(\mathrm{C}^{2}\right) \times 4, \mathrm{~A}^{2} \times 3\right)$.

4.9.5 MAIN MOTOR

1. Remove the rear cover. (p.4-48 "Paper Tray Lift Motors")
2. Swing down the BCU board bracket [A]. p.4-50 "Paper Feed Clutches")
3. Remove the flywheels $[B]\left(\begin{array}{ll}(\end{array}\right)$.
4. Replace the main motor [C] ($\mathrm{C}=\hat{\theta^{2}} \times 3$).

PCBs and Other Items
4.9.6 PSU

1. Remove the optional finisher if it has been installed.
2. Remove the application cover $[A](x)$.
3. Remove the left cover $[B]\binom{(1)}{\theta^{2}}$.

4. Remove:
[A] Transformer (C) (For the 220 V machine only)
[B] PSU (E) E all, $\times 6$, Standoff $\times 1$).

4.9.7 SIO

Monochrome Scanner Unit (D017/D019)

1. Remove:

- Rear cover (p.4-48 "Paper Tray Lift Motors")
[A] SIO bracket ($\times 3$, $\mathrm{H}^{1} \times 2$)
[B] SIO board ($\left(\underset{\Theta^{\prime}}{ } \times 4\right.$)

Color Scanner Unit (D018/D020/D084/D085)

1. Remove:

- Rear cover (p.4-48 "Paper Tray Lift Motors")

[B] SIO bracket (覀 $^{2} \times 3$)
[C] SIO board (E)

4.9.8 SIU

1. Remove:

- Rear cover (p.4-48 "Paper Tray Lift Motors")
[A] SIU assembly ($\times 4$, 気 $\times 7$)

PCBs and Other Items

4.9.9 IPU

1. Remove:

- Rear cover p.4-48 "Paper Tray Lift Motors")
- Controller board unit (p.4-58 "Controller Board")
- SIO (p.4-65)

2. Remove:
[A] FFC cover (${ }^{(1)}$ 2)

3. Remove:
[A] FFC x2
[B] IPU (雨 $^{*} 7$)

4.9.10 HDD

1. Before you replace the HDD:

- Stop all SDK applications, and then remove it from the machine if the VM card is installed (p.2-102 "HDD Encryption Unit").
- Insert an SD card in SD card slot 2 (lower slot).
- Go into the SP mode.
- Do SP5846 51 to upload the address book data to the SD card.

丈 Important

- If the HDD is damaged, you may not be able to retrieve this data from the HDD.

2. Remove the controller board. (p.4-58)

3. Remove the HDD and bracket $[A]\left(\begin{array}{ll}(1)\end{array}\right)$

4. Remove the old HDD [A] from its bracket ($\mathrm{A} \times \mathrm{A}$, F) .
5. Install the new HDD unit.
6. Cycle the machine power off/on.
7. Format the HDD with SP5832-1.
8. Do SP5853 to copy the preset stamp data from the firmware to the hard disk.
9. Do SP5846-52 to restore the address book data to the HDD.

PCBs and Other Items

After HDD Replacement:

- Never remove a used HDD unit from the work site (even if it is suspected of being damaged) without the consent of the client.
- The HDD must remain with the customer for disposal or safe keeping.
- The HDD may contain proprietary or classified (Confidential, Secret) information. Specifically, the HDD contains document server documents and data stored in temporary files created automatically during copy job sorting and jam recovery. Such data is stored on the HDD in a special format, so it cannot normally be read but it can possibly be recovered with illegal methods.
- If the customer is using the Data Overwrite Security feature, the DOS function must be set up again after replacing the HDD unit.
- If the customer is using the HDD Encryption Unit, the encryption key must be restored after replacing the HDD unit. For details, see the installation procedure for the p.2-102 "HDD Encryption Unit".

4.10 COPY ADJUSTMENTS: PRINTING/SCANNING

You must do these adjustment(s) after replacing any of the following parts:

- Scanner Wire
- Lens Block/SBU Assembly
- Scanner Drive Motor
- Polygon Mirror Motor
- Paper Side Fence
- Memory All Clear

For more details about accessing SP modes, see Service Tables.

4.10.1 PRINTING

\downarrow Note

- Make sure the paper is installed correctly in each paper tray before you start these adjustments.
- Use the Trimming Area Pattern (SP2-902, No.10) to print the test pattern for the following procedures.
- Set SP 2-902 to 0 again after completing these printing adjustments.

Registration - Leading Edge/Side-to-Side

1. Check the leading edge registration for each paper feed station, and adjust them using SP1-001.
2. Check the side-to-side registration for each paper feed station, and adjust them using SP1-002.

Tray	SP mode	Specification
Any paper tray	SP1-001-1	
By-pass feed	SP1-001-2	$3 \pm 2 \mathrm{~mm}$
Duplex	SP1-001-3	
1st paper feed	SP1-002-1	
2nd paper feed	SP1-002-2	$2 \pm 1.5 \mathrm{~mm}$

Copy Adjustments: Printing/Scanning

Tray	SP mode	Specification
3rd paper feed (Optional PFU tray 1), or LCT	SP1-002-3	
4th paper feed (Optional PFU tray 2)	SP1-002-4	
By-pass feed	SP1-002-5	
Duplex, side 2	SP1-002-6	

A: Leading Edge Registration
B: Side-to-side Registration

Blank Margin

Note

- If the leading edge/side-to-side registration cannot be adjusted within the specifications, adjust the leading/left side edge blank margin.

1. Check the trailing edge and right side edge blank margins, and adjust them using the following SP modes.

	SP mode	Specification
Trailing edge	SP2-101-2/3/4	$3 \pm 2 \mathrm{~mm}$
Right edge	SP2-101-6	$2+2.5 /-1.5 \mathrm{~mm}$
Leading edge	SP2-101-5	$2 \pm 1.5 \mathrm{~mm}$
Left edge	SP2-101-7	$2 \pm 2 \mathrm{~mm}$
Trailing edge (duplex copy, 2nd side)	SP2-101-8	$2 \pm 1.5 \mathrm{~mm}$
Left edge (duplex copy, 2nd side)	SP2-101-9	$2+2.5 /-1.5 \mathrm{~mm}$
Right edge (duplex copy, 2nd side)		

Copy Adjustments: Printing/Scanning

A: Trailing Edge Blank Margin
B: Right Edge Blank Margin
C: Leading Edge Blank Margin
D: Left Edge Blank Margin

Main Scan Magnification

1. Print the single-dot grid pattern (SP2-902, no.5).
2. Check the magnification, and adjust the magnification using SP2-909 if necessary. The specification is $\pm 1 \%$.

Parallelogram Image Adjustment

Do the following procedure if a parallelogram is printed while adjusting the printing registration or the printing margin using a trimming area pattern.

Copy Adjustments: Printing/Scanning

\downarrow Note

- The following procedure should be done after adjusting the side-to-side registration for each paper tray station.

1. Check whether the trimming area pattern (SP2-902, No.10) is printed as a parallelogram, as shown. If it is, do the following.
2. Remove the laser unit $[A]$ ($\mathrm{p} .4-20$).
3. Remove the bracket $[B]\left(\begin{array}{ll}(1)\end{array}\right)$.
4. Install the adjusting cam [C] (P/N: A2309003).
5. Secure the adjustment bracket [D] (P/N A2679002) using the screw which was used for bracket [B]. However, do not tighten the screws at this time.
6. Adjusts the laser unit position by turning the adjusting cam. (Refer to the above illustration for the relationship between the image and the cam rotation direction).
7. Tighten the adjustment bracket.
8. Print the trimming area pattern to check the image. If it is still unsatisfactory, repeat steps 4 to 8.

4.10.2 SCANNING

\downarrow Note

- Before doing the following scanner adjustments, perform or check the printing registration/side-to-side adjustment and the blank margin adjustment.
- Use an S5S test chart to perform the following adjustments.

Registration: Platen Mode

1. Place the test chart on the exposure glass and make a copy from one of the feed stations.
2. Check the leading edge and side-to-side registration, and adjust them using the following SP modes if necessary.

	SP mode
Leading Edge	SP4-010
Side-to-side	SP4-011

A: Leading Edge Registration
B: Side-to-side Registration

Magnification

\downarrow Note

- Use an S5S test chart to do the following adjustment.

1. Place the test chart on the exposure glass and make a copy from one of the feed stations.
2. Check the magnification ratio. Use SP4-008 (Scanner Sub Scan Magnification) to adjust if necessary. Specification: $\pm 0.9 \%$.

4.10.3 ADF IMAGE ADJUSTMENT

Registration

A: Leading Edge Registration
B: Side-to-side Registration
\downarrow Note

- Make a temporary test chart as shown above using A3/DLT paper.

1. Place the temporary test chart on the ADF and make a copy from one of the feed stations.
2. Check the registration, and adjust using the following SP modes if necessary.

	SP mode
Side-to-side Registration	SP6-006-1
Leading Edge Registration (Simplex)	SP6-006-2
Trailing Edge Blank Margin	SP6-006-3

Sub Scan Magnification

Note

- Make a temporary test chart as shown above using A3/DLT paper.

1. Place the temporary test chart on the ADF and make a copy from one of the feed stations.
2. Check the magnification, and adjust using the following SP modes if necessary. The specification is $\pm 1 \%$.

	SP mode
Sub scan magnification	SP6-006-5

4.10.4 TOUCH SCREEN CALIBRATION

After clearing the memory, or if the touch panel detection function is not working correctly, follow this procedure to calibrate the touch screen.

\downarrow Note

- Do not attempt to use items [2] to [9] on the Self-Diagnostic Menu. These items are for design use only.

1. Press , input 1993 at the ten-key pad, and then press 5 times to open the Self-Diagnostics menu.

2. On the touch screen press "Touch Screen Adjust" (or press © on the ten-key pad).

3. Use a pointed (not sharp!) tool to press the mark at the upper left of the screen (${ }^{\circ} \mathrm{K}$).
4. Press the mark at the lower right of the screen (${ }^{(} \mathrm{o}$) after it appears.
5. Touch a few spots on the touch panel to confirm that the marker (+) appears exactly where the screen is touched.

- If the + mark does not appear where the screen is touched, press Cancel and repeat from Step 2.

Copy Adjustments: Printing/Scanning
6. When you are finished, press [\#] OK on the screen (or press ${ }^{(+1)}$ on the ten-key pad).
7. Touch [\#] Exit on the screen to close the Self-Diagnostic menu and save the calibration settings.

SYSTEM MAINTENANCE

REVISION HISTORY		
Page	Date	Added/Updated/New
		None

5. SYSTEM MAINTENANCE

5.1 SERVICE PROGRAM MODE

The service program (SP) mode is used to check electrical data, change modes, and adjust values.

+ Important

- Never turn off the main power switch when the power LED is lit or flashing. To avoid damaging the hard disk or memory, press the operation switch to switch the power off, wait for the power LED to go off, and then switch the main power switch off.

5.1.1 SP TABLES

See "Appendices" for the following information:

- System SP Tables
- Printer SP Tables
- Scanner SP Tables

5.1.2 SERVICE MODE LOCK/UNLOCK

At locations where the machine contains sensitive data, the customer engineer cannot operate the machine until the Administrator turns the service mode lock off. This function makes sure that work on the machine is always done with the permission of the Administrator.

1. If you cannot go into the SP mode, ask the Administrator to log in with the User Tool and then set "Service Mode Lock" to OFF. After he or she logs in:

- [User Tools] > System Settings > Administrator Tools > Service Mode Lock > OFF
- This unlocks the machine and lets you get access to all the SP codes.
- The service technician can do servicing on the machine and turn the machine off and on. It is not necessary to ask the Administrator to log in again each time the machine is turned on.

2. If you must use the printer bit switches, go into the SP mode and set SP5169 to "1".
3. After machine servicing is completed:

- Change SP5169 from "1" to "0".
- Turn the machine off and on.
- Tell the administrator that you completed servicing the machine.
- The administrator will then set the "Service Mode Lock" to ON.

Service Program Mode

5.1.3 SERVICE PROGRAM MODE OPERATION

Overview

The service program mode is used to check electrical data, change modes, and adjust values. Two service program modes are provided:

- SP Mode (Service). Includes all the options in the SP displays for normal maintenance and adjustments.
- SSP Mode (Special Service). Includes the normal SP modes and some additional options in the SP displays not required for normal settings and adjustments. (Most are marked "DFU" in the following tables.) Do not change these important settings needlessly. For details, contact your supervisor.

Entering and Exiting SP mode

Ask your supervisor how to enter and/or exit the service program mode.

SP Mode Button Summary

Here is a short summary of the touch-panel buttons.

- [1] Opens all SP groups and sublevels.
- [2] Closes all open groups and sublevels and restores the initial SP mode display.
- [3] Opens the copy window (copy mode) so you can make test copies. To return to the SP mode screen, press SP Mode (highlighted) in the copy window.
- [4] Enter the SP code directly with the number keys if you know the SP number and then press ${ }^{\oplus}$. (SP Mode must be highlighted before you can enter the number. Just press

SP Mode if it is not highlighted.)

- [5] Press twice to leave the SP mode and return to the copy window to resume normal operation.
- [6] Press any Group number to open a list of SP codes and titles for that group. For example, to open the SP code list for SP1nnn, press Group1. If an SP has sublevels, touch the appropriate button to expand the list.
- [7] Press to scroll the display to the previous or next group.
- [8] Press to scroll to the previous or next display in segments the size of the screen display (page).
- [9] Press to scroll the display to the previous or next line, line by line.
- [10] Press to move the highlight on the left to the previous or next selection in the list.

Switching Between SP Mode and Copy Mode for Test Printing

1. In the SP mode, select the test print and then press Copy Window.
2. Use the copy window (copier mode), to select the appropriate settings (paper size, etc.) for the test print.
3. Press the Start button to execute the test print.
4. Press SP Mode (highlighted) to return to the SP mode screen and repeat from step 1.

Selecting the Program Number

Program numbers have two or three levels.

1. Before you begin, refer to the Service Tables to find the SP that you want to adjust. (See "Service Program Mode Tables".)
2. Press the Group number on the left side SP Mode window that contains the SP that you want to adjust.
3. Use the scrolling buttons in the center of the SP mode window to display the SP number that you want to open, and then press that number to expand the list.
4. Use the center touch-panel buttons to scroll to the number and title of the item that you want to set and press. The small entry box on the right is activated and displays the default or the current setting below.

Service Program Mode

- See the Service Program Mode Tables for the range of allowed settings.

5. To enter a setting

- Press the $)^{-}$button to toggle between plus and minus, and then use the keypad to enter the appropriate number. The number you enter writes over the previous setting.
- Press ${ }^{\oplus}$ to enter the setting. (If you enter a number that is out of range, the key press is ignored.)
- When you are prompted to complete the selection, press Yes.

6. If you need to perform a test print, press Copy Window to open the copy window and select the settings for the test print. Press Start (q) twice, and then press SP Mode (highlighted) in the copy window to return to the SP mode display.
7. When you are finished, press Exit twice to return to the copy window.

5.1.4 COMMONLY USED SP CODES AND FEATURES

This section is a summary of commonly used SP codes.
For details about the input/output checks, please refer to the SP code tables:

	Input Check	Output Check
Main Machine	SP5803	SP 5804
ARDF	SP 6007	SP 6008
Finisher	SP 6117	SP 6118

Test Pattern Printing (SP2902)

Note

- You can print a test pattern to confirm correct operation of the machine.

1. Enter the SP mode and select SP2902.
2. Enter the number for the test pattern that you want to print and press ©. (See the tables below.)
3. Press Copy Window to open the copy window and then select the settings for the test print (paper size, etc.)
4. Press Start q twice. (Ignore the "Place Original" messages) to start the test print.
5. Press SP Mode (highlighted) to return to the SP mode display.

No.	Test Pattern
0	None
1	Vertical Line (1dot)
2	Horizontal Line (1dot)
3	Vertical Line (2-dot)
4	Horizontal Line (2-dot)
5	Grid Pattern (1dot)

Service Program Mode

No.	Test Pattern
6	Independent (1-dot)
7	Independent (2-dot)
8	100\% Black Coverage
9	Belt Pattern
10	Trimming Area
11	Argyle
12	Argyle (2-dot)
13	Checkered Flag
14	Horizontal Belt
15	Independent (4-dot)
16	Grayscale Horizontal
17	Grayscale Vertical
18	Grayscale Horizontal/Vertical
19	Grayscale Grid
20	Grayscale Horizontal White Stripe
21	Grayscale Vertical White Stripe
22	Grayscale Horizontal/Vertical White Stripe
23	100\% White Coverage
24	Trimming Area (OR Outside Data)

- \quad See SP 4417 in the SP table for a different set of test patterns.

SMC Data Lists (SP5990)

1. Open SP mode 5990 and select the number corresponding to the list that you wish to print.

SMC (System Parameter and Data Lists)	
1	All Data List
2	SP Mode Data List
3	UP Mode Data List
4	Logging Data List
5	Self-Diagnostics Results List
7	NIB Summary
8	Capture Log
21	Copy UP Mode List
22	Scanner SP Mode List
23	Scanner UP Mode List

2. Touch "Execute" on the touch panel
3. Select. "Single Face" or "Both Face", then touch "Execute" to start printing.
4. After printing the list, press Exit twice to close the SP Mode screen and return to copy mode.

Service Program Mode

Memory All Clear (SP5801)

Executing Memory All Clear resets all the settings stored in the NVRAM to their default settings except the following:

- SP2989 1-5: PCU ID (South Korea Only)
- SP2990 1-5: Original Toner ID (South Korea Only)
- SP2991 1-5: Original Toner Counter (South Korea Only)
- SP5811 1: Machine serial number
- SP5907: Plug \& Play Brand Name and Production Name Setting Normally, this SP mode should not be used. This procedure is necessary only after replacing the NVRAM, or when the copier malfunctions because the NVRAM is damaged.

1. Enter the SP mode, do SP5801, and press the number for the item that you want to initialize.

$\left.$| No. | What It Initializes | Comments |
| :---: | :--- | :--- |
| 1 | All Clear | Initializes items 2 to 12 below. |
| 2 | Engine Clear | Initializes all registration settings for the engine
 and process settings. |
| 3 | SCS | (System Control Service)/SRAM. Initializes default
 system settings, CSS settings, operation display
 coordinates, and ROM update information. |
| 4 | IMH Memory Clear | Initializes the image file system.
 (IMH: Image Memory Handler) |
| 5 | MCS | (Memory Control Service). Initializes the automatic
 delete time setting for stored documents. |
| 6 | Copier application | Fax application | | Initializes all copier application settings. |
| :--- | \right\rvert\, | Initializes the fax reset time, job login ID, all TX/RX |
| :--- |
| settings, local storage file numbers, and off-hook |
| timer. |

No.	What It Initializes	Comments
		printer CSS counter.
9	Scanner application	Initializes the scanner defaults for the scanner and all the scanner SP modes.
10	Network application	Deletes the network file application management files and thumbnails, and initializes the job login ID.
11	NCS	(Network Control Service) Initializes the system defaults and interface settings (IP addresses also), SmartNetMonitor for Admin, WebStatusMonitor settings, and the TELNET settings.
12	R-FAX	Initializes the job login ID, SmartNetMonitor for Admin, job history, and local storage file numbers.
14	Clear DCS Settings	Initializes the DCS settings.
15	Clear UCS Settings	Initializes: SP5846 (All), SP5801 15
18	SRM Memory Clear	Initializes information in non-volatile RAM.
19	LCS Memory Clear	Initializes information in non-volatile RAM.

2. Press Execute and turn the main switch off and back on.

Service Program Mode

APS Output Display (SP4301)

When you open this SP, a small box will be displayed on the SP mode screen with a series of 0's and 1's. The meaning of the display is as follows.

	00000000
Bit	76543210

$0=$ Paper not detected, $1=$ Paper detected

Bit	Description
7	L2
6	L3
5	W1
4	W2
3	Not Used
2	L1
1	Not Used
0	Not Used

Nip Band Width Measurement (SP1109)

When paper wrinkling or image off-set occurs, the pressure from the pressure roller can be adjusted by changing the position of the pressure springs. At this time, the nip band width can also be checked with SP1109, as follows.

1. Do a free run (SP5802) for about 50 sheets.
2. Access SP1109 and press the "1" key.
3. Press Copy Window to return to the copy window.
4. Place an OHP sheet (A4/8.5"x11" sideways) on the by-pass tray or in the 2nd paper tray.
5. Press the "Start" key.
6. The OHP sheet is stopped in the fusing unit for about 20 seconds, then it will be fed automatically.
7. Check the width of the nip band [A] around the center of the OHP. The relationship between the position of the pressure spring and the width is as follows.

1. Pressure spring position	Nip band width
Upper (default position)	$5.2 \pm 0.5 \mathrm{~mm}$
Lower	$5.3 \pm 0.5 \mathrm{~mm}$
2. Envelope feed mode (green lever down) at the default pressure spring position	$4.7 \pm 0.5 \mathrm{~mm}$

If the width is out of the above specification, the pressure spring should be replaced.

Service Program Mode

Software Reset

The software can be rebooted when the machine hangs up. Use the following procedure. Turn the main power switch off and on.
-or-
Press and hold down $)^{-(}$and together for longer than 10 seconds. When the machine beeps once release both buttons. After "Now loading. Please wait" is displayed for a few seconds, the copy window will open. The machine is ready for normal operation.

System Setting Reset

The system settings in the UP mode can be reset to their defaults. Use the following procedure.

1. Press User Tools/Counter.

2. Press and hold down ${ }^{(+)}$and then touch "System Settings".
3. When the message prompts you to confirm that you want to reset the system settings, press Yes.
4. When the message tells you that the settings have been reset, press Exit.

Copier Setting Reset

The copy settings in the UP mode can be reset to their defaults. Use the following procedure.

1. Press User Tools/Counter.
2. Press and hold down © ${ }^{-1}$ and then touch "Copier/Document Server Settings".

3. When the message prompts you to confirm that you want to reset the Copier Document Server settings, press Yes.
4. When the message tells you that the settings have been reset, press Exit.

5.1.5 SERVICE PROGRAM MODE TABLES

Service Table Key

Notation	What it means		
[range / default /			
step]		\quad	Example: $[-9$ to $+9 /+3.0 / 0.1 \mathrm{~mm}$ step]. The setting can be
:---			
adjusted in the range ± 9, the setting is reset to +3.0 after an			
NVRAM reset, and the value can be changed in 0.1 mm steps			
with each key press.	,	Comments added for reference.	
:---	:---		
italics	Value stored in NVRAM. After a RAM reset, this default value (factory setting) is restored.		
An SP number set in bold denotes a "Special Service Program"			
mode setting that appears only after entering the SP mode by			
pressing © and Copy SP together. (See "Service Program			
Mode Operation".)			

5.2 FIRMWARE UPDATE

The procedure is the same for all firmware modules.

- If you will change scanner firmware, print 5-990-22 and -23 (SMC reports for scanner settings) before you start this procedure.

1. Stop all SDK applications if the VM card is installed p.2-102 "HDD Encryption Unit").
2. Turn off the main power switch.

d017i502
3. Remove the plastic application cover $[A]\left(A^{(1)}\right)$.
4. Remove the VM card from SD card slot 2 if it is installed.
5. Insert the SD card [B] containing the software you wish to download into SD card slot 2 (lower slot).
6. Open the front cover.
7. Turn on the main power.
8. Follow the instructions on the operation panel
9. Monitor the downloading status on the operation panel.

- While downloading is in progress, the panel displays "Writing". When downloading has been completed, the panel displays "Completed".
- The Start key lights red during downloading, then lights green after downloading is completed. (only for "Operation Panel" downloading)

Firmware Update

$\triangle C A U T I O N$

- Never switch off the power while downloading. Switching off the power while the new software is being downloading will damage the boot files in the controller.

10. After confirming that downloading is completed, turn off the main power and remove the SD card.
11. If more software needs to be downloaded, repeat steps 1 to 7 .
12. Turn the main power on and confirm that the new software loads and that the machine starts normally.
13. After installing new scanner firmware, do SP5-801-9 (Memory All Clear - Scanner Application). Then input scanner settings that are different from the defaults (see the SMC prints of 5-990-22 and -23 that you made earlier).
If the download failed, an error message appears on the panel. Do the download procedure again. If the second download fails:

- For the controller module, set bit 1 of DIP switch 1 on the controller board to OFF, then switch on the machine. The machine boots from the SD card.
- Other modules. Replace the appropriate PCB.

5.3 NVRAM DATA UPLOAD/DOWNLOAD

The content of the NVRAM can be uploaded to and downloaded from an SD card.

5.3.1 UPLOADING NVRAM DATA (SP5-824)

1. Turn off the main switch.
2. Remove the SD card cover $\left(\hat{G}^{\prime} \times 1\right)$.
3. Insert the SD card into SD card slot 2.
4. Turn on the main switch.
5. Execute SP5-824.
6. Press (1) to start uploading the NVRAM data.

5.3.2 DOWNLOADING NVRAM DATA (SP5-825)

The following data are not downloaded from the SD card:

- Total counter
- C/O, P/O Counter
- Dupelx, A3/DLT/Over 420 mm, Staple and Scanner application scanning counters (system settings).
- Engine SP data

1. Stop all SDK applications if the VM card is installed p.2-102 "HDD Encryption Unit").
2. Turn off the main switch.
3. Remove the SD card cover [A].
4. Remove the VM card from SD card slot 2 if it is installed.
5. Plug the SD card $[B]$ into $S D$ card slot 2 .
6. Turn on the main switch.
7. Execute SP5-825.
8. Press (1) to start downloading the NVRAM data.

Note that the following errors could occur during downloading:

- If a card is not installed in the card slot and a message tells you that downloading cannot proceed, you cannot execute downloading, even by pressing (1).
- If the correct card for the NVRAM data is not inserted in the card slot, after you press (1) a message will tell you that downloading cannot proceed because the card is abnormal and the execution will halt.

5.4 USER TOOLS

The user program (UP) mode can be accessed by users and operators, and by sales and service staff. UP mode is used to input the copier's default settings. The user can reset the default settings at any time. (See 'System Setting and Copy Setting Reset'.)

5.4.1 UP MODE INITIAL SCREEN: USER TOOLS/COUNTER DISPLAY

To enter the UP mode, press User Tools/Counter.

5.4.2 SYSTEM SETTINGS

In the User Tools/Counter display, press System Settings.

- Click a tab to display the settings.
- If the Next button is lit in the lower right corner, press it to display more options.
- Make the settings, press Exit to return to the User Tools/Counter display, and then press Exit to return to the copy window.

5.4.3 COPIER/DOCUMENT SERVER FEATURES

In the User/Tools Counter display, press Copy/Document Server Settings.

- Click a tab to display the settings.
- If the Next button is lit in the lower right corner, press it to display more options.
- Make the settings, press Exit to return to the User Tools/Counter display, and then press Exit to return to the copy window.

5.4.4 PRINTER, FACSIMILE, SCANNER SETTINGS

In the User/Tools Counter display, press Printer Settings, Facsimile, or Scanner Settings to open the appropriate screen and then click the tab to display more settings.

User Tools

5.4.5 INQUIRY

In the User/Tools Counter display, press Inquiry.
The following SP mode settings will be displayed.

- Service Telephone Number
- Serial Number of Machine
- Sales Representative Telephone No.

5.4.6 COUNTER

In the User/Tools Counter display, press Counter.
View the settings, press Exit to return to the User Tools/Counter display, and then press Exit to return to the copy window.

5.5 LED AND DIP SWITCHES

5.5.1 LEDS

Controller

Number	Normal	Controller Software Download	Error
LED 1	Off	Blinking	Off
LED 2	Blinking	Blinking	Lit or Off

$B C U$

Number	Normal	Controller Software Download	Error
LED 1	Lit	Lit	Off or Blinking
LED 2	Blinking	Lit	Lit (except downloading) or Off

LED and DIP Switches

5.5.2 DIP SWITCHES

Controller

SW2

Number	OFF	ON
1	Boot from SD card	Default: Boot
2 from Flash ROM		
2 to 4	Default: OFF DFU	---

$B C U$
SW102

Destination	Bit			
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
	OFF	OFF	OFF	OFF
NA	ON	OFF	OFF	OFF
EU/ASIA	OFF	ON	OFF	OFF

5.6 USING THE DEBUG LOG

This machine provides a Save Debug Log feature that allows the Customer Engineer to save and retrieve error information for analysis.

Every time an error occurs, debug information is recorded in volatile memory but this information is lost when the machine is switched off and on.

To capture this debug information, the Save Debug Log feature provides two main features:

- Switching on the debug feature so error information is saved directly to the HDD for later retrieval.
- Copying the error information from the HDD to an SD card.

When a user is experiencing problems with the machine, follow the procedure below to set up the machine so the error information is saved automatically to the HDD. Then ask the user to reproduce the problem.

5.6.1 SWITCHING ON AND SETTING UP "SAVE DEBUG LOG"

The debug information cannot be saved until the "Save Debug Log" function is switched on and a target is selected.

1. Enter the SP mode.

- Press (Clear Modes), then use the 10-key pad to input "107".
- Press and hold down (Clear/Stop) for more than 3 seconds.
- Press "Copy SP" on the touch-panel.
- Input "5857", then press

라.
2. Under "5857 Save Debug Log", press ①.

debuglog_screen1
3. On the operation panel keypad, press (1) then press ${ }^{\oplus}$. This switches the Save Debug Log feature on.

- The default setting is "0" (OFF). This feature must be switched on in order for the debug information to be saved.

Using the Debug Log

4. Next, select the target destination where the debug information will be saved. Under " 5857 Save Debug Log", touch " 2 Target", enter "2" with the operation panel key to select the hard disk as the target destination, then press ${ }^{\oplus}$.
```
COPY : SP-5-857-002
    Save Debug Log
    Target (2:HDD 3:SD Card)
                                    2
            Initial 2
```

debuglog_screen2

\downarrow Note

- Select "3 SD Card" to save the debug information directly to the SD card if it is inserted in the service slot.

5. Now touch "5858" and specify the events that you want to record in the debug log. SP5858 (Debug Save When) provides the following items for selection.

1	Engine SC Error	Saves data when an engine-related SC code is generated.
2	Controller SC Error	Saves debug data when a controller-related SC Code is generated.
3	Any SC Error	Saves data only for the SC code that you specify by entering code number.
4	Jam	Saves data for jams.

\downarrow Nole

- More than one event can be selected.

Example 1: To Select Items 1, 2, 4

Touch the appropriate items(s). Press "ON" for each selection. This example shows "Engine SC Error" selected.

```
COPY : SP-5-858-001
    Debug Save When
    Engine SC Error

\section*{Example 2: To Specify an SC Code}

Touch "3 Any SC Error", enter the 3-digit SC code number with the operation panel number keys, then press \({ }^{\oplus}\). This example shows an entry for SC670.
```

COPY : SP-5-858-001
Debug Save When
Any SC Error

```
- For details about SC code numbers, please refer to the SC tables in Section 4. Troubleshooting.
6. Next, select the one or more memory modules for reading and recording debug information. Touch "5859".
7. Under "5859" press the appropriate key item for the module that you want to record.
8. Enter the appropriate 4-digit number, then press \(\oplus^{\oplus}\).

\section*{\(\downarrow\) Note}
- Refer to the two tables below for the 4-digit numbers to enter for each key.

The example below shows "Key 1" with "2222" entered.


The following keys can be set with the corresponding numbers. (The initials in parentheses indicate the names of the modules.)

\section*{4-Digit Entries for Keys 1 to 10}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Key No. } & \multicolumn{1}{|c|}{ Copy } & Printer & Scanner
\end{tabular} Web \begin{tabular}{l} 
(SCS) \\
\hline 1
\end{tabular}

Using the Debug Log
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Key No. } & \multicolumn{1}{|c|}{ Copy } & \multicolumn{1}{|c|}{ Printer } & \multicolumn{1}{c|}{ Scanner } & \multicolumn{1}{c|}{ Web } \\
\hline 6 & \(4848(\mathrm{COPY})\) & \(4400(\mathrm{GPS})\) & \(5375(\mathrm{Scan})\) & \(5682(\mathrm{NFA})\) \\
\hline 7 & \(2224(\mathrm{BCU})\) & \(4500(\mathrm{PDL})\) & \(5682(\mathrm{NFA})\) & \(6600(\mathrm{WebDB})\) \\
\hline 8 & & \begin{tabular}{l}
4600 \\
\((G P S-P M)\)
\end{tabular} & \(3000(\mathrm{NCS})\) & \(3300(\mathrm{PTS})\) \\
\hline 9 & & \(2000(\mathrm{NCS})\) & \(2000(\mathrm{NCS})\) & \(6666(\mathrm{WebSys})\) \\
\hline 10 & & \(2224(\mathrm{BCU})\) & & \(2000(\mathrm{NCS})\) \\
\hline
\end{tabular}

\section*{\(\downarrow\) Note}
- The default settings for Keys 1 to 10 are all zero ("0").

\section*{Key to Acronyms}
\begin{tabular}{|l|l|l|l|}
\hline Acronym & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Acronym } & \multicolumn{1}{c|}{ Meaning } \\
\hline ECS & Engine Control Service & NFA & Net File Application \\
\hline GPS & GW Print Service & PDL & Printer Design Language \\
\hline GSP-PM & \begin{tabular}{l} 
GW Print Service - Print \\
Module
\end{tabular} & PTS & Print Server \\
\hline IMH & Image Memory Handler & SCS & System Control Service \\
\hline MCS & Memory Control Service & SRM & \begin{tabular}{l} 
System Resource \\
Management
\end{tabular} \\
\hline NCS & Network Control Service & WebDB & \begin{tabular}{l} 
Web Document Box \\
(Document Server)
\end{tabular} \\
\hline
\end{tabular}

The machine is now set to record the debugging information automatically on the HDD (the target selected with SP5-857-002) for the events that you selected SP5-858 and the memory modules selected with SP5-859.

Please keep the following important points in mind when you are doing this setting:
- The number entries for Keys 1 to 5 are the same for the Copy, Printer, Scanner, and Web memory modules.
- The initial settings are all zero.
- These settings remain in effect until you change them. Be sure to check all the settings, especially the settings for Keys 6 to 10. To switch off a key setting, enter a zero for that key.
- You can select any number of keys from 1 to 10 (or all) by entering the corresponding 4-digit numbers from the table.
- You cannot mix settings for the groups (COPY, PRINTER, etc.) for 006 to 010. For example, if you want to create a PRINTER debug log you must select the settings from the 9 available selections for the "PRINTER" column only.
- One area of the disk is reserved to store the debug log. The size of this area is limited to 4 MB.

\subsection*{5.6.2 RETRIEVING THE DEBUG LOG FROM THE HDD}
1. Insert the SD card into service slot (slot 2) of the copier.
2. Enter the SP mode and execute SP5857 009 (Copy HDD to SD Card (Latest 4 MB ) to write the debugging data to the SD card.
3. Use a card reader to copy the file and send it for analysis to your local Ricoh representative by email, or just send the SD card by mail.

\subsection*{5.6.3 RECORDING ERRORS MANUALLY}

Since only SC errors and jams are recorded to the debug log automatically, for any other errors that occur while the customer engineer is not on site, please instruct customers to perform the following immediately after occurrence to save the debug data. Such problems would include a controller or panel freeze.
- To use this feature, the customer engineer must have previously switched on the Save Debug Feature (SP5857-001) and selected the hard disk as the save destination (SP5857-002).
1. When the error occurs, on the operation panel, press (Clear Modes).
2. On the operation panel, enter " 01 " then hold down for at least 3 seconds, until the machine beeps. Then release the key. This saves the debug log to the hard disk for later retrieval with an SD card by the service representatives.
3. Switch the machine off and on to resume operation.
4. The debug information for the error is saved on the hard disk so the service representatives can retrieve it on their next visit by copying it from the HDD to an SD card.

Using the Debug Log

\subsection*{5.6.4 DEBUG LOG CODES}

\section*{SP5857-015 Copy SD Card-to-SD Card: Any Desired Key}

This SP copies the log on an SD card (the file that contains the information written directly from shared memory) to a log specified by key number. The copy operation is executed in the log directory of the SD card inserted in the same slot. (This function does not copy from one slot to another.) Each SD card can hold up to 4 MB of file data. Unique file names are created for the data during the copy operation to prevent overwriting files of the same name. This means that log data from more than one machine can be copied onto the same SC card. This command does not execute if there is no log on the HDD for the name of the specified key.

\section*{SP5857-016 Create a File on HDD to Store a Log}

This SP creates a 32 MB file to store a log on the HDD. However, this is not a completely empty file. The created file will hold the number " 2225 " as the SCS key number and other non-volatile information. Even if this SP is not executed, a file is created on the HDD when the first log is stored on the HDD, but this operation takes time. This creates the possibility that the machine may be switched off and on before the log can be created completely. If you execute this SP to create the log file beforehand, this will greatly reduce the amount of time required to acquire the log information and save onto the HDD. With the file already created on the HDD for the log file, the data only needs to be recorded; a new log file does not require creation. To create a new log file, execute SP5857-011 to delete the debug log data from the HDD and then execute this SP (SP5857-016).

\section*{SP5857-017 Create a File on SD Card to Store a Log}

This SP creates a 4 MB file to store a log on an SD card. However, this is not a completely empty file. The created file will hold the number "2225" as the SCS key number and other non-volatile information. Even if this SP is not executed, a file is created on the SD card when the first log is stored on the SD card, but this operation takes time. This creates the possibility that the machine may be switched off and on before the log can be created completely. If you execute this SP to create the log file beforehand, this will greatly reduce the amount of time required to acquire the log information and save onto the SD card. With the file already created on the SD card for the log file, the data only needs to be recorded; a new log file does not require creation. To create a new log file, execute SP5857-012 to delete the debug log data from the SD card and then execute this SP (SP5857-017

\section*{TROUBLESHOOTING}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|c|}{ REVISION HISTORY } \\
\hline Page & Date & \multicolumn{1}{l|}{ Added/Updated/New } \\
\hline & & None \\
\hline
\end{tabular}

\section*{6. TROUBLESHOOTING}

\subsection*{6.1 SERVICE CALL CONDITIONS}

For "Service Call Conditions" information, see "Appendices".

\subsection*{6.2 SELF-DIAGNOSTIC MODE}

\subsection*{6.2.1 SELF-DIAGNOSTIC MODE AT POWER ON}

As soon as the main machine is powered on, the controller waits for the initial settings of the copy engine to take effect and then starts an independent self-diagnostic test program. The self-diagnostic test follows the path of the flow chart shown below and checks the CPU, memory, HDD, and so on. An SC code is displayed in the touch panel if the self-diagnostic program detects any malfunction or abnormal condition.

\section*{Self-Diagnostic Test Flow Chart}


\subsection*{6.2.2 DETAILED SELF-DIAGNOSTIC MODE}

\section*{Purpose}

In addition to the self-diagnostic test initiated every time the main machine is powered on, you can set the machine in a more detailed diagnostic mode manually in order to test other components or conditions that are not tested during self-diagnosis after power on.

The following device is required in order to put the machine in the detailed self-diagnosis mode.

Also, the printer/scanner unit and the optional Centronics (IEEE1284) interface must be installed.
\begin{tabular}{|c|c|}
\hline Part No. & Name \\
\hline G0219350 & Parallel Loopback Connector \\
\hline
\end{tabular}

\section*{Executing Detailed Self-Diagnosis}

Follow this procedure to do the detailed self-diagnosis.
1. Switch off the machine, and connect the parallel loopback device to the Centronics I/F port.
2. Hold down the \({ }^{(+)}\)button, press and hold down the \(\odot\) button, and then while pressing both keys at the same time, switch on the machine.
- You will see "Now Loading" on the touch-panel, and then you will see the results of the test.

A report like the one below is printed every time a detailed self-diagnostic test is executed, whether errors were detected or not.


\subsection*{6.3 PAPER FEED TROUBLESHOOTING}

The machine is designed to automatically adjust the bottom plate pressure of each paper feed station in the main machine and paper tray unit for the paper size and amount of paper remaining in the tray. If the machine is frequently double-feeding or failing to feed with a particular paper size with a certain amount of paper remaining in the tray, this problem can be corrected with SP code settings, SP1908 to 1911 . These SP codes change the amount of time the bottom plate motor runs forward or reverse to increase or decrease pressure on the bottom of the stack.
- Double feeding occurs when the bottom plate is exerting too much pressure on the paper remaining in the tray. To correct this, increase the length of time the motor runs in reverse to lower the tray. This is a minus (-) value.
- Failure to feed occurs when the bottom plate is not exerting enough pressure on the paper remaining in the tray. To correct this, increase the length of time the motor runs forward to raise the tray. This is a positive setting.

Before doing any adjustments with these SP codes, confirm that the correct paper size has been selected for each tray with SP codes 1912, 1913, 1914, 1915.
- For more details about how to do the adjustments, please refer to "SP1xxx: Feed" in Service Tables.

\subsection*{6.4 SKEWED IMAGE}

Do the following to fix a skewed image problem.


\subsection*{6.5 IMAGE PROBLEMS}

\subsection*{6.5.1 SKEWED, TRAPEZOID AND PARALLELOGRAM IMAGES}

\section*{Skewed Images}
- The image's leading and trailing edges are parallel.
- The image's left and right edges are also parallel.
- But, all four sides are not parallel with the paper edge.


\section*{Trapezoid Images}
- Only the image's trailing edge is not parallel with the paper edge. The other 3 sides are parallel to the paper's edges.


\section*{Parallelogram Images}

- Like skewed images, the leading/trailing edges and left/right edges are parallel to each other. But, the leading and trailing edges are not parallel to the paper's edges.

\subsection*{6.5.2 CHECKING IMAGES WITH THE TRIMMING PATTERN}


\subsection*{6.5.3 CORRECTING THE IMAGES}

\section*{Correcting Skewed Images}
1. Test pattern (Trimming Pattern) mode check
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Is the image \\
skewed?
\end{tabular} & \\
\hline No & Yes \\
\hline & \begin{tabular}{l} 
1. Adjust the side fences. There must be no gap between the \\
fences and the paper stack.
\end{tabular} \\
\hline & 2. Adjust the paper buckle: SP1-003-1 and 2. \\
\hline
\end{tabular}
2. Platen mode check

Set an original flush against the left and rear scales and make a copy.
Does the image come out as a parallelogram?
\begin{tabular}{|l|l|}
\hline No & Yes \\
\hline & \begin{tabular}{l} 
Attach the Scanner Holder (a supporter that is normally attached \\
during shipping) \\
OR \\
Do Procedure A below.
\end{tabular} \\
\hline
\end{tabular}
3.

\section*{ADF mode check}

Feed an original through the ADF.
Is the image skewed?
\begin{tabular}{|l|l|l|}
\hline No & Yes & \\
\hline & \begin{tabular}{l} 
Do the front and rear \\
transport rollers feed the \\
original straight?
\end{tabular} & \\
\hline & No & Yes \\
\hline & & \begin{tabular}{l} 
Change the position of the \\
right hinge screw to the \\
longer hole, and make \\
small position adjustments \\
that are necessary.
\end{tabular} \\
\hline Procedure complete. & Do Procedure B below. & \\
\hline
\end{tabular}

\section*{Procedure A}
1. Remove the rear and left covers, then the left scanner cover.

Rear, left upper side of machine

2. Check to see if there is a gap between the scanner unit holder and frame at \([A]\).
3. If there is no gap, the left front section of the scanner unit is lower than the standard position.

\section*{Image Problems}

4. Loosen all screws ( \(\hat{\xi} \times 7\) ) \([B]\).
5. Lift up the left front of unit until there is a 1 to 2 mm gap.
6. Tighten the 7 screws.
7. Insert a washer (\#07080050, 1 mm thick) into gap [A].
8. Attach the washer in its position with an adhesive that sets quickly.

\section*{\(\downarrow\) Nole}
- This washer will also absorb small amounts of shock.
9. Check if the parallelogram image still appears.

\section*{Procedure B}

1. Remove the ADF [A], machine rear cover, scanner left cover, and scanner rear cover.

b205t906

\section*{Image Problems}

2. Measure the height difference \([B]\) between the hinge bracket \([C]\) and scanner housing [D].
3. If the difference is 0.5 mm or more:

Add a spacer ( \(t=0.5\) to 0.8 ) between the hinge bracket (mainframe) and ADF left hinge, to lift the left side of the ADF -or-

Adjust the stepped height difference between the hinge bracket and scanner housing until it is within \(0 \pm 0.3 \mathrm{~mm}\).
- This is necessary because skew occurs when the hinge bracket more than 0.3 mm lower than the scanner housing.

\section*{Correcting Trapezoid Images}

Procedure 1: Minor Adjustment of the Fusing Unit Height (front-to-rear)

1. Print out the SP2-902 Trimming Pattern (value: 10 ).
2. If the image is a pattern A trapezoid:
a) Remove and reinstall the Fusing Unit.
b) Tighten the left fixing screw while you push up the unit's left side (until it stops).
3. If the image is a pattern \(B\) trapezoid, do the same for the unit's right side.
4. If the image is still printed out as a trapezoid, do Procedure 2 below.

\section*{Image Problems}

\section*{Procedure 2: Minor Adjustment of the Fusing Unit Position (front-to-rear)}
1. Remove the fusing unit, then add a washer \((\mathrm{t}=0.5 \mathrm{to} 1.6)\) to the front fixing screw.
- This will increase the distance from the mainframe stay.
2. Check the image.
- Still NG: Go to the next step.
- OK: Adjustment Complete.
3. Add more washers ( \(\mathrm{t}=0.5\) to 1.6 , as above).

- Too many washers can cause wrinkling in the paper.
- Still NG: Go to the next step.
- OK: Adjustment Complete.
4. Remove the fusing unit and all the washers added in steps 1 and 2 above.
5. Then, add washer(s) in the same way for the rear side.

\section*{Recommended Washers:}
\(\mathrm{t}=0.5,07080040 \mathrm{Z}\) or 07080040G
\(t=0.8,07080050 Z\) or 07080050G

\section*{Correcting Parallelogram Images}

For the procedure, see "Parallelogram Image Problems".

\subsection*{6.6 ELECTRICAL COMPONENT DEFECTS}

\subsection*{6.6.1 SENSORS}
\begin{tabular}{|l|l|l|l|l|}
\hline Component & CN & PCB & State & \\
\hline \begin{tabular}{l} 
1st Bottom Fence \\
Sensor 1
\end{tabular} & \multirow{2}{*}{\(309-1\)} & \multirow{2}{*}{ BCU } & Open & \begin{tabular}{l} 
The CPU cannot detect the \\
paper size properly.
\end{tabular} \\
\hline & & Shorted & \\
\hline \begin{tabular}{l} 
1st Bottom Fence \\
Sensor 2
\end{tabular} & \multirow{2}{*}{\(309-4\)} & \multirow{2}{*}{ BCU } & Open & The CPU cannot detect the \\
& & Shorted & paper size properly.
\end{tabular}

Electrical Component Defects
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{1st Side Fence Sensor} & \multirow{2}{*}{309-10} & \multirow{2}{*}{BCU} & Open & \multirow[t]{2}{*}{The CPU cannot detect the paper size properly.} \\
\hline & & & Shorted & \\
\hline \multirow{2}{*}{1st Tray Detect Sensor} & \multirow{2}{*}{309-13} & \multirow{2}{*}{BCU} & Open & \multirow[t]{2}{*}{The CPU cannot detect the paper size properly.} \\
\hline & & & Shorted & \\
\hline \multirow[t]{2}{*}{2nd Bottom Fence Sensor 3} & \multirow{2}{*}{309-21} & \multirow{2}{*}{BCU} & Open & \multirow[t]{2}{*}{The CPU cannot detect the paper size properly.} \\
\hline & & & Shorted & \\
\hline \multirow[t]{2}{*}{2nd Bottom Fence Sensor 1} & \multirow{2}{*}{309-15} & \multirow{2}{*}{\(B C U\)} & Open & \multirow[t]{2}{*}{The CPU cannot detect the paper size properly.} \\
\hline & & & Shorted & \\
\hline \multirow[t]{2}{*}{2nd Bottom Fence Sensor 2} & \multirow{2}{*}{309-18} & \multirow{2}{*}{\(B C U\)} & Open & \multirow[t]{2}{*}{The CPU cannot detect the paper size properly.} \\
\hline & & & Shorted & \\
\hline \multirow[b]{2}{*}{2nd Paper End Sensor} & \multirow[b]{2}{*}{308-1} & \multirow[b]{2}{*}{\(B C U\)} & Open & The Paper End indicator lights even if paper is placed in the \(2 n d\) paper tray. \\
\hline & & & Shorted & The Paper End indicator does not light even if there is no paper in the \(2 n d\) paper tray. \\
\hline \multirow{2}{*}{2nd Paper Height Sensor 1} & \multirow{2}{*}{310-7} & \multirow{2}{*}{\(B C U\)} & Open & \multirow[t]{2}{*}{The CPU cannot determine the paper near-end condition properly.} \\
\hline & & & Shorted & \\
\hline \multirow[b]{2}{*}{2nd Paper Height Sensor 2} & \multirow{2}{*}{310-10} & \multirow{2}{*}{\(B C U\)} & Open & \multirow[t]{2}{*}{The CPU cannot determine the paper near-end condition properly.} \\
\hline & & & Shorted & \\
\hline \multirow[b]{2}{*}{2nd Paper Lift Sensor} & \multirow[b]{2}{*}{306-2} & \multirow[b]{2}{*}{BCU} & Open & SC502 displays. \\
\hline & & & Shorted & Paper jam will occur during copying. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{2nd Side Fence Sensor} & \multirow{2}{*}{309-24} & \multirow{2}{*}{BCU} & Open & \multirow[t]{2}{*}{The CPU cannot detect the paper size properly.} \\
\hline & & & Shorted & \\
\hline \multirow[t]{2}{*}{2nd Tray Detect Sensor} & \multirow{2}{*}{309-27} & \multirow{2}{*}{BCU} & Open & \multirow[t]{2}{*}{The CPU cannot detect the paper size properly.} \\
\hline & & & Shorted & \\
\hline \multirow[b]{2}{*}{APS Sensor 1: Original Width} & \multirow[b]{2}{*}{223-1} & \multirow[b]{2}{*}{SIO} & Open & \multirow[t]{2}{*}{The CPU cannot detect the original size properly. APS and ARE do not function correctly.} \\
\hline & & & Shorted & \\
\hline \multirow[b]{2}{*}{APS Sensor 2: Original Width} & \multirow[b]{2}{*}{223-4} & \multirow[b]{2}{*}{SIO} & Open & \multirow[t]{2}{*}{The CPU cannot detect the original size properly. APS and ARE do not function correctly.} \\
\hline & & & Shorted & \\
\hline \multirow[b]{2}{*}{APS Sensor 3: Original Length} & \multirow[b]{2}{*}{223-7} & \multirow[b]{2}{*}{SIO} & Open & \multirow[t]{2}{*}{The CPU cannot detect the original size properly. APS and ARE do not function correctly.} \\
\hline & & & Shorted & \\
\hline \multirow[b]{2}{*}{APS Sensor 4: Original Length} & \multirow[b]{2}{*}{223-10} & \multirow[b]{2}{*}{SIO} & Open & \multirow[t]{2}{*}{The CPU cannot detect the original size properly. APS and ARE do not function correctly.} \\
\hline & & & Shorted & \\
\hline \multirow[b]{2}{*}{APS Sensor 5: Original Length} & \multirow[b]{2}{*}{223-13} & \multirow[b]{2}{*}{SIO} & Open & \multirow[t]{2}{*}{The CPU cannot detect the original size properly. APS and ARE do not function correctly.} \\
\hline & & & Shorted & \\
\hline \multirow[b]{2}{*}{\begin{tabular}{l}
Bridge Open Sensor \\
(Paper Exit)
\end{tabular}} & \multirow[b]{2}{*}{701-3} & \multirow[b]{2}{*}{CKB} & Open & "Open Cover" is displayed even the cover is closed. \\
\hline & & & Shorted & "Open Cover" is not displayed even the cover is open. \\
\hline
\end{tabular}

Electrical Component Defects
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\begin{tabular}{l}
Bridge Open Sensor \\
(Relay)
\end{tabular}} & \multirow[b]{2}{*}{701-1} & \multirow[b]{2}{*}{CKB} & Open & "Open Cover" is displayed even the cover is closed. \\
\hline & & & Shorted & "Open Cover" is not displayed even the cover is open. \\
\hline \multirow{2}{*}{\begin{tabular}{l}
Duplex Unit Entrance \\
Sensor
\end{tabular}} & \multirow{2}{*}{340-10} & \multirow{2}{*}{BCU} & Open & The Paper Jam indicator will light whenever a copy is made. \\
\hline & & & Shorted & The Paper Jam indicator lights even if there is no paper. \\
\hline \multirow{2}{*}{\begin{tabular}{l}
Duplex Unit Exit \\
Sensor
\end{tabular}} & \multirow{2}{*}{859-1} & \multirow{2}{*}{BCU} & Open & The Paper Jam indicator will light whenever a copy is made. \\
\hline & & & Shorted & The Paper Jam indicator lights even if there is no paper. \\
\hline \multirow{2}{*}{Duplex Unit Set Sensor} & \multirow{2}{*}{859-9} & \multirow{2}{*}{BCU} & Open & The Cover Open indicator is not lit even if the right upper cover is opened. \\
\hline & & & Shorted & The Cover Open indicator is lit even if the right upper cover is closed. \\
\hline \multirow{2}{*}{Exit Sensor} & \multirow{2}{*}{703-4} & \multirow{2}{*}{CKB} & Open & The Paper Jam indicator will light whenever a copy is made. \\
\hline & & & Shorted & The Paper Jam indicator lights even if there is no paper. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ID Sensor} & \multirow{2}{*}{321-1} & \multirow{2}{*}{BCU} & Open & \multirow[t]{2}{*}{SC392 is displayed (see note)} \\
\hline & & & Shorted & \\
\hline \multirow{2}{*}{Interchange/Inverter Sensor} & \multirow{2}{*}{331-9} & \multirow{2}{*}{\(B C U\)} & Open & The Paper Jam indicator will light whenever a copy is made. \\
\hline & & & Shorted & The Paper Jam indicator lights even if there is no paper. \\
\hline \multirow{2}{*}{Lower Relay Sensor} & \multirow{2}{*}{308-4} & \multirow{2}{*}{BCU} & Open & The Paper Jam indicator will light whenever a copy is made. \\
\hline & & & Shorted & The Paper Jam indicator lights even if there is no paper. \\
\hline \multirow{2}{*}{New PCU Detect Sensor} & \multirow{2}{*}{327-6} & \multirow{2}{*}{BCU} & Open & The TD sensor initial setting procedure is not performed when a new PCU is installed. \\
\hline & & & Shorted & The TD sensor initial setting procedure is performed whenever the front cover is closed. \\
\hline \multirow[b]{2}{*}{\begin{tabular}{l}
Paper End Sensor \\
(Bypass)
\end{tabular}} & \multirow[b]{2}{*}{860-3} & \multirow[b]{2}{*}{BCU} & Open & The Paper End indicator lights even if paper is placed in the 1st paper tray. \\
\hline & & & Shorted & The Paper End indicator does not light even if there is no paper in the 1st paper tray. \\
\hline
\end{tabular}

Electrical Component Defects
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\begin{tabular}{l}
Paper End Sensor \\
(Duplex)
\end{tabular}} & \multirow[b]{2}{*}{860-3} & \multirow[b]{2}{*}{BCU} & Open & The Paper End indicator lights even if paper is placed in the 1st paper tray. \\
\hline & & & Shorted & The Paper End indicator does not light even if there is no paper in the 1st paper tray. \\
\hline \multirow{2}{*}{Paper Exit Sensor} & \multirow{2}{*}{324-1} & \multirow{2}{*}{BCU} & Open & The Paper Jam indicator will light whenever a copy is made. \\
\hline & & & Shorted & The Paper Jam indicator lights even if there is no paper. \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Paper Overflow \\
Sensor
\end{tabular}} & \multirow[t]{2}{*}{324-4} & \multirow[t]{2}{*}{BCU} & Open & The paper overflow message is not displayed when the paper overfull condition exist. \\
\hline & & & Shorted & The paper overflow message is displayed. \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Paper Overflow \\
Sensor
\end{tabular}} & \multirow[t]{2}{*}{703-1} & \multirow[t]{2}{*}{CKB} & Open & The paper overflow message is not displayed when the paper overfull condition exist. \\
\hline & & & Shorted & The paper overflow message is displayed. \\
\hline \multirow{2}{*}{Paper Present Sensor} & \multirow{2}{*}{330-1} & \multirow{2}{*}{BCU} & Open & LED does not light even if paper is in 1-bin tray. \\
\hline & & & Shorted & LED lights even if paper is not in 1-bin tray. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\begin{tabular}{l}
Paper Size Sensor \\
(Bypass)
\end{tabular}} & \multirow[b]{2}{*}{860-6} & \multirow[b]{2}{*}{BCU} & Open & \multirow[t]{2}{*}{The CPU cannot detect the proper paper size, and misfeeds may occur when a copy is made.} \\
\hline & & & Shorted & \\
\hline \multirow[b]{2}{*}{\begin{tabular}{l}
Paper Size Sensor \\
(Duplex)
\end{tabular}} & \multirow{2}{*}{860-6} & \multirow{2}{*}{BCU} & Open & \multirow[t]{2}{*}{The CPU cannot detect the proper paper size, and misfeeds may occur when a copy is made.} \\
\hline & & & Shorted & \\
\hline \multirow{2}{*}{Registration Sensor} & \multirow{2}{*}{321-5} & \multirow{2}{*}{BCU} & Open & The Paper Jam indicator will light whenever a copy is made. \\
\hline & & & Shorted & The Paper Jam indicator lights even if there is no paper. \\
\hline \multirow{2}{*}{Relay Sensor} & \multirow{2}{*}{702-1} & \multirow{2}{*}{CKB} & Open & The Paper Jam indicator will light whenever a copy is made. \\
\hline & & & Shorted & The Paper Jam indicator lights even if there is no paper. \\
\hline \multirow[b]{2}{*}{Scanner HP Sensor} & \multirow[b]{2}{*}{228-1} & \multirow[b]{2}{*}{SIO} & Open & SC120 is displayed. \\
\hline & & & Shorted & The CPU does not detect the scanner home position and the scanner motor does not stop. \\
\hline
\end{tabular}

Electrical Component Defects
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{Shift Sensor} & \multirow{2}{*}{903-1} & \multirow{2}{*}{STB} & Open & \multirow{2}{*}{SC770 is displayed.} \\
\hline & & & Shorted & \\
\hline \multirow{2}{*}{TD Sensor} & \multirow{2}{*}{327-1} & \multirow{2}{*}{BCU} & Open & \multirow{2}{*}{SC390 is displayed.} \\
\hline & & & Shorted & \\
\hline \multirow{2}{*}{Upper Relay Sensor} & \multirow{2}{*}{307-4} & \multirow{2}{*}{BCU} & Open & The Paper Jam indicator will light whenever a copy is made. \\
\hline & & & Shorted & The Paper Jam indicator lights even if there is no paper. \\
\hline
\end{tabular}
\(\downarrow\) Wote
- An SC condition occurs only when a new PCU is being installed in the machine. During copying, if the ID sensor fails, the image density will be changed.

\subsection*{6.6.2 SWITCHES}
\begin{tabular}{|c|c|c|c|c|}
\hline Component & CN & PCB & State & Symptom \\
\hline \multirow{2}{*}{\begin{tabular}{l}
Correct PCU \\
Detect Switch
\end{tabular}} & \multirow{2}{*}{327-8} & \multirow{2}{*}{BCU} & Open & The TD sensor initial setting procedure is not performed when a new PCU is installed. \\
\hline & & & Shorted & The TD sensor initial setting procedure is performed whenever the front cover is closed. \\
\hline \multirow{2}{*}{\begin{tabular}{l}
Front Door \\
Safety Switch
\end{tabular}} & \multirow{2}{*}{321-3} & \multirow{2}{*}{BCU} & Open & The Cover Open indicator is not lit even if the front cover is opened. \\
\hline & & & Shorted & The Cover Open indicator is lit even if the front cover is closed. \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Right Upper \\
Cover Switch
\end{tabular}} & \multirow[t]{2}{*}{321-8} & \multirow[t]{2}{*}{BCU} & Open & The Cover Open indicator is not lit even if the right upper cover is opened. \\
\hline & & & Shorted & The Cover Open indicator is lit even if the right upper cover is closed. \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Right Lower \\
Cover Switch
\end{tabular}} & \multirow[t]{2}{*}{321-1} & \multirow[t]{2}{*}{BCU} & Open & The Cover Open indicator is not lit even if the right lower cover is opened. \\
\hline & & & Shorted & The Cover Open indicator is lit even if the right lower cover is closed. \\
\hline
\end{tabular}

\subsection*{6.7 BLOWN FUSE CONDITIONS}

\section*{\(\triangle C A U T I O N\)}
- Use a correct rating fuse for the fuse replacement. Never use a wrong rating fuse. If do so, the machine may be damaged.
\begin{tabular}{|c|c|c|c|}
\hline \multirow{2}{*}{Fuse} & \multicolumn{2}{|r|}{Rating} & \multirow[t]{2}{*}{Symptom when turning on the main switch} \\
\hline & 115 V & 220 to 240 V & \\
\hline \multicolumn{4}{|l|}{PSU} \\
\hline FU1 & 15 A/250 V & 8 A/250V & No response. \\
\hline FU2 & \(8 \mathrm{~A} / 125 \mathrm{~V}\) & \(5 \mathrm{~A} / 250 \mathrm{~V}\) & No response \\
\hline FU3 & \(2 \mathrm{~A} / 125 \mathrm{~V}\) & 1 A/250V & Anti-condensation/Tray Heater does not turn on. \\
\hline FU4 & 6.3 A/125 V & 6.3 A/250V & Optional finisher, bridge unit, and shift tray does not work then SC792 is displayed. \\
\hline FU5 & 6.3 A/125 V & 6.3 /250 V & All motors do not rotate. The "Cover Open" and SC indicators light. \\
\hline FU6 & 6.3 A/125 V & 6.3 A/250V & The touch panel does not turn on, and all motors (except scanner motor) do not rotate. \\
\hline FU7 & \(5 \mathrm{~A} / 250 \mathrm{~V}\) & \(5 \mathrm{~A} / 250 \mathrm{~V}\) & No response \\
\hline FU8 & \(5 \mathrm{~A} / 250 \mathrm{~V}\) & \(5 \mathrm{~A} / 250 \mathrm{~V}\) & No response \\
\hline
\end{tabular}

\section*{ENERGY SAVING}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|c|}{ REVISION HISTORY } \\
\hline Page & Date & \multicolumn{1}{c|}{ Added/Updated/New } \\
\hline & & None \\
\hline
\end{tabular}

\section*{7. ENERGY SAVING}

\subsection*{7.1 ENERGY SAVE}

\subsection*{7.1.1 ENERGY SAVER MODES}

Customers should use energy saver modes properly, to save energy and protect the environment.


The area shaded grey in this diagram represents the amount of energy that is saved when the timers are at the default settings. If the timers are changed, then the energy saved will be different. For example, if the timers are all set to 240 min ., the grey area will disappear, and no energy is saved before 240 min . expires.

\section*{Energy Save}

\section*{Timer Settings}

The user can set these timers with User Tools (System settings > Timer setting)
- Panel off timer ( \(10 \mathrm{sec}-240 \mathrm{~min}\) ): Panel Off Mode, Default setting: 10 sec .
- Auto off timer ( \(1-240 \mathrm{~min}\) ): Off/Sleep Mode, Default settings: 1 min .

Normally, Panel Off timer < Auto Off timer. But, for example, if Auto Off timer < or = Panel Off timer, the machine goes immediately to Off mode when the Auto Off timer expires. It skips the Panel Off mode.

\section*{Example}
- Panel off: 1 min.
- Auto Off: 1 min.
- The machine goes to Off mode after 1 minute. Panel Off mode are not used.

\section*{Return to Stand-by Mode}

\section*{Off/Sleep Mode}

Recovery time.
- Max 6 sec.

\section*{Recommendation}

We recommend that the default settings should be kept.
- If the customer requests that these settings should be changed, please explain that their energy costs could increase, and that they should consider the effects on the environment of extra energy use.
- If it is necessary to change the settings, please try to make sure that the Auto Off timer is not too long. Try with a shorter setting first, such as 30 min ., then go to a longer one (such as 60 min .) if the customer is not satisfied.
- If the timers are all set to the maximum value, the machine will not begin saving energy until 240 minutes has expired after the last job. This means that after the customer has finished using the machine for the day, energy will be consumed that could otherwise be saved.
- If you change the settings, the energy consumed can be measured using SP8941, as explained below.

\section*{Energy Save}

\subsection*{7.1.2 ENERGY SAVE EFFECTIVENESS}

SP 8941 (Machine Status) keeps a record of the amount of time that the machine spends in each mode.
- 8941-001: Operating mode
- 8941-002: Standby mode
- 8941-003: Panel off mode
- 8941-004: Low power mode (not used in this machine)
- 8941-005: Off/sleep mode

With this data, and the power consumption values from the specifications, we can estimate the amount of energy that is used by the machine.

This should only be used as a reference value, because the power consumption specifications are measured in a controlled environment with a constant power supply.

To get an exact measurement at the customers site, a watt meter must be used to measure the actual energy consumed.

To use SP8941 to calculate the energy consumed:
- At the start of the measurement period, read the values of SP8941 001 to 005.
- At the end of the measurement period, read the values of SP8941 001 to 005 again.
- Find the amount of time spent in each mode (subtract the earlier measurement from the later measurement).
- Multiply this by the power consumption spec for each mode.
- Convert the result to kWh (kilowatt hours)

Here is an example calculation.

\section*{Energy Save}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Machine \\
Date
\end{tabular} & \begin{tabular}{l}
Power \\
Consumptio \\
\(n(W)\) : \\
Data: a
\end{tabular} & \begin{tabular}{l}
SP8941:Machin \\
e \\
Status
\end{tabular} & \begin{tabular}{l}
Start \\
Time: \\
(min.) \\
Data: b
\end{tabular} & \begin{tabular}{l}
End \\
Time: \\
(min.) \\
Data: c
\end{tabular} & Time Difference s (Data:b Data: c) (min.) Data: d & \begin{tabular}{l}
Power \\
Consumptio \\
n \\
(Data:ax \\
Data:d) \\
(Wmin.) \\
Data: e
\end{tabular} \\
\hline \begin{tabular}{l}
(1) \\
Operatin \\
g mode
\end{tabular} & 1081.8 & 001: Operating
Time & 21089.0 & 21386.0 & 297.0 & 321294.6 \\
\hline (2) Ready mode (stand by) & 214.0 & \begin{tabular}{l}
002: \\
Standby Time
\end{tabular} & 306163.
\[
0
\] & 308046. 0 & 1883.0 & 402962.0 \\
\hline \begin{tabular}{l}
(3) \\
Energy mode \\
(Panel off)
\end{tabular} & 214.0 & \begin{tabular}{l}
003: \\
Energy Save \\
Time
\end{tabular} & 71386.0 & 75111.0 & 3725.0 & 797150.0 \\
\hline Off/Sleep mode & 7.0 & \begin{tabular}{l}
005: \\
Off mode Time
\end{tabular} & 508776.
\[
0
\] & \[
\begin{array}{r}
520377 . \\
0
\end{array}
\] & 11601.0 & 81207.0 \\
\hline \multicolumn{5}{|l|}{Total Time of Data: d (min.)} & 17506.0 & \\
\hline \multicolumn{5}{|l|}{Total Time of Data: d/60min. (Hour)} & 291.76 & \\
\hline \multicolumn{6}{|l|}{Total Power Consumption of Data: e (Wmin.)} & 1602613.60 \\
\hline \multicolumn{6}{|l|}{Total Power Consumption of Data: e/60min./1000W (KWH)} & 26.71 \\
\hline
\end{tabular}

\subsection*{7.2 PAPER SAVE}

\subsection*{7.2.1 EFFECTIVENESS OF DUPLEXICOMBINE FUNCTION}

Duplexing and the combine functions reduce the amount of paper used. This means that less energy overall is used for paper production, which improves the environment.

\section*{1. Duplex:}

Reduce paper volume in half!

d062d102

\section*{2. Combine mode:}

Reduce paper volume in half!

d062d100

\section*{Paper Save}

\section*{3. Duplex + Combine:}

Using both features together can further reduce paper volume by \(3 / 4\) !


To check the paper consumption, look at the total counter and the duplex counter.
The total counter counts all pages printed.
- For one duplex page, the total counter goes up by 2.
- For a duplex job of a three-page original, the total counter goes up by 3.

The duplex counter counts pages that have images on both sides.
- For one duplex page, the duplex counter goes up by 1.
- For a duplex job of a three-page original, the duplex counter will only increase by 1 , even though two sheets are used.

\section*{D017 Series}
- Total counter: SP 8581-001
- Duplex counter: SP 8411-001
- Single-sided with combine mode: SP 8421-004
- Duplex with combine mode: SP 8421-005

The following table shows paper savings and how the counters increase for some simple examples of single-sided and duplex jobs

Duplex mode:
\begin{tabular}{|c|c|c|c|c|c|}
\hline Originals & \begin{tabular}{c} 
Simplex Sheet \\
used
\end{tabular} & \begin{tabular}{c} 
Duplex \\
Sheets used
\end{tabular} & \begin{tabular}{c} 
Paper \\
Saved
\end{tabular} & \begin{tabular}{c} 
Total counter \\
SP8501-001
\end{tabular} & \begin{tabular}{c} 
Duplex counter \\
SP8411-001
\end{tabular} \\
\hline 1 & 1 & 1 & 0 & 1 & 0 \\
\hline 2 & 2 & 1 & 1 & 2 & 1 \\
\hline 3 & 3 & 2 & 1 & 3 & 1 \\
\hline 4 & 4 & 2 & 2 & 4 & 2 \\
\hline 5 & 10 & 20 & 10 & 10 & 20 \\
\hline 20 & 2 & 5 & 10 & 10 \\
\hline
\end{tabular}

If combine mode is used, the total and duplex counters work in the same way as explained previously. The following table shows paper savings and how the counters increase for some simple examples of duplex/combine jobs.
2 in 1 mode:
\begin{tabular}{|c|c|c|c|c|c|}
\hline Originals & \begin{tabular}{c} 
Simplex Sheet \\
used
\end{tabular} & \begin{tabular}{c} 
Duplex \\
Sheets used
\end{tabular} & \begin{tabular}{c} 
Paper \\
Saved
\end{tabular} & \begin{tabular}{c} 
Total counter \\
SP8501-001
\end{tabular} & \begin{tabular}{c} 
Duplex counter \\
SP8421-004
\end{tabular} \\
\hline 1 & 1 & 1 & 0 & 1 & 1 \\
\hline 2 & 2 & 1 & 1 & 1 & 1 \\
\hline 3 & 3 & 2 & \(\mathbf{1}\) & 2 & 2 \\
\hline 4 & 4 & 2 & 2 & 2 & 2 \\
\hline 5 & 5 & 5 & 2 & 5 & 5 \\
\hline 20 & 20 & 10 & 10 & 10 & 10 \\
\hline
\end{tabular}

\section*{Paper Save}

Duplex + 2 in 1 mode:
\begin{tabular}{|c|c|c|c|c|c|}
\hline Originals & Simplex Sheet used & \begin{tabular}{l}
Duplex \\
Sheets used
\end{tabular} & \begin{tabular}{l}
Paper \\
Saved
\end{tabular} & Total counter SP8501-001 & Duplex counter SP8421-005 \\
\hline 1 & 1 & 1 & 0 & 1 & 1 \\
\hline 2 & 2 & 1 & 1 & 1 & 1 \\
\hline 3 & 3 & 1 & 2 & 2 & 2 \\
\hline 4 & 4 & 1 & 3 & 2 & 2 \\
\hline 5 & 5 & 2 & 3 & 3 & 3 \\
\hline 6 & 6 & 2 & 4 & 3 & 3 \\
\hline 7 & 7 & 2 & 5 & 4 & 4 \\
\hline 8 & 8 & 2 & 6 & 4 & 4 \\
\hline 9 & 9 & 3 & 6 & 5 & 5 \\
\hline 10 & 10 & 3 & 7 & 5 & 5 \\
\hline 11 & 11 & 3 & 8 & 6 & 6 \\
\hline 12 & 12 & 3 & 9 & 6 & 6 \\
\hline
\end{tabular}

\section*{D017/D018/D019/D020/D084/D085 SERVICE MANUAL APPENDICES}

\section*{D017/D018/D019/D020/D084/D085 APPENDICES}

\section*{TABLE OF CONTENTS}
1. APPENDIX: GENERAL SPECIFICATIONS ..... 1-1
1.1 SPECIFICATIONS ..... 1-1
1.1.1 MAIN MACHINE ..... 1-1
1.1.2 PRINTER CONTROLLER (GENERAL) ..... 1-5
1.1.3 SCANNER SPECIFICATIONS. ..... 1-6
1.1.4 SOFTWARE ACCESSORIES ..... 1-7
Printer ..... 1-7
Utility Software for D084/D085 ..... 1-9
Scanner ..... 1-9
1.1.5 OPTIONS ..... 1-10
ARDF (D366) ..... 1-10
Duplex Unit (D369) ..... 1-11
Bypass Feed Unit (D370) ..... 1-11
Interchange Unit (D371) ..... 1-12
1-Bin Tray (D367) ..... 1-12
Bridge Unit (D368) ..... 1-13
Shift Tray Unit (D385) ..... 1-13
Paper Feed Unit (D331) ..... 1-14
LCT (B391) ..... 1-15
500-Sheet Finisher (D372) ..... 1-16
1000-Sheet Finisher (B408) ..... 1-18
1000-Sheet Booklet Finisher (B793) ..... 1-20
1.1.6 INTERFACE OPTIONS ..... 1-22
USB Specifications ..... 1-22
IEEE 802.11a/g, g Specifications ..... 1-22
Bluetooth Specifications ..... 1-23
2. APPENDIX: PM TABLES ..... 2-1
2.1 PM TABLE ..... 2-1
2.1.1 MAIN ..... 2-1
2.1.2 OPTIONS ..... 2-4
ARDF (D366) ..... 2-4
Paper Feed Unit (D331) ..... 2-5
LCT (B391) ..... 2-5
SR790 (B408) ..... 2-6
Booklet Finisher SR3000 (B793) ..... 2-6
Finisher SR3050 (D372) ..... 2-7
1 Bin Tray BN3030 (D367) ..... 2-7
3. APPENDIX: SERVICE CALL CONDITIONS ..... 3-1
3.1 SERVICE CALL CONDITIONS ..... 3-1
3.1.1 SUMMARY ..... 3-1
3.1.2 SC CODE DESCRIPTIONS ..... 3-2
4. APPENDIX: SERVICE PROGRAM MODE TABLES ..... 4-1
4.1 SYSTEM SP TABLES-1 ..... 4-1
4.1.1 SP1XXX: FEED ..... 4-1
4.2 SYSTEM SP TABLES-2 ..... 4-10
4.2.1 SP2XXX: DRUM ..... 4-10
4.3 SYSTEM SP TABLES-3 ..... 4-32
4.3.1 SP3XXX ..... 4-32
4.4 SYSTEM SP TABLES-4 ..... 4-33
4.4.1 SP4XXX: SCANNER ..... 4-33
4.5 SYSTEM SP TABLES-5 ..... 4-68
4.5.1 SP5XXX: MODE ..... 4-68
4.6 SYSTEM SP TABLES-6 ..... 4-144
4.6.1 SP6XXX: PERIPHERALS ..... 4-144
4.7 SYSTEM SP TABLES-7 ..... 4-164
4.7.1 SP7XXX: DATA LOG ..... 4-164
4.8 SYSTEM SP TABLES-8 ..... 4-177
4.8.1 SP8XXX: DATA LOG 2 ..... 4-177
4.9 PRINTER SERVICE TABLES ..... 4-228
4.9.1 PRINTER SP TABLES ..... 4-228
4.10 SCANNER SERVICE TABLES ..... 4-236

\section*{APPENDIX:}

\section*{GENERAL SPECIFICATIONS}

APPENDIX 1 GENERAL SPECIFICATIONS REVISION HISTORY
\begin{tabular}{|l|l|l|}
\hline Page & Date & \\
\hline & & None \\
\hline
\end{tabular}

\section*{1. APPENDIX: GENERAL SPECIFICATIONS}

\subsection*{1.1 SPECIFICATIONS}

\subsection*{1.1.1 MAIN MACHINE}
\begin{tabular}{|l|l|}
\hline Configuration: & Desktop \\
\hline Copy Process: & Dry electrostatic transfer system \\
\hline Originals: & Sheet, Book \\
\hline Original Size: & Platen/ARDF: Max. A3/11" x 17" \\
\hline Copy Paper Size & \begin{tabular}{l} 
Tray 1: A5 to A3,/DLT, Custom \\
Tray 2: A6 SEF to A3, DLT, Postcard, Custom \\
Bypass: A6 SEF to A3/DLT, Postcard, Custom
\end{tabular} \\
\hline Custom Sizes (W x L) & \begin{tabular}{l} 
Tray 1: 140 to \(297 \mathrm{~mm} \times 180\) to 432 mm \\
Tray 2: 100 to \(297 \mathrm{~mm} \times 148\) to 432 mm \\
Bypass: 90 to \(305 \mathrm{~mm} \times 148\) to 1260 mm
\end{tabular} \\
\hline Duplexing & A5/HLT to A3/DLT \\
\hline Paper Weight & \begin{tabular}{l} 
Tray 1: 60 to \(105 \mathrm{~g} / \mathrm{m}^{2}\) \\
Tray 2: 52 to \(157 \mathrm{~g} / \mathrm{m}^{2}\) \\
Bypass: 52 to \(157 \mathrm{~g} / \mathrm{m}^{2}\)
\end{tabular} \\
\hline Duplex: 60 to \(105 \mathrm{~g} / \mathrm{m}^{2}\)
\end{tabular}

Specifications
\begin{tabular}{|c|c|c|}
\hline 1st Copy Print Time & \multicolumn{2}{|l|}{4.5 sec . (A4/LT LEF, Tray 1)} \\
\hline Warm-up Time & \multicolumn{2}{|l|}{\begin{tabular}{l}
Basic (D017/D018/D019/D020): Less than 14 sec \\
Basic (D084/D085): less than 23 sec . \\
Operation Key: Less than 10.4 sec . \\
LCD on: Less than 3 sec . \\
Standby: Less than 6 sec. \\
Scan Start: Less than 6 sec.
\end{tabular}} \\
\hline Continuous Copies & \multicolumn{2}{|l|}{001 to 999 Sheets} \\
\hline Zoom & \multicolumn{2}{|l|}{\begin{tabular}{l}
Platen Mode: 25\% to 400\% \\
ARDF Mode: 25\% to 400\%
\end{tabular}} \\
\hline Paper Supply & \multicolumn{2}{|l|}{\begin{tabular}{l}
Tray 1, 2: 500 Sheets \\
Bypass: 100 Sheets
\end{tabular}} \\
\hline Output Capacity & \multicolumn{2}{|l|}{\begin{tabular}{l}
A4, smaller: 500 Sheets face-down \\
B4, larger: 250 Sheets face-down
\end{tabular}} \\
\hline Power Source & \multicolumn{2}{|l|}{\begin{tabular}{l}
NA: 120 V 60 Hz \\
EU: 220 to \(240 \mathrm{~V} 50 / 60 \mathrm{~Hz}\) (Asia, China) \\
Taiwan: 110 V 60 Hz
\end{tabular}} \\
\hline \multirow{3}{*}{Power Consumption} & Full System (Operating) & Less than 1.4 KW \\
\hline & Off Mode & Less than 1.65 W \\
\hline & Sleep Mode & \begin{tabular}{l}
Less than 6 W (NA) \\
Less than 6.5 W (EU)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|}
\hline \multicolumn{2}{|l|}{ Dimensions (W \(\times\) D \(\times\) H) } \\
\hline Standard & No PTU & \begin{tabular}{l}
\(570 \times 653 \times 709 \mathrm{~mm}\) \\
\((22.4 \times 25.7 \times 30 \mathrm{in)}\).
\end{tabular} \\
\hline & With PTU & \begin{tabular}{l}
\(570 \times 653 \times 980 \mathrm{~mm}\) \\
\((22.4 \times 25.7 \times 38.6 \mathrm{in})\).
\end{tabular} \\
\hline Duplexer & With Duplexer (No PTU) & \begin{tabular}{l}
\(630 \times 653 \times 709 \mathrm{~mm}\) \\
\((24.8 \times 25.7 \times 30 \mathrm{in})\).
\end{tabular} \\
\hline & With Duplexer (With PTU) & \begin{tabular}{l}
\(630 \times 653 \times 980 \mathrm{~mm}\) \\
\((24.8 \times 25.7 \times 38.6 \mathrm{in})\).
\end{tabular} \\
\hline Maximum (W x D) & With Side Finisher, Bypass & \begin{tabular}{l}
\(1430 \times 653 \mathrm{~mm}\) \\
\((33.8 \times 25.7 \mathrm{in})\).
\end{tabular} \\
\hline Full System & All Options & \begin{tabular}{l}
\(1165 \times 653 \times 1100 \mathrm{~mm}\) \\
\((48.9 \times 25.7 \times 43.3 \mathrm{in})\).
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multirow{3}{*}{ Weight } & No Duplexer & Less than \(60 \mathrm{~kg}(132 \mathrm{lb})\) \\
\cline { 2 - 3 } & With Duplexer & Less than \(65 \mathrm{~kg}(143 \mathrm{lb})\) \\
\hline
\end{tabular}

Specifications
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|l|}{ Noise Emission (Sound Power Level): } \\
\hline Stand-by (Mainframe only): & 40 db (D017/D018/D84) \\
& 42.9 (D019/D020/D085) \\
\hline & 64.8 db (D017/D018) \\
Operating (Mainframe only): & 65.8 db (D084) \\
& 67.6 db (D019/D020/D085) \\
\hline
\end{tabular}
- The above measurements were made in accordance with ISO 7779.
- Full System: Mainframe + ADF + 1-bin Sorter + Paper Tray Unit + Duplex Unit + Bridge Unit + Finisher

\subsection*{1.1.2 PRINTER CONTROLLER (GENERAL)}
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Printing \\
Speed
\end{tabular} & \begin{tabular}{l} 
D017/D018: Maximum 25 ppm (A4/LT LEF) \\
D084: Maximum 28 ppm (A4/LT LEF) \\
D019/D020/D085: Maximum 33 ppm (A4/LT LEF)
\end{tabular} \\
\hline \begin{tabular}{l} 
Printer \\
Languages
\end{tabular} & \begin{tabular}{l} 
PCLXL/PCL5e \\
PostScript 3 \\
RPCS (Refined Printing Command Stream - an original Ricoh PDL) \\
(D017/D018/D19/D020 only) \\
IPDS
\end{tabular} \\
\hline Resolution & \begin{tabular}{l} 
RPCS 200/600 dpi (D017/D018/D19/D020 only) \\
PS3 300/600 dpi \\
PCL5e 300/600 dpi \\
PCLXL 300/600 dpi \\
IPDS 300/600 dpi
\end{tabular} \\
\hline Resident & \begin{tabular}{l} 
PCL: TrueType: 10, Intellifont: 35, International: 13, Bitmap: 1 \\
PS3: Option fonts PS3
\end{tabular} \\
\hline Fonts & \begin{tabular}{l} 
Std.: RJ-45 network port (100BASE-TX, 10BASE-T, USB 2.0) \\
Option: IEEE802.11a/g, g (Wireless LAN), Bluetooth, IEEE1284 \\
(Centronics Parallel), Gigabit Ethernet
\end{tabular} \\
\hline RAM & \begin{tabular}{l} 
TCP/IP, IPX/SPX, SMB (NetBIOS over TCP/IP), AppleTalk (Auto \\
Switching)
\end{tabular} \\
\hline Network \\
Protocols \\
\hline Maximum \\
MS model: 512 MB (Resident 256 MB + Additional 256 MB) \\
CS model: 768 MB (Resident 512 MB + Additional 256 MB) \\
printer units.
\end{tabular}

\subsection*{1.1.3 SCANNER SPECIFICATIONS}
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Standard Scanner \\
Resolution:
\end{tabular} & Main scan/Sub scan 600 dpi \\
\hline & \begin{tabular}{l} 
MS: \\
52 ipm (D017/D019)/ 50 ipm (D084), \\
E-mai//Scan-to-Folder/Network Delivery Scanner (A4 LEF, Text \\
200 dpi, MH Compression) \\
CS: \\
25 (D018)/ 29 (D084)/ 32 (D020/D085) ipm, \\
Scanning Speed \\
200 dpi, MH Compression)
\end{tabular} \\
\hline Available scanning & \begin{tabular}{l}
100 to 1200 dpi (when used as a Network TWAIN scanner) \\
Resolution Range: 200, 300, 400, 600 dpi (when used as a network delivery \\
scanner, Scan-to-Folder, Scan-to-Email, or Document Server \\
storage)
\end{tabular} \\
\hline Grayscales: & 8 bits/pixel \\
\hline Interface: & Ethernet 10/100BASE TX, Wireless LAN 802.11a/g, g
\end{tabular}

\subsection*{1.1.4 SOFTWARE ACCESSORIES}

\section*{Printer}

The printer drivers and utility software are provided on one CD-ROM. An auto-run installer allows you to select which components to install.
Printer Drivers
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{\begin{tabular}{c} 
Printer \\
Language
\end{tabular}} & \begin{tabular}{c} 
Windows \\
\(95 / 98 / M e\)
\end{tabular} & \begin{tabular}{c} 
Windows \\
NT4.0
\end{tabular} & \begin{tabular}{c} 
Windows 2000, XP, Server \\
2003/Vista
\end{tabular} & Macintosh \\
\hline PCL 6 & Yes & Yes & Yes & No \\
\hline PCL 5e & Yes & Yes & Yes & No \\
\hline PS3 & Yes & Yes & Yes & Yes \\
\hline RPCS & Yes & Yes & Yes & No \\
\hline
\end{tabular}
- The printer drivers for Windows NT 4.0 are only for the Intel x86 platform. There is no Windows NT 4.0 printer driver for the PowerPC, Alpha, or MIPS platforms.
- The PS3 drivers are all genuine AdobePS drivers, except for Windows 2000/XP/Server 2003/Vista, which uses Microsoft PS. A PPD file for each operating system is provided with the driver.

Specifications

\section*{Utility Software}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Software } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
Agfa Monotype Font Manager 2000 \\
(Win 95/98/Me, NT4, 2000)
\end{tabular} & \begin{tabular}{l} 
A font management utility with screen fonts for \\
the printer.
\end{tabular} \\
\hline \begin{tabular}{l} 
Smart Device Monitor for Admin (Win \\
95/98/Me, NT4, 2000/XP/Server \\
2003/Vista)
\end{tabular} & \begin{tabular}{l} 
A printer management utility for network \\
administrators. NIB setup utilities are also \\
available.
\end{tabular} \\
\hline \begin{tabular}{l} 
DeskTopBinder - SmartDeviceMonitor \\
for Client (Win 95/98/Me, NT4, \\
2000/XP/Server 2003/Vista)
\end{tabular} & \begin{tabular}{l} 
A printer management utility for client users. \\
Peer-to-peer printing utility and \\
parallel/recovery printing functions are \\
included.
\end{tabular} \\
\hline \begin{tabular}{l} 
LAN-Fax M7 Driver (Win 95/98/Me, \\
NT4, 2000/XP)
\end{tabular} & \begin{tabular}{l} 
This driver allows use of the LAN-Fax \\
functions by installing the LAN-Fax driver, \\
Address Book, and LAN-Fax Cover Sheet \\
Editor.
\end{tabular} \\
\hline PS Utility for Mac & This software provides several convenient \\
\hline functions for printing from Macintosh clients.
\end{tabular}

\section*{Utility Software for D084/D085}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Software } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
Agfa Monotype Font Manager \\
2000 (Win 95/98/Me, NT4, \\
2000)
\end{tabular} & A font management utility with screen fonts for the printer. \\
\hline \begin{tabular}{l} 
LAN-Fax M8 Driver (Win \\
95/98/Me, NT4, 2000/XP)
\end{tabular} & \begin{tabular}{l} 
This driver allows use of the LAN-Fax functions by \\
installing the LAN-Fax driver, Address Book, and \\
LAN-Fax Cover Sheet Editor.
\end{tabular} \\
\hline PS Utility for Mac & \begin{tabular}{l} 
This software provides several convenient functions for \\
printing from Macintosh clients.
\end{tabular} \\
\hline Acrobat Reader & A utility that allows reading PDF files. \\
\hline
\end{tabular}

\section*{Scanner}

The scanner driver and utility software are provided on one CD-ROM.

\section*{Scanner Driver}
- Network Twain Driver for Win95/98/Me/NT4/2000/XP/Server 2003/Vista

\section*{Scanner Utilities}
- DeskTopBinder Lite for 2000/XP/Server 2003

\subsection*{1.1.5 OPTIONS}

\section*{ARDF (D366)}
\begin{tabular}{|c|c|c|c|}
\hline \multirow{4}{*}{Paper Size/Weight:} & \multirow{2}{*}{Simplex} & Size & A3 to A5, DLT to HLT \\
\hline & & Weight & 40 to \(128 \mathrm{~g} / \mathrm{m}^{2}\) (10 to 34 lb ) \\
\hline & \multirow{2}{*}{Duplex} & Size & A3 to A5, DLT to HLT \\
\hline & & Weight & 52 to \(105 \mathrm{~g} / \mathrm{m}^{2}\) (14 to 28 lb ) \\
\hline Table Capacity: & \multicolumn{3}{|l|}{50 sheets ( \(80 \mathrm{~g} / \mathrm{m}^{2}, 20 \mathrm{lb}\) )} \\
\hline Original Standard Position: & \multicolumn{3}{|l|}{Rear left corner} \\
\hline Separation: & \multicolumn{3}{|l|}{Feed belt and separation roller} \\
\hline Original Transport: & \multicolumn{3}{|l|}{Roller transport} \\
\hline Original Feed Order: & \multicolumn{3}{|l|}{From the top original} \\
\hline \multirow{3}{*}{\begin{tabular}{l}
Supported Magnification \\
Ratios:
\end{tabular}} & Copy & - & 32 to \(200 \%\) \\
\hline & \multirow{2}{*}{Fax} & Color & 32.6 to \(200 \%\) \\
\hline & & Black \& white & - 48.9 to \(200 \%\) \\
\hline Power Source: & \multicolumn{3}{|l|}{DC \(24 \mathrm{~V}, 5 \mathrm{~V}\) from the scanner unit} \\
\hline Power Consumption: & \multicolumn{3}{|l|}{50 W or less} \\
\hline Dimensions ( \(\mathrm{W} \times \mathrm{D} \times \mathrm{H}\) ) & \multicolumn{3}{|l|}{\(550 \mathrm{~mm} \times 491 \mathrm{~mm} \times 120 \mathrm{~mm}\) (21.7" \(\times 19.3\) " 4.7 ")} \\
\hline Weight: & \multicolumn{3}{|l|}{10 kg (22 lb)} \\
\hline
\end{tabular}

\section*{Duplex Unit (D369)}
\begin{tabular}{|l|l|}
\hline & \begin{tabular}{l} 
Standard sizes: \\
A5 LEF to A3, HLT to DLT \\
Non-standard sizes: \\
Width: 140 to 297 mm, Length: 182 to 432 mm
\end{tabular} \\
\hline Paper Weight: & \(64 \mathrm{~g} / \mathrm{m}^{2}\) to \(105 \mathrm{~g} / \mathrm{m}^{2}(20 \mathrm{lb}\) to 28 lb\()\) \\
\hline Tray Capacity: & 1 sheet \\
\hline Power Consumption: & 40 W \\
\hline Power Source: & DC \(24 \mathrm{~V}, 5 \mathrm{~V}\) \\
\hline Weight: & 7 kg \\
\hline Size (W x D x H): & \(160 \times 490 \times 570 \mathrm{~mm}\) \\
\hline
\end{tabular}

\section*{Bypass Feed Unit (D370)}
\begin{tabular}{|l|l|}
\hline & \begin{tabular}{l} 
Standard sizes: \\
Paper Size: \\
\end{tabular} \\
\hline Non-standard sizes: \\
Width: 90 to 305 mm, Length: 148 to 432 mm
\end{tabular}, \begin{tabular}{l}
\(52 \mathrm{~g} / \mathrm{m}^{2}\) to \(157 \mathrm{~g} / \mathrm{m}^{2}(16 \mathrm{lb}\) to 42 lb\()\) \\
\hline Paper Weight: \\
\hline Tray Capacity: \\
\hline Paper Feed System: \\
\hline Friction Pad Paper Feed \\
\hline Weight: \\
\hline DC \(24 \mathrm{~V}, 5 \mathrm{~V}\) \\
\hline Size (W x D x H): \\
\hline
\end{tabular}

Specifications

\section*{Interchange Unit (D371)}
\begin{tabular}{|l|l|}
\hline & \begin{tabular}{l} 
Standard sizes: \\
P6 LEF to A3, HLT to DLT \\
Non-standard sizes: \\
Width: 100 to 305 mm , Length: 148 to 432 mm
\end{tabular} \\
\hline Paper Weight: & \(52 \mathrm{~g} / \mathrm{m}^{2}\) to \(135 \mathrm{~g} / \mathrm{m}^{2}(16 \mathrm{lb}\) to 36 lb\()\) \\
\hline Power Consumption: & 15 W \\
\hline Weight: & 1.6 kg \\
\hline Size \((\mathrm{W} \times \mathrm{D} \times \mathrm{H}):\) & \(117 \times 447 \times 92 \mathrm{~mm}\left(4.6^{\prime \prime} \times 17.6^{\prime \prime} \times 3.6^{\prime \prime}\right)\) \\
\hline
\end{tabular}

\section*{1-Bin Tray (D367)}
\begin{tabular}{|l|l|}
\hline Paper Size: & A5 LEF to A3, HLT to DLT \\
\hline Paper Weight: & \(60 \mathrm{~g} / \mathrm{m}^{2}\) to \(105 \mathrm{~g} / \mathrm{m}^{2}(16 \mathrm{lb}\) to 28 lb\()\) \\
\hline Tray Capacity: & 125 sheets \(\left(80 \mathrm{~g} / \mathrm{m}^{2}, 20 \mathrm{lb}\right)\) \\
\hline Power Source: & DC \(5 \mathrm{~V}, 24 \mathrm{~V}\) (from copier) \\
\hline Power Consumption: & 15 W \\
\hline Weight: & 4 kg \\
\hline Size \((\mathrm{W} \times \mathrm{D} \times \mathrm{H}):\) & \(470 \mathrm{~mm} \times 550 \mathrm{~mm} \times 110 \mathrm{~mm}\) \\
\hline
\end{tabular}

\section*{Bridge Unit (D368)}
\begin{tabular}{|l|l|}
\hline & \begin{tabular}{l} 
Standard sizes: \\
Pa LEF to A3, HLT to DLT \\
Non-standard sizes: \\
Width: 100 to 305 mm , Length: 148 to 432 mm
\end{tabular} \\
\hline Paper Weight: & \(52 \mathrm{~g} / \mathrm{m}^{2}\) to \(135 \mathrm{~g} / \mathrm{m}^{2}(16 \mathrm{lb}\) to 42 lb\()\) \\
\hline Power Source: & DC \(24 \mathrm{~V}, 5 \mathrm{~V}\) (form copier) \\
\hline Dimensions \((\mathrm{W} \times \mathrm{D} \times \mathrm{H}):\) & \(413 \times 435 \times 126 \mathrm{~mm}\) \\
\hline Weight & \(3.0 \mathrm{~kg}(6.6 \mathrm{lbs})\) \\
\hline
\end{tabular}

\section*{Shift Tray Unit (D385)}
\begin{tabular}{|c|c|}
\hline Paper Size: & \begin{tabular}{l}
Standard Size: \\
A5 LEF to A3, HLT LEF to DLT \\
Non-standard Size: \\
Width: 90 to 297 mm, Length: 148 to 432 mm
\end{tabular} \\
\hline Paper Weight: & 60 to \(105 \mathrm{~g} / \mathrm{m}^{2}\) (16 to 28 lbs .) \\
\hline Tray Capacity: & \begin{tabular}{l}
125 sheets ( \(80 \mathrm{~g} / \mathrm{m}^{2}, 20 \mathrm{lbs}\).): B4 or larger \\
250 sheets ( \(80 \mathrm{~g} / \mathrm{m}^{2}, 20 \mathrm{lbs}\).): A4 or smaller
\end{tabular} \\
\hline Power Source: & DC \(5 \mathrm{~V}, 24 \mathrm{~V}\) (from copier) \\
\hline Power Consumption: & 17 W \\
\hline Weight: & 1.1 kg \\
\hline Size ( \(W \times \mathrm{D} \times \mathrm{H}\) ) & \(530 \mathrm{~mm} \times 410 \mathrm{~mm} \times 120 \mathrm{~mm}\) \\
\hline
\end{tabular}

Specifications

\section*{Paper Feed Unit (D331)}
\begin{tabular}{|c|c|c|}
\hline Paper Size: & \multicolumn{2}{|l|}{A5 to A3, \(5^{1} / 2^{\prime \prime} \times 8^{1} / 2^{\prime \prime}\) SEF to \(11^{\prime \prime} \times 17^{\prime \prime}\)} \\
\hline Paper Weight: & \multicolumn{2}{|l|}{\(60-105 \mathrm{~g} / \mathrm{m}^{2}, 16-28 \mathrm{lb}\)} \\
\hline Tray Capacity: & \multicolumn{2}{|l|}{500 sheets ( \(\left.80 \mathrm{~g} / \mathrm{m}^{2}, 20 \mathrm{lb}\right) \times 2\) trays} \\
\hline Paper Feed System: & \multicolumn{2}{|l|}{Feed roller and friction pad} \\
\hline Paper Height Detection: & \multicolumn{2}{|l|}{4 steps ( \(100 \%, 70 \%, 30 \%\), Near end)} \\
\hline Power Source: & \multicolumn{2}{|l|}{\begin{tabular}{l}
- 24 Vdc and 5 Vdc (from the copier/printer): \\
- \(120 \mathrm{Vac}(120 \mathrm{~V}\) version) from the copier/printer when the optional tray heater is installed \\
- \(220-240 \mathrm{Vac}(230 \mathrm{~V}\) version) from the copier/printer when the optional tray heater is installed
\end{tabular}} \\
\hline \multirow{2}{*}{Power Consumption:} & Max: & 28 W (Copying/printing) 23 W (Optional Tray Heater On) \\
\hline & Average: & 17 W (Copying/printing) 15 W (Optional Tray Heater On) \\
\hline Weight: & \multicolumn{2}{|l|}{25 kg ( 55 lb )} \\
\hline Size ( \(\mathrm{W} \times \mathrm{D} \times \mathrm{H}\) ) & \multicolumn{2}{|l|}{\(550 \mathrm{~mm} \times 520 \mathrm{~mm} \times 271 \mathrm{~mm}\)} \\
\hline
\end{tabular}

\section*{LCT (B391)}
\begin{tabular}{|c|c|}
\hline Paper Size: & A4 LEF/LT LEF \\
\hline Paper Weight: & \(60 \mathrm{~g} / \mathrm{m}^{2}\) to \(105 \mathrm{~g} / \mathrm{m}^{2}, 16 \mathrm{lb}\) to 28lb \\
\hline Tray Capacity: & 2,000 sheets ( \(\left.80 \mathrm{~g} / \mathrm{m}^{2}, 20 \mathrm{lb}.\right)\) \\
\hline Remaining Paper Detection: & 5 steps ( \(100 \%, 70 \%, 30 \%, 10 \%\), Empty): Right Tray 4 steps (100\%, 70\%, 30\%, Empty): Left Tray \\
\hline Power Source: & DC \(24 \mathrm{~V}, 5 \mathrm{~V}\) (from copier/printer) \\
\hline Power Consumption: & 50 W (Max.)/30 W (Ave.) \\
\hline Weight: & \(25 \mathrm{~kg}(55 \mathrm{lb})\) \\
\hline Size (W x D x H): & \(580 \mathrm{~mm} \times 620 \mathrm{~mm} \times 260 \mathrm{~mm}\) (22.8" \(\times 24.4{ }^{\text {" }}\) x 10.2") \\
\hline
\end{tabular}

Specifications

\section*{500-Sheet Finisher (D372)}
\begin{tabular}{|l|l|}
\hline Target Line Speed & \(77 \mathrm{~mm} / \mathrm{sec}\). to \(205 \mathrm{~mm} / \mathrm{sec}\) \\
\hline Target CPM & 35 cpm \\
\hline Face-down Output Size & \begin{tabular}{l}
\(12^{\prime \prime} \times 18^{\prime \prime}\), A3 SEF to A6 SEF, DLT to HLT SEF \\
Shift sizes: A3 SEF to B5 SEF \\
A5, B6, A6 SEF labels possible
\end{tabular} \\
\hline Paper Thickness & \begin{tabular}{l}
\(52 \mathrm{~g} / \mathrm{m}^{2}(45 \mathrm{~K})\) to \(157 \mathrm{~g} / \mathrm{m}^{2}(135 \mathrm{~K})\) \\
Up to \(253 \mathrm{~g} / \mathrm{m}^{2}(220 \mathrm{~K})\) without shift
\end{tabular} \\
\hline Stapling & \begin{tabular}{l}
50 sheets: A4, LT and smaller \\
30 sheets: B4, LG and larger
\end{tabular} \\
\hline Stack Height for Stapling \\
\hline Size & A3 SEF to B5 SEF (can be mixed if same width) \\
\hline Stack Thickness & \(64 \mathrm{~g} / \mathrm{m}^{2}\) (45 K) to 157 g/m (135 K) \\
\hline Stapling Positions & \begin{tabular}{l} 
Front/Oblique: 1, Front/Parallel: 1 \\
Rear/Oblique: 1, Rear/Parallel: 1, 2 locations
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Output Tray Capacity} \\
\hline Non-staple Mode & \multicolumn{3}{|l|}{500 sheets: A4, LT and smaller} \\
\hline Staple Mode & 250 sheets: B4, LG and larger Stack Size (Stapling) & Stacks & Size \\
\hline & 2 to 9 Sheets & 55 to 46 & \multirow{2}{*}{A4, B5, LT LEF} \\
\hline & 10 to 50 Sheets & 45 to 10 & \\
\hline & 2 to 9 Sheets & 55 to 27 & \multirow{2}{*}{A4, B5, LT SEF} \\
\hline & 10 to 50 Sheets & 25 to 8 & \\
\hline & 2 to 9 Sheets & 55 to 27 & \multirow{2}{*}{A3, B4, DLT, LG} \\
\hline & 10 to 30 Sheets & 25 to 8 & \\
\hline \multicolumn{4}{|l|}{} \\
\hline Stacking & Non-Stapling Mode & \multicolumn{2}{|l|}{Vertical: 15 mm or less} \\
\hline & & \multicolumn{2}{|l|}{Horizontal: 15 mm or less} \\
\hline \multicolumn{4}{|l|}{Jogging Precision} \\
\hline 2 to 30 Sheets & \multicolumn{3}{|l|}{2 mm} \\
\hline 31 to 50 Sheets & \multicolumn{3}{|l|}{3 mm} \\
\hline Dimensions ( \(\mathrm{w} \times \mathrm{dx}\) ) & \multicolumn{3}{|l|}{\(396 \times 551 \times 276 \mathrm{~mm}(15.6 \times 21.7 \times 10.9 \mathrm{in}\).} \\
\hline Weight & \multicolumn{3}{|l|}{\(12 \mathrm{~kg}(26.4 \mathrm{lb})\)} \\
\hline
\end{tabular}

Specifications

\section*{1000-Sheet Finisher (B408)}

Upper Tray
\begin{tabular}{|l|l|}
\hline Paper Size: & \begin{tabular}{l} 
A3 to A6 \\
\(11^{\prime \prime} \times 17^{\prime \prime}\) to \(5.5^{\prime \prime} \times 8.5^{\prime \prime}\)
\end{tabular} \\
\hline Paper Weight: & 60 to \(157 \mathrm{~g} / \mathrm{m}^{2}(16\) to 42 lb\()\) \\
\hline Paper Capacity: & \begin{tabular}{l}
250 sheets (A4 LEF/8.5" \(\times 11^{\prime \prime}\) SEF or smaller) \\
50 sheets (A4, \(8.5^{\prime \prime} \times 11^{\prime \prime}\) or smaller) \\
30 sheets (B4, \(8.5^{\prime \prime} \times 14^{\prime \prime}\) or larger)
\end{tabular} \\
\hline
\end{tabular}

\section*{Lower Tray}
\begin{tabular}{|c|c|c|c|c|}
\hline Paper Size: & \multicolumn{4}{|l|}{No staple mode: A3 to B5, DLT to HLT Staple mode: A3, B4, A4, B5, DLT to LT} \\
\hline Paper Weight: & \multicolumn{4}{|l|}{No staple mode: 60 to \(157 \mathrm{~g} / \mathrm{m}^{2}\) (16 to 42 lb ) Staple mode: 64 to \(90 \mathrm{~g} / \mathrm{m}^{2}\) ( 17 to 24 lb )} \\
\hline Stapler Capacity: & \multicolumn{4}{|l|}{\begin{tabular}{l}
30 sheets (A3, B4, DLT, LG) \\
50 sheets (A4, B5 LEF, LT)
\end{tabular}} \\
\hline \multirow{6}{*}{Paper Capacity:} & \multicolumn{4}{|l|}{\begin{tabular}{l}
No staple mode: \\
1,000 sheets (A4/LT or smaller: \(80 \mathrm{~g} / \mathrm{m}^{2}, 20 \mathrm{lb}\) ) \\
500 sheets (A3, B4, DLT, LG: \(80 \mathrm{~g} / \mathrm{m}^{2}, 20 \mathrm{lb}\) ) \\
Staple mode: ( \(80 \mathrm{~g} / \mathrm{m}^{2}, 20 \mathrm{lb}\), number of sets)
\end{tabular}} \\
\hline & Set Size & & 10 to 50 & - \\
\hline & Size & & 10 to 30 & 31 to 50 \\
\hline & \begin{tabular}{l}
A4/LT LEF \\
B5 LEF
\end{tabular} & 100 & 100 to 20 & 100 to 20 \\
\hline & A4/LT SEF & 100 & 50 to 10 & 50 to 10 \\
\hline & A3, B4, DLT, LG & 50 & 50 to 10 & - \\
\hline Staple positions: & \multicolumn{4}{|l|}{\begin{tabular}{l}
1 Staple: 2 positions (Front, Rear) \\
2 Staples: 2 positions (Upper, Left)
\end{tabular}} \\
\hline Staple Replenishment: & \multicolumn{4}{|l|}{Cartridge (5,000 staples/cartridge)} \\
\hline Power Source: & \multicolumn{4}{|l|}{DC \(24 \mathrm{~V}, 5 \mathrm{~V}\) (from the copier/printer)} \\
\hline Power Consumption: & \multicolumn{4}{|l|}{50 W} \\
\hline Weight: & \multicolumn{4}{|l|}{25 kg ( 55.2 lbs )} \\
\hline Dimensions ( \(\mathrm{W} \times \mathrm{D} \times \mathrm{H}\) ): & \multicolumn{4}{|l|}{\(527 \times 520 \times 790 \mathrm{~mm}\left(20.8{ }^{\prime \prime} \times 20.5^{\prime \prime} \times 31.1^{\prime \prime}\right)\)} \\
\hline
\end{tabular}

Specifications
1000-Sheet Booklet Finisher (B793)
\begin{tabular}{|c|c|}
\hline Print Paper Size: & \begin{tabular}{l}
No punch mode: \\
A3/11" x \(17^{\prime \prime}\) to A5/8.5" x 5.5" (LEF) \\
Punch mode: \\
2 holes: A3/11" x 17" to B6/5.5" x 8.5" (SEF) or A4/8.5" x \\
11" to A5/8.5" x 5.5" (LEF) \\
3 holes: \\
A3, B4, 11" \(\times 17^{\prime \prime}\) (SEF) or A4, B5, \(8.5^{\prime \prime} \times 11^{\prime \prime}\) (LEF) \\
4 holes (Europe): \\
A3, B4, 11" \(\times 17^{\prime \prime}\) (SEF) or A4, B5, \(8.5^{\prime \prime} \times 11^{\prime \prime}\) (LEF) \\
4 holes (North Europe): \\
A3/11" x 17 " to B6/5.5" x \(8.5^{\prime \prime}\) (SEF) \\
Staple mode: \\
A3/11" \(\times 17^{\prime \prime}\) to \(B 5 / 8.5^{\prime \prime} \times 11^{\prime \prime}\)
\end{tabular} \\
\hline Paper Weight: & \begin{tabular}{l}
No punch mode: \\
52 to \(256 \mathrm{~g} / \mathrm{m}^{2}\) (14 to 68 lb\()\) (Shift tray) \\
52 to \(105 \mathrm{~g} / \mathrm{m}^{2}\) (14 to 28 lb ) (Proof tray) \\
Punch mode: \\
52 to \(163 \mathrm{~g} / \mathrm{m}^{2}\) (14 to 43 lb ) \\
Staple mode: \\
64 to \(90 \mathrm{~g} / \mathrm{m}^{2}\) ( 17 to 24 lb ) \\
Label/Thick paper/OHP cannot be stapled
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Tray Capacity: & \multicolumn{2}{|l|}{\begin{tabular}{l}
[Proof tray] \\
100 sheets: A4, \(8.5^{\prime \prime} \times 11^{\prime \prime}\) or less \\
50 sheets: B4, 8.5" x \(14^{\prime \prime}\) or more \\
[Shift tray] \\
1000 sheets: A4, 8.5" x 11" (LEF) or smaller \\
500 sheets: B4, \(8.5^{\prime \prime} \times 14\) " or larger
\end{tabular}} \\
\hline Staple capacity: & \multicolumn{2}{|l|}{\begin{tabular}{l}
Single size: \\
50 sheets: A4, \(8.5^{\prime \prime} \times 11^{\prime \prime}\) or smaller \\
30 sheets: B4, 8.5" x 14" or larger
\end{tabular}} \\
\hline Staple position: & \multicolumn{2}{|l|}{\begin{tabular}{l}
3 positions \\
1-staple: 2 positions (Top Left, Top Right) \\
2-staples: 1 positions
\end{tabular}} \\
\hline Staple replenishment: & \multicolumn{2}{|l|}{Cartridge (5000 staples)} \\
\hline Power consumption: & \multicolumn{2}{|l|}{60 W} \\
\hline Dimensions ( \(\mathrm{W} \times \mathrm{D} \times \mathrm{H}\) ): & \multicolumn{2}{|l|}{\(535 \mathrm{~mm} \times 600 \mathrm{~mm} \times 930 \mathrm{~mm}\) (21.1" \(\left.\times 23.6^{\prime \prime} \times 36.6^{\prime \prime}\right)\)} \\
\hline \multirow{2}{*}{Weight} & Without punch unit: & 48 kg (105.8 lb) \\
\hline & With punch unit: & \(50 \mathrm{Kg}(110.3 \mathrm{lb})\) \\
\hline
\end{tabular}

\subsection*{1.1.6 INTERFACE OPTIONS}

\section*{USB Specifications}

USB connectivity is built into the controller.
\begin{tabular}{|l|l|}
\hline Interface & USB 2.0 \\
\hline Data rates & \begin{tabular}{l}
480 Mbps (high speed), 12 Mbps (full speed), 1.5 Mbps (low speed) \\
High speed mode is only supported by USB 2.0.
\end{tabular} \\
\hline
\end{tabular}

\section*{IEEE 802.11a/g, g Specifications}
\begin{tabular}{|l|l|l|}
\hline Standard applied & \multicolumn{2}{|l|}{ IEEE802.11a/g, g } \\
\hline \multirow{4}{*}{\begin{tabular}{l} 
Data transmission \\
rates
\end{tabular}} & Speed & Distance \\
\cline { 2 - 3 } & 11 Mbps & \(140 \mathrm{~m}(153 \mathrm{yd})\). \\
\cline { 2 - 3 } & 5.5 Mbps & \(200 \mathrm{~m}(219 \mathrm{yd})\). \\
\cline { 2 - 3 } & 2 Mbps & \(270 \mathrm{~m}(295 \mathrm{yd})\). \\
\cline { 2 - 3 } & 1 Mbps & \(400 \mathrm{~m}(437 \mathrm{yd})\). \\
\hline Network protocols & TCP/IP, Apple Talk, NetBEUI, IPX/SPX, SMB \\
\hline Bandwidth & \begin{tabular}{l}
2.4 GHz (divided over 14 channels, 2400 to 2497 MHz for each \\
channel)
\end{tabular} \\
\hline
\end{tabular}

\section*{Bluetooth Specifications}
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Transmission \\
Specifications
\end{tabular} & Based on Bluetooth V1.1 \\
\hline Data Transfer Speed & 1 Mbps \\
\hline Profile & \begin{tabular}{l} 
Hard Copy Cable Replacement Profile (HCRP), Serial Port Profile \\
(SPP), BIP
\end{tabular} \\
\hline \begin{tabular}{l} 
Distance Between \\
Devices
\end{tabular} & \begin{tabular}{l}
10 m (The maximum distance when using outdoors, otherwise \\
depends on the office environment.)
\end{tabular} \\
\hline
\end{tabular}

\section*{APPENDIX: PM TABLES}

APPENDIX 2 PM TABLES REVISION HISTORY
\begin{tabular}{|l|l|l|}
\hline Page & Date & \multicolumn{1}{c|}{ Added/Updated/New } \\
\hline & & None \\
\hline
\end{tabular}

\section*{2. APPENDIX: PM TABLES}

\subsection*{2.1 PM TABLE}

」 Note
- The amounts mentioned as the PM interval indicate the number of prints.
- After carrying out PM, clear the maintenance counter (SP7-804).

\subsection*{2.1.1 MAIN}

Symbol key: C: Clean, R: Replace, L: Lubricate, I: Inspect
\begin{tabular}{|l|c|c|c|c|l|}
\hline & EM & \(\mathbf{1 2 0 K}\) & \(\mathbf{2 4 0 K}\) & \(\mathbf{3 6 0 K}\) & \multicolumn{4}{|l|}{ NOTE } \\
\hline \multicolumn{6}{|l|}{} \\
\hline Scanner/Laser Optics \\
\hline Reflector & & C & C & C & Optics cloth \\
\hline 1st Mirror & C & C & C & C & Optics cloth \\
\hline 2nd Mirror & C & C & C & C & Optics cloth \\
\hline 3rd Mirror & C & C & C & C & Optics cloth \\
\hline Scanner Guide Rails & & C & C & C & Do not use alcohol. \\
\hline Platen Sheet Cover & C & I & I & I & \begin{tabular}{l} 
nepessary. \\
Dry cloth or alcohol
\end{tabular} \\
\hline Exposure Glass & & C & C & C & Dry cloth or alcohol \\
\hline Toner Shield Glass & & C & C & C & Optics cloth \\
\hline APS Sensor & & C & C & C & Dry cloth or blower brush \\
\hline
\end{tabular}

\section*{PM Table}
\begin{tabular}{|l|c|c|c|c|c|}
\hline & EM & 120K & 240K & 360K & NOTE \\
\hline \multicolumn{1}{|l|}{\begin{tabular}{|l|c|c|c|l|} 
\\
\hline Around the Drum \\
\hline \begin{tabular}{l} 
Transfer/Separation \\
Unit
\end{tabular} & & R & R & R
\end{tabular}} \\
\hline ID Sensor & C & C & C & \begin{tabular}{l} 
Perform the ID sensor initial \\
setting (SP2-935) after \\
leaning (blower brush)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & EM & 60K & 120K & 180K & NOTE \\
\hline \multicolumn{6}{|l|}{PCU} \\
\hline Drum & & R & R & R & \multirow{6}{*}{Do SP2801. This initializes the developer and resets the TD and ID sensor outputs to their defaults. It also resets the PCU counter.} \\
\hline Charge Roller & & R & R & R & \\
\hline Cleaning Roller & & R & R & R & \\
\hline Cleaning Blade & & R & R & R & \\
\hline Pick-off Pawls & & R & R & R & \\
\hline Developer & & R & R & R & \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|l|}
\hline & EM & \(\mathbf{1 2 0 K}\) & \(\mathbf{2 4 0 K}\) & \(\mathbf{3 6 0 K}\) & \multicolumn{4}{|c|}{ NOTE } \\
\hline Paper Feed \\
\hline Registration Rollers & C & C & C & C & Clean with water \\
\hline Paper Feed Roller & C & R & R & R & Clean with water \\
\hline Friction Pad & C & R & R & R & Dry cloth \\
\hline Paper Feed Guides & C & C & C & C & Clean with alcohol. \\
\hline Relay Rollers & C & C & C & C & Clean with water. \\
\hline
\end{tabular}

PM Table
\begin{tabular}{|l|c|c|c|c|l|}
\hline & EM & \(\mathbf{1 2 0 K}\) & \(\mathbf{2 4 0 K}\) & \(\mathbf{3 6 0 K}\) & \multicolumn{1}{|c|}{ NOTE } \\
\hline Bottom Plate Pad & C & C & C & C & Clean with water. \\
\hline \begin{tabular}{l} 
Registration Roller \\
Mylar
\end{tabular} & C & C & C & C & Clean with water. \\
\hline Dust collection box & C & C & C & C & Remove, empty, clean \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & EM & 120K & 240K & 360K & NOTE \\
\hline \multicolumn{6}{|l|}{Fusing Unit and Paper Exit} \\
\hline Fusing Entrance and Exit Guide Plates & & C & C & C & Clean with water or alcohol. \\
\hline Hot Roller & & R & R & R & \multirow{5}{*}{Clean with water or alcohol.} \\
\hline Pressure Roller & & R & R & R & \\
\hline Fusing Thermistors & & R & R & R & \\
\hline Cleaning Roller & & C & C & C & \\
\hline \begin{tabular}{l}
Cleaning Roller \\
Bushings
\end{tabular} & & C & C & C & \\
\hline Hot Roller Strippers & & R & R & R & \\
\hline Hot Roller and Pressure Roller Bushings & L & L & L & L & \[
\begin{aligned}
& \text { Grease Barrierta JFE5 5/2 } \\
& \text { (A0289300) }
\end{aligned}
\] \\
\hline Paper Exit Guide Ribs & & C & C & C & Clean with water or alcohol. \\
\hline \multicolumn{6}{|l|}{Others} \\
\hline Main Motor Drive Gear & L & 1 & 1 & 1 & Silicone Grease G501 (see 'Main Motor Drive Gear') \\
\hline
\end{tabular}

PM Table

\subsection*{2.1.2 OPTIONS}

Symbol key: C: Clean, R: Replace, L: Lubricate, I: Inspect

\section*{ARDF (D366)}
\begin{tabular}{|l|c|c|c|c|l|}
\hline & EM & \(\mathbf{1 2 0 K}\) & \(\mathbf{2 4 0 K}\) & \(\mathbf{3 6 0 K}\) & \multicolumn{1}{|c|}{ NOTE } \\
\hline \multicolumn{6}{|l|}{ ARDF (PM interval is measured in originals.) } \\
\hline Pick-up Roller & C & R & R & R & Clean with water \\
\hline Feed Belt & C & R & R & R & Clean with water \\
\hline Separation Roller & C & R & R & R & Clean with water \\
\hline Stamp & & I & I & I & Replace if necessary \\
\hline ADF Exposure Glass & C & C & C & C & Clean with alcohol \\
\hline White Plate & C & C & C & C & Clean with alcohol \\
\hline Platen Sheet & C & C & C & C & Clean with alcohol \\
\hline
\end{tabular}

\section*{Paper Feed Unit (D331)}
\begin{tabular}{|l|c|c|c|c|l|}
\hline & EM & 120K & 240K & 360K & \multicolumn{4}{|c|}{ NOTE } \\
\hline Paper Feed Unit \\
\hline Paper Feed Roller & C & R & R & R & Clean with water \\
\hline Friction Pad & C & R & R & R & Dry cloth \\
\hline Paper Feed Guides & C & C & C & C & Clean with alcohol. \\
\hline Relay Rollers & C & C & C & C & Clean with water. \\
\hline Bottom Plate Pad & C & C & C & C & Clean with water. \\
\hline Relay Clutch & & I & I & I & Replace if necessary \\
\hline Paper Feed Clutch & & I & I & I & Replace if necessary \\
\hline
\end{tabular}

\section*{LCT (B391)}
\begin{tabular}{|l|c|c|c|c|l|}
\hline & EM & 120K & 240K & 360K & NOTE \\
\hline LCT \\
\hline Paper Feed Roller & & \(R\) & \(R\) & \(R\) & \\
\hline Pick-up Roller & & \(R\) & \(R\) & \(R\) & \\
\hline Separation Roller & & \(R\) & \(R\) & \(R\) & \\
\hline Transport Rollers & & C & C & C & Clean with water \\
\hline Bottom Plate Pad & & C & C & C & Clean with water \\
\hline Relay Clutch & & I & I & I & Replace if necessary \\
\hline Paper Feed Clutch & & I & I & I & Replace if necessary \\
\hline
\end{tabular}

\section*{PM Table}

\section*{SR790 (B408)}
\begin{tabular}{|l|c|c|c|c|l|}
\hline & EM & 120K & 240K & 360K & \multicolumn{1}{|c|}{ NOTE } \\
\hline 1,000-sheet Finisher \\
\hline Rollers & C & & & & Clean with water or alcohol. \\
\hline Brush Roller & I & I & I & I & Replace if necessary. \\
\hline Discharge Brush & C & C & C & C & Clean with a dry cloth \\
\hline Sensors & C & & & & Blower brush \\
\hline Jogger Fences & I & I & I & I & Replace if necessary. \\
\hline
\end{tabular}

\section*{Booklet Finisher SR3000 (B793)}
\begin{tabular}{|l|c|l|l|l|l|}
\hline & EM & 120K & 240K & 360K & \multicolumn{1}{|l|}{ NOTE } \\
\hline 1,000-sheet Booklet Finisher \\
\hline Rollers & C & & & & Damp cloth \\
\hline Discharge Brush & C & & & & Dry cloth \\
\hline Sensors & C & & & & Blower brush \\
\hline Punch Kit \\
\hline Punch Chads & C & & & & Discard chads. \\
\hline
\end{tabular}

Finisher SR3050 (D372)
\begin{tabular}{|l|c|l|l|l|l|}
\hline & EM & 120 K & 240 K & 360 K & \multicolumn{1}{|l|}{ NOTE } \\
\hline 500 -sheet Finisher \\
\hline Rollers & C & & & & Damp cloth \\
\hline Discharge Brush & C & & & & Dry cloth \\
\hline Sensors & C & & & & Blower brush \\
\hline
\end{tabular}

\section*{1 Bin Tray BN3030 (D367)}
\begin{tabular}{|l|l|l|l|l|l|}
\hline & EM & 150 K & 300 K & 450 K & \multicolumn{1}{|l|}{ NOTE } \\
\hline 1-bin tray unit & C & & & & Dry or damp cloth \\
\hline Rollers & C & & & & Dry or damp cloth \\
\hline Copy Tray & C & & & & Blower brush \\
\hline Sensors & & & & \\
\hline
\end{tabular}

\section*{APPENDIX:}

\section*{SERVICE CALL CONDITIONS}

APPENDIX 3 SERVICE CALL CONDITIONS REVISION HISTORY
\begin{tabular}{|l|l|l|}
\hline Page & Date & \\
\hline & & None \\
\hline
\end{tabular}

\section*{3. APPENDIX: SERVICE CALL CONDITIONS}

\subsection*{3.1 SERVICE CALL CONDITIONS}

\subsection*{3.1.1 SUMMARY}

There are 4 levels of service call conditions.
\begin{tabular}{|c|l|l|}
\hline Level & \multicolumn{1}{|c|}{ Definition } & \multicolumn{1}{c|}{ Reset Procedure } \\
\hline A & \begin{tabular}{l} 
To prevent damage to the machine, the main \\
machine cannot be operated until the SC has \\
been reset by a service representative (see \\
the note below).
\end{tabular} & \begin{tabular}{l} 
Enter SP mode, go into \\
SP5810, press [Execute], turn \\
the main power switch off and \\
on.
\end{tabular} \\
\hline B & \begin{tabular}{l} 
SCs that disable only the features that use the \\
defective item. Although these SCs are not \\
shown to the user under normal conditions, \\
they are displayed on the operation panel only \\
when the defective feature is selected.
\end{tabular} & \begin{tabular}{l} 
Turn the operation switch or \\
main switch off and on.
\end{tabular} \\
\hline C & \begin{tabular}{l} 
The SC history is updated. The machine can \\
be operated as usual.
\end{tabular} & \begin{tabular}{l} 
The SC will not be displayed. \\
Only the SC history is \\
updated.
\end{tabular} \\
\hline D & \begin{tabular}{l} 
Turning the main switch off then on resets SCs \\
displayed on the operation panel. These are \\
re-displayed if the error occurs again.
\end{tabular} & \begin{tabular}{l} 
Turn the operation switch off \\
and on.
\end{tabular} \\
\hline
\end{tabular}

\section*{When a Level "D" SC code occurs}

When a Level D SC occurs, a screen opens on the operation panel to tell the operator:
- An error occurred
- The job in progress will be erased
- The machine will reboot automatically after approximately 30 seconds.

The operator can wait until the machine reboots automatically or touch "Reset" on the screen to reset the machine immediately and go back to the copy screen.

If the operator does not touch "Reset"

\section*{Service Call Conditions}

The next message tells the operator that the machine will reset automatically and that the previous job was lost and must be started again. After reading the message, the operator touches "Confirm" on the screen. The next screen shows the number and title of the SC code, and stops until the operator turns the machine off and on.

\section*{If the operator touches "Reset"}

If the operator touches "Reset" to bypass the 30-second interval for the machine to reboot, the machine reboots immediately and the operation panel displays the copy screen.

\section*{+ Imporiznt}
- Do not try to use the operation panel during an automatic reboot. If the Remote Service System is in use, the SC code is sent immediately to the Service Center

\subsection*{3.1.2 SC CODE DESCRIPTIONS}

\section*{3 Important}
- If a problem concerns a circuit board, disconnect and reconnect the connectors and then test the machine. Often a loose or disconnected harness is the cause of the problem. Always do this before you decide to replace the PCB.
- If a motor lock error occurs, check the mechanical load before you decide to replace the motor or sensors.
- When a Level "A" or "B" SC occurs while in an SP mode, the machine cannot display the SC number. If this occurs, check the SC number after leaving the SP mode.
- The machine reboots automatically when the machine issues a Level "D" SC code. This is done for Level "D" SC codes only.

\section*{©CAUTION}
- Never turn off the main power switch when the power LED is lit or flashing. To avoid damaging the hard disk or memory, press the operation switch to switch the power off, wait for the power LED to go off, and then switch the main power switch off.
- The main power LED (米(1)) lights or flashes while the platen cover or ARDF is open, while the main machine is communicating with a fax machine or the network server, or while the machine is accessing the hard disk or memory for reading or writing data.
\begin{tabular}{|l|l|l|}
\hline \multirow{3}{*}{ 101-1 } & D & \begin{tabular}{l} 
Exposure lamp error 1
\end{tabular} \\
& & \begin{tabular}{ll} 
The standard white level could not be set properly when scanning the white \\
plate during automatic white level adjustment.
\end{tabular} \\
\hline & & \begin{tabular}{ll} 
- & Spite plate dirty \\
- & Exposure lamp connection loose, broken, defective
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{101-2} & \multirow[b]{2}{*}{D} & Exposure lamp error 1 \\
\hline & & The standard white level setting dropped below the specified range during scanning. \\
\hline & & \begin{tabular}{l}
- White plate dirty \\
- Spurious electrical noise on power supply line \\
- Exposure lamp connection loose, broken, defective \\
- Exposure lamp defective \\
- Lamp stabilizer connection, loose, broken, defective \\
- Lamp stabilizer defective \\
- High voltage power supply harness loose, broken, defective \\
- SBU defective \\
- BCU defective \\
- SIO defective
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{120} & \multirow[b]{2}{*}{D} & Scanner home position error 1 \\
\hline & & The scanner HP sensor did not turn off during scanner initialization or copying. \\
\hline \multirow[b]{2}{*}{121} & \multirow[b]{2}{*}{D} & Scanner home position error 1 \\
\hline & & The scanner HP sensor did not turn on during scanner initialization or copying. \\
\hline & & \begin{tabular}{l}
- Scanner motor harness loose, broken, defective at scanner motor or at BCU \\
- Scanner HP sensor harness, loose, broken, defective at HP sensor or at BCU \\
- Scanner motor or motor driver board defective \\
- Scanner motor drive board defective \\
- Scanner HP sensor defective \\
- BCU defective
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & & Black level correction error & Harnesses at the SBU, IPU, \\
\hline 141 & D & Black level correction could not be set properly during automatic adjustment. & \begin{tabular}{l}
- SBU defective \\
- IPU defective \\
- BCU defective
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{142} & \multirow[b]{2}{*}{D} & White level correction error \\
\hline & & White level correction could not be set properly during automatic adjustment. \\
\hline & & \begin{tabular}{l}
- Harnesses at SBU, IPU, BCU loose, broken, defective \\
- Spurious electrical noise on power supply line \\
- White plate dirty or missing \\
- Anti-condensation heater (option) in scanner unit not operating \\
- Exposure lamp harness, loose, broken, defective \\
- Exposure lamp defective \\
- Lamp stabilizer harness loose, broken, defective \\
- Lamp stabilizer defective \\
- SBU defective \\
- IPU defective \\
- BCU defective \\
- SIO Defective
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{143} & \multirow[b]{2}{*}{C} & SBU auto adjust error \\
\hline & & The machine could not acquire the white or black peak level setting at power on. \\
\hline & & \begin{tabular}{l}
- Exposure lamp, lamp stabilizer harness connection loose, broken, defective \\
- Exposure lamp defective \\
- Lamp stabilizer defective \\
- Spurious electrical noise on power supply line \\
- White plate dirty or missing \\
- Anti-condensation heater (option) in scanner unit not operating \\
- Harness connection at SBU, iPU, BCU, SIO, loose, broken, defective \\
- SBU defective \\
- IPU defective \\
- BCU defective \\
- SIO Defective
\end{tabular} \\
\hline
\end{tabular}

Service Call Conditions
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{144-1} & \multirow[b]{2}{*}{D} & SBU connection error \\
\hline & & Connection to the SBU could not be confirmed, possibly due to a defect in the BCU detection board \\
\hline \multirow{2}{*}{144-2} & \multirow{2}{*}{D} & SBU serial communication error \\
\hline & & Poor SBU power supply caused by SIO, or BCU detection board defective. \\
\hline \multirow{2}{*}{144-3} & \multirow{2}{*}{D} & SBU GASBU reset error \\
\hline & & SBU defective, BCU detection circuit defective. \\
\hline \multirow{2}{*}{144-4} & \multirow{2}{*}{D} & SBU version error \\
\hline & & SBU defective, BCU detection circuit defective. \\
\hline & & \begin{tabular}{l}
- Harness connection at IPU, BCU, SBU loose, broken, defective. \\
- Spurious electrical noise on power supply line \\
- IPU defective \\
- BCU defective \\
- SBU defective
\end{tabular} \\
\hline \multirow[b]{3}{*}{145} & \multirow[b]{3}{*}{C} & Scanner adjustment error \\
\hline & & During the SBU adjustment, the machine detects that the white level read from the white plate or paper is out of range. (SP4605) \\
\hline & & \begin{tabular}{l}
- Exposure lamp defective \\
- Dirty white plate \\
- Incorrect position or width of white plate scanning (SP4605) \\
- BICU board defective \\
- SBU board defective
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & & IPU Error & \\
\hline 161 & D & The self-diagnostic test detected an error at the IPU at power on, or after the machine returned from energy save mode. & \begin{tabular}{l}
IPU loose or broken \\
- IPU defective \\
- SBU defective
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline 165 & B & Copy Data Security Unit error & \begin{tabular}{l} 
An error occurred when the machine \\
attempted to recognize the Copy Data \\
Security Unit board.
\end{tabular} \\
\begin{tabular}{l} 
-
\end{tabular} & \begin{tabular}{l} 
Check installation of Copy \\
Data Security (CDS) Unit \\
CDS unit not correct type for \\
the machine \\
CDS unit defective
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{202} & \multirow[b]{2}{*}{D} & Polygon motor error 1: ON timeout \\
\hline & & The polygon mirror motor did not reach the targeted operating speed within 10 sec . after turning on or changing speed \\
\hline \multirow[b]{2}{*}{203} & \multirow[b]{2}{*}{D} & Polygon motor error 1: OFF timeout \\
\hline & & The polygon mirror motor did not leave READY status within 3 sec . after polygon motor switched off. \\
\hline \multirow{2}{*}{204} & \multirow{2}{*}{D} & Polygon motor error 1: XSCRDY signal error \\
\hline & & The XSCRDY signal remained HIGH for 200 ms while the LD unit was firing. \\
\hline & & \begin{tabular}{l}
- Polygon motor/driver board harness loose or broken \\
- Polygon motor/driver board defective \\
- Laser optic unit defective \\
- IPU defective
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 220 & D & \multicolumn{2}{|l|}{Laser synchronization detection error: LDO} \\
\hline & & The laser synchronizing detection signal for the start position of the LD was not output for two sec. after LDB unit turned on with the polygon motor rotating normally. & \begin{tabular}{l}
- Laser synchronizing detection board harness loose or broken. \\
- Laser synchronization detection board defective \\
- LDB unit defective \\
- IPU defective
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline 230 & D & FGATE ON error & \\
\hline & & \begin{tabular}{l} 
The FGATE signal did not assert within the \\
prescribed time. (The BCU generates the \\
FGATE signal and sends it to the LD unit \\
when the registration sensor switches on.)
\end{tabular} &.\(\quad\)\begin{tabular}{l} 
- BCU, Controller board \\
harness loose or broken
\end{tabular} \\
\hline 231 & D & FGATE OFF error & \begin{tabular}{l} 
BCU defective
\end{tabular} \\
\hline The FGATE signal did not go off within the \\
prescribed time. (The BCU generates the \\
FGATE signal and sends it to the LD unit \\
when the registration sensor switches on.)
\end{tabular}\(\quad\)\begin{tabular}{l} 
Controller board defective \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 240 & \multicolumn{2}{|l|}{LD error} \\
\hline & The IPU detected a problem at the LD unit. & \begin{tabular}{l}
- LD unit harness broken, defective \\
- BCU harness broken defective \\
- LD unit defective \\
- BCU defective
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline & \multicolumn{3}{|l|}{\begin{tabular}{l} 
Charge level output error \\
\cline { 2 - 3 }
\end{tabular}} \\
\hline
\end{tabular} D \begin{tabular}{l} 
The PWM output level was detected \\
higher than 50\% after 10 consecutive \\
samplings.
\end{tabular} \begin{tabular}{l} 
HVPS (High Voltage Power \\
\begin{tabular}{l} 
Supply) board harness loose, \\
broken. \\
PCU connection loose or \\
broken
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{350} & & ID sensor calibration - Error 1 \\
\hline & B & One of the following conditions occurred when the ID sensor pattern was calibrated during printing:
\[
\begin{aligned}
& \mathrm{Vsp}>2.5 \mathrm{~V} \\
& \mathrm{Vsg}<2.5 \mathrm{~V} \\
& \mathrm{Vsp}=0 \mathrm{~V} \\
& \mathrm{Vsg}=0 \mathrm{~V}
\end{aligned}
\] \\
\hline & & \begin{tabular}{l}
- ID sensor defective or dirty \\
- ID sensor harness disconnected or connector is damaged \\
- BCU defective \\
- Scanning system or image creation system malfunction \\
- High voltage power supply board (power pack) defective
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{351} & \multirow[b]{2}{*}{B} & ID sensor calibration - Error 2 \\
\hline & & The following conditions occurred simultaneously when the ID sensor pattern was calibrated during printing:
\[
\begin{aligned}
& \text { Vsg }=5 \mathrm{~V} \\
& \text { PWM }=0 \text { (LED current drop) }
\end{aligned}
\] \\
\hline & & \begin{tabular}{l}
- ID sensor dirty or defective \\
- ID sensor harness disconnected, or connector damaged \\
- BCU board defective \\
High voltage power supply board (power pack) defective
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|ll|}
\hline 353 & B & \multicolumn{2}{|l|}{\begin{tabular}{l} 
ID sensor LED current error \\
\hline
\end{tabular}} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 354 & B & \multicolumn{2}{|l|}{ID sensor adjustment timeout error} \\
\hline & & Error occurred during automatic adjustment of Vsg. Vsg could not be adjusted to \(4.0 \mathrm{~V} \pm 0.2 \mathrm{~V}\) within the prescribed time. & \begin{tabular}{l}
- ID sensor dirty or defective \\
- ID sensor harness disconnected, or connector damaged \\
- BCU defective \\
- High voltage power supply board (power pack) defective
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{355} & \multirow[b]{2}{*}{C} & ID sensor error & \\
\hline & & For more details about the cause of the problem, please refer to SC350 to 354 above. & \begin{tabular}{l}
- ID sensor dirty or defective \\
- ID sensor harness disconnected, or connector damaged \\
- BCU defective \\
- High voltage power supply board (power pack) defective
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline 389 & C & TD sensor error 1 \\
\hline & & \begin{tabular}{l} 
TD sensor output was less than 0.5V, or more than 0.5 V 10 times in \\
succession. If the fax unit is installed, this SC is issued immediately. If the \\
fax unit is not installed, this SC is issued after the prescribed number of \\
copies has printed.
\end{tabular} \\
\hline 390 & D & \begin{tabular}{l} 
TD sensor error 2 \\
consecutively during copying. \\
Note: If the fax option is installed, this SC is issued immediately. \\
If the fax option is not installed, this SC is issued after the prescribed \\
number of pages is copied.
\end{tabular} \\
\hline & \begin{tabular}{l} 
- TD sensor abnormal \\
- Poor connection of the PCU
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline 391 & B & Development bias leak \\
\hline & & \begin{tabular}{l} 
A development bias leak \\
signal is detected.
\end{tabular} & \begin{tabular}{l} 
Poor connection at the PCU bias \\
terminal \\
High voltage supply board defective
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|ll|}
\hline 392 & B & \multicolumn{2}{|l|}{ TD sensor initial setting error } \\
\hline & & \begin{tabular}{l} 
Initialization of the new PCU \\
unit failed (the drum and \\
development roller did not \\
start rotating).
\end{tabular} & \begin{tabular}{ll} 
- & The PCU toner seal was not removed \\
• & TD sensor harness loose, broken \\
ID sensor defective
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline 398 & B & PCU error (South Korea only) \\
\hline & & Illegal PCU unit. & Install the correct type of PCU. \\
\hline
\end{tabular}

Service Call Conditions
\begin{tabular}{|l|l|l|l|}
\hline 399 & B & Illegal toner bottle (South Korea only) \\
\hline & & \begin{tabular}{l} 
The installed toner bottle installed is not \\
intended for use with this machine.
\end{tabular} & \begin{tabular}{l} 
Install the correct type of toner \\
bottle.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline 401 & B & Transfer roller leak error 1 \\
\hline & & \begin{tabular}{l} 
A transfer roller current leak signal wad \\
detected. (The current feedback signal \\
for the transfer roller was not detected \\
within the correct time.)
\end{tabular} & \begin{tabular}{l} 
High voltage supply board set \\
incorrectly or defective
\end{tabular} \\
- \begin{tabular}{l} 
Transfer roller set incorrectly \\
or damaged
\end{tabular} \\
- \begin{tabular}{l} 
Transfer unit set incorrectly
\end{tabular} \\
\hline
\end{tabular}
\(\left.\begin{array}{|l|l|l|l|}\hline \text { 402 } & \text { B } & \text { Transfer roller leak error 2 } \\ \hline & & \begin{array}{l}\text { A transfer roller current leak signal is } \\ \text { detected. The current feedback signal } \\ \text { for the transfer roller is not detected } \\ \text { within the correct time. }\end{array} & \begin{array}{l}\text { Transfer roller set incorrectly } \\ \text { or damaged }\end{array} \\ \text { High voltage supply board set } \\ \text { incorrectly or defective }\end{array}\right]\).
\begin{tabular}{|l|l|l|l|}
\hline 411 & B & Separation bias leak error \\
\hline & & \begin{tabular}{l} 
A separation bias leak signal was \\
detected.
\end{tabular} & \begin{tabular}{l} 
High voltage supply board \\
defective \\
Discharge plate defective
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline 490 & B & Toner supply motor leak error \\
\hline & \begin{tabular}{l} 
More than 1 ampere supplied to the \\
toner supply motor for longer than 200 \\
ms.
\end{tabular} & . Toner supply motor defective \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline 500 & B & Main motor lock \\
\hline & & \begin{tabular}{l} 
Ine machine detected motor lock \\
(motor is not operating correctly)
\end{tabular} & \begin{tabular}{l} 
An obstruction has blocked \\
operation of the main motor \\
Main motor harness loose or \\
broken
\end{tabular} \\
\hline Main motor or main motor \\
driver board defective
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 501 & B & 1st paper tray lift motor malfunction \\
\hline 502 & B & 2nd paper tray lift motor malfunction \\
\hline 503 & B & 3rd paper tray lift motor malfunction (optional Paper Tray Unit) \\
\hline \multirow[b]{2}{*}{504} & \multirow[b]{2}{*}{B} & 4th paper tray lift motor malfunction (optional Paper Tray Unit) \\
\hline & & The paper lift sensor did not activate within 18 sec . after the tray lift motor switched on. \\
\hline & & \begin{tabular}{l}
- An obstruction (jammed paper, paper scraps, etc.) has blocked the motor drive and caused an overload. \\
- Paper lift sensor connection loose, disconnected, or damaged \\
- Paper lift sensor defective \\
- Tray lift motor connection loose, disconnected, or damaged \\
- Tray lift motor defective
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline 506 & B & Paper tray motor lock (optional Paper Tray Unit) \\
\hline & & \begin{tabular}{ll} 
A motor lock signal is not \\
detected for more than 1.5 \\
s or the lock signal is not \\
detected for more than 1.0 \\
s during rotation.
\end{tabular} & \begin{tabular}{l} 
An obstruction (jammed paper, paper \\
scraps, etc.) has blocked the motor drive \\
and caused an overload.
\end{tabular} \\
& \begin{tabular}{l} 
Paper tray motor connection loose, \\
disconnected, or damaged \\
Paper tray motor defective
\end{tabular} \\
\hline
\end{tabular}

Service Call Conditions
\begin{tabular}{|l|l|l|}
\hline 508 & B & \begin{tabular}{l} 
LCT rear fence drive error \\
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{509} & \multirow[b]{2}{*}{B} & LCT side fence drive error \\
\hline & & The side fence positioning sensor is not activated for more 3 seconds when the paper stack in the left tray is moved to the right tray. The side fence close sensor is not activated for more 3 seconds after moving the paper stack to the right tray. \\
\hline & & \begin{tabular}{l}
- An obstruction (jammed paper, paper scraps, etc.) has jammed the rear fence or motor \\
- Side fence motor disconnected or defective \\
- Side fence position sensor disconnected or defective \\
Side fence close sensor disconnected or defective
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{510} & \multirow[b]{2}{*}{B} & LCT lower limit error \\
\hline & & The lower limit sensor does not activate within 8 seconds after the tray has been lowered. \\
\hline & & \begin{tabular}{l}
- An obstruction (jammed paper, paper scraps, etc.) has jammed the tray lift motor \\
- Tray lift motor defective \\
- Poor connection of the tray lift motor \\
- Lower limit sensor disconnected or defective \\
Obstruction that causes overload on the drive mechanism.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|ll|}
\hline 541 & A & \multicolumn{2}{|l|}{ Fusing thermistor open (center) } \\
\hline & & \begin{tabular}{l} 
The temperature of the \\
hot roller remained below \\
\(0^{\circ} \mathrm{C}\) for 5 sec at the center \\
of the hot roller.
\end{tabular} & \begin{tabular}{l}
.
\end{tabular} & \begin{tabular}{l} 
Fusing thermistor out of its position \\
because of incorrect installation
\end{tabular} \\
V & \begin{tabular}{l} 
Fusing thermistor disconnected or defective \\
Power supply not within rated range \((15 \%\) \\
or more below rating)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline 542 & A & \multicolumn{1}{|l|}{ Fusing temperature warm-up error (center) } \\
\hline \multirow{4}{*}{} & & \begin{tabular}{l} 
The fusing temperature did not reach \\
the standby temperature within 20 sec. \\
at the center of the hot roller after the \\
main switch turned on.
\end{tabular} & \begin{tabular}{l} 
Fusing thermistor defective or \\
out of position
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|ll|}
\hline 543 & A & Fusing overheat error 1 (center) \\
\hline & & \begin{tabular}{l} 
The fusing thermistor detected a fusing \\
temperature over \(230^{\circ} \mathrm{C}\) for 5 sec. at \\
the center of the hot roller.
\end{tabular} & \begin{tabular}{l} 
TRIAC short on PSU (PSU \\
defective)
\end{tabular} \\
& & \begin{tabular}{l} 
BCU board defective \\
Fusing thermistor defective
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline 544 & A & Fusing overheat error 2 (center) \\
\hline & & \begin{tabular}{l} 
A fusing temperature over \(250^{\circ} \mathrm{C}\) is \\
detected at the center of the hot roller \\
by the fusing temperature monitor \\
circuit in the BCU board. \\
The power was interrupted for more \\
than 0.3 sec.
\end{tabular} & \begin{tabular}{l} 
TRIAC short on PSU (PSU \\
defective)
\end{tabular} \\
( & \begin{tabular}{l} 
BCU board defective \\
Fusing thermistor defective \\
Power supply voltage unstable
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline 545 & A & Fusing overheat error 3 (center) \\
\hline & & \begin{tabular}{l} 
After warmup, the center of the hot \\
roller attained full operating \\
temperature and maintained this \\
temperature for 10 sec. without the hot \\
roller rotating.
\end{tabular} & \begin{tabular}{l} 
Center hot roller thermistor \\
installed incorrectly, \\
disconnected. \\
Center hot roller thermistor \\
defective
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 547 & B & \multicolumn{2}{|l|}{Zero cross signal detection error} \\
\hline & & Zero cross signals were not detected within the prescribed time. & \begin{tabular}{l}
- PSU, BCU harness loose or broken \\
- PSU defective \\
- BCU defective
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline 551 & A & \multicolumn{2}{|l|}{ Fusing thermistor open (end) } \\
\hline & & \begin{tabular}{l} 
The temperature of the \\
hot roller remained below \\
\(0^{\circ} \mathrm{C}\) for 5 sec. at the end \\
of the hot roller.
\end{tabular} & \begin{tabular}{l} 
Fusing thermistor out of its position \\
because of incorrect installation
\end{tabular} \\
- & \begin{tabular}{l} 
Fusing thermistor disconnected or defective \\
Power supply not within rated range \((15 \%\) \\
or more below rating)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline 552 & A & \multicolumn{1}{|l|}{ Fusing temperature warm-up error (end) } \\
\hline & & \begin{tabular}{l} 
The fusing temperature did not reach \\
the standby temperature within 20 sec. \\
at the center of the hot roller after the \\
main switch turned on.
\end{tabular} & \begin{tabular}{l} 
-
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline 553 & A & Fusing overheat error 1 (end) \\
\hline & & \begin{tabular}{l} 
The fusing thermistor detected a fusing \\
temperature over \(230^{\circ} \mathrm{C}\) for 5 sec. at \\
the center of the hot roller.
\end{tabular} & \begin{tabular}{l} 
TRIAC short on PSU (PSU \\
defective)
\end{tabular} \\
& - \begin{tabular}{l} 
BCU board defective \\
- Fusing thermistor defective
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline 554 & A & Fusing overheat error 2 (end) \\
\hline & & \begin{tabular}{l} 
A fusing temperature over \(250^{\circ} \mathrm{C}\) is \\
detected at the center of the hot roller \\
by the fusing temperature monitor \\
circuit in the BCU board. \\
The power was interrupted for more \\
than 0.3 sec.
\end{tabular} & \begin{tabular}{l} 
TRIAC short on PSU (PSU \\
defective)
\end{tabular} \\
\hline BCU board defective & \begin{tabular}{l} 
Fusing thermistor defective \\
Power supply voltage unstable
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline 555 & A & Fusing overheat error 3 (end) \\
\hline & & \begin{tabular}{l} 
After warmup, the center of the hot \\
roller attained full operating \\
temperature and maintained this \\
temperature for 10 sec. without the hot \\
roller rotating.
\end{tabular} & \begin{tabular}{l} 
Center hot roller thermistor \\
installed incorrectly, \\
disconnected. \\
Center hot roller thermistor \\
defective
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline 557 & B & Zero cross waveform signal error \\
\hline & \begin{tabular}{l} 
The waveform of the zero cross signal \\
was detected out of range.
\end{tabular} & \begin{tabular}{l} 
Electrical noise on the power \\
supply line
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline 559 & A & \multicolumn{2}{|l|}{\begin{tabular}{l} 
Consecutive fusing unit paper jams \\
\hline
\end{tabular}} \\
\hline \begin{tabular}{l} 
Three consecutive paper jams \\
occurred in the fusing unit. \\
The paper jam counter for the fusing \\
unit reaches 3 times. The paper jam \\
counter clears after the paper feeds \\
correctly. \\
Note: This SC is issued only if SP1159 \\
is set to "1".
\end{tabular} & \begin{tabular}{l} 
- \begin{tabular}{l} 
Remove the paper jam in the \\
fusing unit. \\
Make sure that the paper path \\
in the fusing unit is clear.
\end{tabular} \\
\hline
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline 590 & B & Exhaust fan motor error \\
\hline & & \multicolumn{3}{|l|}{\(\begin{array}{l}\text { The CPU detects an exhaust fan lock } \\
\text { signal for more than } 3.5 \text { seconds. }\end{array}\)} & \(\begin{array}{l}\text { Poor connection of the } \\
\text { exhaust fan motor }\end{array}\) \\
(too much load on the motor \\
drive
\end{tabular}\(]\)
\begin{tabular}{|c|c|c|c|}
\hline 620 & B & \multicolumn{2}{|l|}{Communication error between IPU and ADF} \\
\hline & & A break occurred in the connection between the IPU and ADF & \begin{tabular}{l}
- ADF disconnected \\
- ADF defective \\
- IPU harness connection loose, broken \\
- IPU defective \\
- External noise
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline 621 & B & Communication timeout between BCU and finisher \\
\hline & & & • \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{632} & \multirow[b]{2}{*}{B} & \multicolumn{2}{|l|}{Key/card counter device error 1} \\
\hline & & After 1 data frame is sent to the device, an ACK signal is not received within 100 ms , and is not received after 3 retries. & - Serial line from the device to the main machine is unstable, disconnected, or defective \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline & & \multicolumn{3}{|l|}{} & \begin{tabular}{l} 
Key/card counter device error 2
\end{tabular} \\
\cline { 2 - 4 } & B & \begin{tabular}{l} 
During communication with the \\
device, the MCU received a break \\
(Low) signal.
\end{tabular} & \begin{tabular}{l} 
Serial line from the device to \\
the main machine is unstable, \\
disconnected, or defective
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline & & \multicolumn{3}{|l|}{ Key/card counter device error 3 } \\
\cline { 3 - 4 } & B & \begin{tabular}{l} 
Rhe backup battery of the counter \\
device RAM is low.
\end{tabular} & \begin{tabular}{l} 
RAM backup battery \\
exhausted \\
Counter device defective
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{635} & \multirow[b]{2}{*}{B} & \multicolumn{2}{|l|}{Key/card counter device error 4} \\
\hline & & After installation of the device a message alerts user to a battery voltage abnormal error. & \begin{tabular}{l}
- Device control board defective \\
- Device control board backup battery defective
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline 636 & B & OSM User Code File Error \\
\hline & & \begin{tabular}{l} 
The correct "usercode" file could not be \\
found in the root folder of the SD card \\
because the file is not present, or the \\
existing file is corrupted or the wrong type \\
file.
\end{tabular} & \begin{tabular}{l} 
" Make sure the eccm.mod \\
file is in the root folder of \\
the SD card. \\
Note: The usercode files are \\
created with the User Setting \\
Tool "IDissuer.exe".
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline 641 & D & Engine-Controller Communication Error: Non-Response \\
\hline & & \begin{tabular}{l} 
There was no response to a frame sent \\
from the controller board to the engine.
\end{tabular} & \begin{tabular}{l} 
Turn the machine power \\
off/on.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 650 & B & Communication error of the remote service modem (Cumin-M) \\
\hline \multirow{4}{*}{-001} & \multirow{4}{*}{-} & Authentication error \\
\hline & & The authentication for the Cumin-M failed at dial up connection. \\
\hline & & \begin{tabular}{l}
- Incorrect SP settings \\
- Disconnected telephone line \\
- Disconnected modem board
\end{tabular} \\
\hline & & Check and set the correct user name (SP5816-156) and password (SP5816-157). \\
\hline \multirow{3}{*}{-004} & \multirow{3}{*}{-} & Incorrect modem setting \\
\hline & & Dial up fails due to the incorrect modem setting. \\
\hline & & Same as -001 \\
\hline \multirow{4}{*}{-005} & \multirow{4}{*}{-} & Communication line error \\
\hline & & The supplied voltage is not sufficient due to the defective communication line or defective connection. \\
\hline & & Same as -001 \\
\hline & & Consult with the user's local telephone company. \\
\hline \multirow{4}{*}{-011} & \multirow{4}{*}{-} & Incorrect network setting \\
\hline & & Both the NIC and Cumin-M are activated at the same time. \\
\hline & & Same as -001 \\
\hline & & Disable the NIC with SP5985-1. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow{4}{*}{-012} & \multirow{4}{*}{-} & Modem board error \\
\hline & & The modem board does not work properly even though the setting of the modem board is installed with a dial up connection. \\
\hline & & Same as -001 \\
\hline & & \begin{tabular}{l}
Install the modem board. \\
Check and reset the modem board setting with SP5816. Replace the modem board.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow{5}{*}{651} & \multirow{5}{*}{C} & Incorrect dial up connection \\
\hline & & -001: Program parameter error \\
\hline & & -002: Program execution error \\
\hline & & An unexpected error occurred when the modem (Cumin-M) tried to call the center with a dial up connection. \\
\hline & & \begin{tabular}{l}
- Caused by a software bug \\
- No action required because this SC does not interfere with operation of the machine.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|ll|}
\hline 669 & B & \multicolumn{2}{|l|}{} \\
\hline EEPROM Communication Error \\
\hline The machine failed to detect a match \\
between the read/write data for the \\
EEPROM on the BCU after 3 attempts. & - & \begin{tabular}{l} 
EEPROM installed incorrectly \\
EEPROM defective. Turn the \\
machine power off/on after \\
replacing the EEPROM. \\
BCU defective.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline 670 & D & Engine response error \\
\hline & & \begin{tabular}{l} 
After powering on the machine, a \\
response is not received from the \\
engine within 30 seconds.
\end{tabular} & • \begin{tabular}{l} 
- \\
\hline
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 672 & D & \multicolumn{2}{|l|}{Controller-to-operation panel communication error at startup} \\
\hline & & After powering on the machine, the communication circuit between the controller and the operation panel is not opened, or communication with controller is interrupted after a normal startup. & \begin{tabular}{l}
- Controller stalled \\
- Controller board installed incorrectly \\
- Controller board defective \\
- Operation panel connector loose or defective
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline 687 & D & Memory address (PER) command error \\
\hline & & \begin{tabular}{ll} 
The BCU did not receive a memory \\
address command from the controller \\
with the prescribed time once the \\
paper reached the registration sensor.
\end{tabular} & \begin{tabular}{l} 
Harness connection at BCU, \\
Controller board loose or \\
broken
\end{tabular} \\
& • & \begin{tabular}{l} 
Defective BCU \\
Defective Controller Board
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 721 & B & \multicolumn{2}{|l|}{Front fence motor error} \\
\hline & & The jogger fence motor in the finisher is not operating. & \begin{tabular}{l}
- Jogger motor drive is obstructed (jammed paper, paper scraps, etc.) \\
- The motor harness loose or broken \\
- Jogger fence HP sensor dirty, loose, defective \\
- Jogger fence motor defective
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline 722 & B & \multicolumn{1}{|l|}{\begin{tabular}{l} 
Rear fence motor error \\
\hline
\end{tabular}} & \\
& \begin{tabular}{ll} 
The rear jogger fence motor \\
in the finisher is not \\
operating.
\end{tabular} & \begin{tabular}{l} 
Rear jogger motor drive is obstructed \\
(jammed paper, paper scraps, etc.) \\
The rear jogger fence motor harness \\
loose or broken
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 723 & B & \multicolumn{2}{|l|}{Feed-out belt motor error} \\
\hline & & The feed-out belt did not return to the home position within the prescribed time. & \begin{tabular}{l}
- Feed-out belt motor drive is obstructed (jammed paper, paper scraps, etc.) \\
- Feed-out belt motor drive obstructed (jammed paper, paper scraps, etc.) \\
- Motor harness loose or broken \\
- Feed-out belt HP sensor dirty, disconnected, broken \\
- Motor defective
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 725 & B & \multicolumn{2}{|l|}{Finisher stack feed-out motor error} \\
\hline & & The stack feed-out belt HP sensor did not activate within the prescribed time after the stack feed-out motor turned on. & \begin{tabular}{l}
- Finisher stack feed-out motor drive is obstructed (jammed paper, paper scraps, etc.) \\
- Stack feed-out motor harness loose, broken \\
- Stack feed-out HP sensor harness loose, broken \\
- Stack feed-out motor defective \\
- Stack feed-out HP sensor defective
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 730 & B & \multicolumn{2}{|l|}{Shift tray motor error} \\
\hline & & The shift tray motor in the 1000-sheet finisher is not operating. & \begin{tabular}{l}
- Shift motor drive is obstructed (jammed paper, paper scraps, etc.) \\
- Shift motor harness loose, broken \\
- Shift tray HP sensor harness loose, broken \\
- Shift motor defective \\
- Shit tray HP sensor defective
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 740 & B & \multicolumn{2}{|l|}{Corner stapler motor error} \\
\hline & & The corner stapler motor in the 1000 -sheet finisher is not operating. & \begin{tabular}{l}
- Staple jam \\
- Number of sheets in stack exceeds allowed number of sheets for stapling \\
- Stapler motor obstructed \\
- Stapler motor defective
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 742 & B & \multicolumn{2}{|l|}{Stapler movement motor} \\
\hline & & The stapler movement motor in the 1000 -sheet finisher is not operating. & \begin{tabular}{l}
- Stapler or motor drive is blocked by obstruction \\
- Motor harness loose or broken \\
- Stapler HP sensor harness loose, broken \\
- Motor defective \\
- Stapler HP sensor defective
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline 746 & & Stack feed motor error \\
\hline \multirow{4}{*}{} & & \begin{tabular}{l} 
The stack feed HP sensor in the 1000-sheet booklet finisher did not detect \\
"ON" twice (once: jam error) within the prescribed time after the stack feed \\
motor turned on. \\
-or- \\
The stack feed HP sensor did not detect "OFF" twice (once: jam error) for \\
the specified time after the stack feed motor turned on.
\end{tabular} \\
\hline & \begin{tabular}{ll} 
- Motor drive obstructed \\
- & Stack feed motor harness loose, broken \\
- & Stack feed motor defective
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 750 & B & \multicolumn{2}{|l|}{Tray lift motor error} \\
\hline & & The tray lift motor in the 1000-sheet booklet finisher is not operating. & \begin{tabular}{l}
- Motor harness loose, broken \\
- Motor drive obstructed \\
- Stack height sensor dirty, harness loose, broken \\
- Motor defective \\
- Stack height sensor defective
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 751 & B & \multicolumn{2}{|l|}{Stack pressure solenoid error} \\
\hline & & The stack pressure solenoid in the finisher is not operating. & \begin{tabular}{l}
- Solenoid harness loose, broken \\
- Solenoid obstructed \\
- Stack height sensor dirty, harness loose, broke \\
- Solenoid defective \\
- Stack height sensor defective
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 760 & B & \multicolumn{2}{|l|}{Finisher punch motor error} \\
\hline & & The punch HP sensor did not activate within the prescribed time after the punch motor turned on. The 1st detection issues a jam error, and the 2nd failure issues this SC code. & \begin{tabular}{l}
- Punch HP sensor harness loose, broken \\
- Punch motor harness loose, broken \\
- Punch motor obstructed \\
- Punch motor defective \\
- Punch HP sensor defective
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 761 & B & Folder plate motor error \\
\hline & & The folder plate in the 1000 -sheet booklet finisher moved but was not detected at the home position within the prescribed time. The 1st detection failure issues a jam error, and the 2nd failure issues this SC code. \\
\hline & & \begin{tabular}{l}
- Folder plate motor drive obstructed \\
- Folder plate HP sensor harness loose, broken \\
- Folder plate motor harness loose, broken \\
- Folder plate motor defective \\
- Folder plate HP sensor defective
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 763 & B & \multicolumn{2}{|l|}{Punch movement motor error} \\
\hline & & The punch unit moved but it was not detected at the home position within the prescribed time. The 1st detection failure issues a jam error, and the 2nd failure issues this SC code. & \begin{tabular}{l}
- Motor harness loose, broken \\
- Motor drive obstructed \\
- Motor defective
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|ll|}
\hline 764 & B & \multicolumn{1}{|l|}{ Paper position slide motor error } \\
\hline & & \begin{tabular}{l} 
The paper position sensor detected movement of \\
the slide but the slide was not detected at the \\
home position within the prescribed time. The 1st \\
detection failure issues a jam error, and the 2nd \\
failure issues this SC code.
\end{tabular} & \begin{tabular}{l} 
Motor harness \\
loose, broken
\end{tabular} \\
\begin{tabular}{l} 
Motor drive \\
obstructed
\end{tabular} \\
•
\end{tabular}
\begin{tabular}{|l|l|l|ll|}
\hline 765 & B & Fold unit bottom fence lift motor \\
\hline & & \begin{tabular}{l} 
The fold unit bottom fence lift motor in the \\
1000-sheet booklet finisher is not operating. The \\
1st detection failure issues a jam error, and the \\
2nd failure issues this SC code.
\end{tabular} & • & \begin{tabular}{l} 
Motor harness \\
loose, broken
\end{tabular} \\
\hline \begin{tabular}{l} 
Motor drive \\
obstructed
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|ll|}
\hline 766 & B & Clamp roller retraction motor \\
\hline & & \begin{tabular}{l} 
The clamp roller retraction motor in the \\
1000-sheet booklet finisher is not operating. The \\
1st detection failure issues a jam error, and the \\
2nd failure issues this SC code.
\end{tabular} & • & \begin{tabular}{l} 
Motor harness \\
loose, broken \\
Motor drive \\
obstructed
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline 791 & B & Bridge unit error \\
\hline & & & \begin{tabular}{l} 
Poor connection between the \\
finisher and mainframe
\end{tabular} \\
& & \begin{tabular}{l} 
The machine can communicate with \\
the finisher but not the bridge unit.
\end{tabular} & \begin{tabular}{l} 
Bridge unit harness damaged \\
or defective
\end{tabular} \\
Bridge unit defective
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 770 & B & Shift motor error \\
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{} & The shift motor HP sensor does not detect any change for 1.86 seconds after the shift motor has turned on at power on or during its operation. \\
\hline & & \begin{tabular}{l}
- Defective shift motor \\
- Defective shift motor HP sensor
\end{tabular} \\
\hline & & Check the connections to the shift motor and the shift motor HP sensor. Defective shift motor or the shift motor HP sensor. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 791 & B & \multicolumn{2}{|l|}{Bridge unit error} \\
\hline & & The machine can communicate with the finisher but not the bridge unit. & \begin{tabular}{l}
- Poor connection between the finisher and mainframe \\
- Bridge unit harness damaged or defective \\
- Bridge unit defective
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 792 & B & \multicolumn{2}{|l|}{Finisher unit error} \\
\hline & & The machine cannot communicate with the bridge unit but not the finisher. & \begin{tabular}{l}
- Poor connection between the finisher and mainframe \\
- Finisher harness damaged or defective \\
- Finisher unit defective
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 798 & B & \multicolumn{2}{|l|}{Finisher unit error} \\
\hline & & The machine cannot communicate with the bridge unit but not the finisher. & \begin{tabular}{l}
- Poor connection between the finisher and mainframe \\
- Finisher harness damaged or defective \\
- Finisher unit defective
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 798-1 & B & \multicolumn{2}{|l|}{Upper limit switch error} \\
\hline & & The upper limit switch is pushed due to tray lift error or some problems. & \begin{tabular}{l}
- Upper limit switch pulled up \\
- Defective upper limit switch \\
1. Check the harness. \\
2. Check for blockage around the upper limit switch. \\
3. Replace the upper limit switch.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|ll|}
\hline 798-2 & B & Front fence motor error & & \begin{tabular}{l} 
I \\
\hline
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 798-3 & B & \multicolumn{2}{|l|}{Rear fence motor error} \\
\hline & & \begin{tabular}{l}
The rear fence moves out of the home position but the HP sensor output does not change within the specified number of pulses. \\
The 1st failure issues an original jam message, and the 2 nd failure issues this SC code.
\end{tabular} & \begin{tabular}{l}
- Rear jogger motor drive is obstructed (jammed paper, paper scraps, etc.) \\
- The rear jogger fence motor harness loose or broken \\
- Rear jogger fence HP sensor dirty, loose, defective \\
- Rear jogger fence motor defective \\
1. Check or replace the harness. \\
2. Check for blockages in the rear jogger motor drive mechanism. \\
3. Replace the rear jogger fence HP sensor. \\
4. Replace the rear jogger fence motor. \\
5. Replace the finisher main board.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 798-4 & B & \multicolumn{2}{|l|}{Stack feed-out motor error} \\
\hline & & \begin{tabular}{l}
The stack feed-out HP sensor does not detect the home position of the stack feed-out belt for a certain time after the stack feed-out belt has moved to its home position. \\
The stack feed-out HP sensor does not turn off for a certain time after the stack feed-out belt has moved from its home position. \\
The 1st detection failure causes a jam error, and the 2nd failure causes this SC code.
\end{tabular} & \begin{tabular}{l}
- Defective stack feed-out HP sensor \\
- Overload on the stack feed-out motor \\
- Defective stack feed-out motor \\
- Defective main board \\
- Disconnected or defective harness Check or replace the harness. \\
1. Check or replace the harness. \\
2. Check for blockages in the stack feed-out mechanism. \\
3. Replace the stack feed-out HP sensor. \\
4. Replace the stack feed-out motor. \\
5. Replace the main board.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 798-5 & B & \multicolumn{2}{|l|}{Positioning roller arm motor error} \\
\hline & & \begin{tabular}{l}
The positioning roller HP sensor does not turn on or off for a certain time at power-on. \\
The positioning roller HP sensor does not turn on or off for a certain time when the positioning roller returns to its home position from the lower position. \\
The 1st detection failure causes a jam error, and the 2nd failure causes this SC code.
\end{tabular} & \begin{tabular}{l}
- Disconnected or defective harness \\
- Overload on the positioning roller arm motor \\
- Defective positioning roller arm motor \\
- Defective positioning roller HP sensor \\
1. Check or replace the harness. \\
2. Check for blockages in the positioning roller arm mechanism. \\
3. Replace the positioning roller arm motor. \\
4. Replace the positioning roller HP sensor.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 798-6 & B & \multicolumn{2}{|l|}{Finisher corner stapler motor error} \\
\hline & & \begin{tabular}{l}
The 1st detection failure issues a jam error, and the 2nd failure issues this SC code. \\
For 500-sheet finisher \\
The stapler HP sensor does not detect \\
"ON"/"OFF" signal even the stapler moves from the "OFF"/"ON" position for 0.6 seconds. \\
The stapler HP sensor does not detect "ON" when a stapling job is commanded or the stapler moves.
\end{tabular} & \begin{tabular}{l}
- Staple jam \\
- Motor overload \\
- Defective stapler motor \\
1. Check the connections and cables for the components mentioned above. \\
2. Replace the HP sensor and/or stapler motor \\
3. Replace the finisher main board.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 798-7 & B & \multicolumn{2}{|l|}{Finisher stapler movement motor error} \\
\hline & & \begin{tabular}{l}
For 500-sheet finisher \\
The stapler HP sensor does not detect "OFF" signal even the stapler moves from the "ON" position for 0.35 seconds. \\
The stapler HP sensor does not detect "ON" signal even the stapler moves from the "OFF" position for 5.5 seconds.
\end{tabular} & \begin{tabular}{l}
- Motor overload \\
- Loose connection of the stapler home position sensor \\
- Loose connection of the stapler movement motor \\
- Defective stapler home position sensor \\
- Defective stapler movement motor Check the connections and cables for the components mentioned above. \\
1. Check the connection of the stapler movement motor. \\
2. Check the connection of the stapler home position sensor. \\
3. Replace the stapler home position sensor. \\
4. Replace the stapler movement motor.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 798-8 & B & \multicolumn{2}{|l|}{500-sheet finisher: Tray lift motor error} \\
\hline & & & \begin{tabular}{l}
- Motor overload \\
- Loose connection of the shift tray motor \\
- Defective shift tray motor \\
1. Check the connections to the tray lift motor. \\
2. Replace the tray lift motor.
\end{tabular} \\
\hline 798-9 & B & \multicolumn{2}{|l|}{Stack pressure solenoid error} \\
\hline & & The stack pressure solenoid in the finisher is not operating. & \begin{tabular}{l}
- Solenoid harness loose, broken \\
- Solenoid obstructed \\
- Stack height sensor dirty, harness loose, broke \\
- Solenoid defective \\
- Stack height sensor defective \\
1. Check or replace the solenoid harness. \\
2. Check for blockages in the stack pressure mechanism. \\
3. Replace the stack height sensor.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline 816 & D & Energy saver I/O sub system error \\
\hline & \begin{tabular}{l} 
Energy saver sub system is not \\
operating correctly.
\end{tabular} & . Controller board defective \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline 817 & C & Boot loader error \\
\hline & & \begin{tabular}{l} 
The boot loader cannot read one of the \\
following: \\
Self-diagnostic module, kernel, or one \\
of the files of the root file system, or the \\
check of one of these items on the \\
controller board failed.
\end{tabular} & \begin{tabular}{l} 
- File or module on the \\
controller board is corrupted. \\
File or module on the \\
controller board is illegal. \\
Replace the controller board.
\end{tabular} \\
\hline
\end{tabular}
\(\left.\begin{array}{|l|l|l|ll|}\hline 819 & \text { C } & \text { Fatal kernel error } \\
\hline & & \begin{array}{l}\text { Due to a control error, a RAM } \\
\text { overflow occurred during system } \\
\text { processing. }\end{array} & \text {. } & \text { Controller board defective } \\
\text { Insufficient memory }\end{array}\right\}\)\begin{tabular}{l} 
Expanded memory defective
\end{tabular}

Note: For more details about this SC code error, execute SP5990 to print an SMC report so that you can read the error code. The error code is not displayed on the operation panel.
\begin{tabular}{|c|c|c|c|}
\hline 820 & D & \multicolumn{2}{|l|}{Self-diagnostics error: CPU} \\
\hline & & Cut-in in ASIC occurs. & \begin{tabular}{l}
- Defective ASIC \\
- Defective devices in which ASIC detects cut-in. \\
- Damaged boot monitor program or self-diagnostic program \\
1. Replace the controller board. \\
2. Reinstall the boot monitor or self-diagnostic program.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 821 & D & Self-diagnostics error: ASIC [XXXX]: Detailed error code \\
\hline \multirow{4}{*}{[OBOO]} & & ASIC error \\
\hline & & The write-\&-verify check error has occurred in the ASIC. \\
\hline & & Defective ASIC device \\
\hline & & Replace the controller. \\
\hline \multirow{4}{*}{[0B06]} & & ASIC detection error \\
\hline & & The I/O ASIC for system control is not detected. \\
\hline & & \begin{tabular}{l}
Defective ASIC \\
Defective North Bridge and PCI I/F
\end{tabular} \\
\hline & & Replace the controller board. \\
\hline \multirow{4}{*}{[OD05]} & & Self-diagnosis error: ASIC \\
\hline & & The CPU checks if the ASIC timer works correctly compared with the CPU timer. If the ASIC timer does not function in the specified range, this SC code is displayed. \\
\hline & & System firmware problem Defective RAM-DIMM Defective controller \\
\hline & & \begin{tabular}{l}
Reinstall the controller system firmware. \\
Replace the RAM-DIMM. \\
Replace the controller board.
\end{tabular} \\
\hline \multirow{4}{*}{[50A1]} & & Video bridge device (ASIC) error 1 \\
\hline & & The CPU does not detect the video bridge device. \\
\hline & & Defective I/F between the video bridge device and controller \\
\hline & & Replace the controller. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{4}{*}{ [50A2] } & Video bridge device (ASIC) register error 1 \\
\cline { 2 - 4 } & \begin{tabular}{l} 
The CPU detects the video bridge device, but detects error data from the \\
video bridge device.
\end{tabular} \\
\cline { 2 - 4 } & Defective I/F between the video bridge device and controller \\
\cline { 2 - 3 } & Replace the controller. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline 822 & B & \begin{tabular}{l} 
Self-diagnostic error: HDD (Hard Disk Drive) \\
{\([\mathrm{XXXX]:} \mathrm{Detailed} \mathrm{error} \mathrm{code}\)}
\end{tabular} \\
\hline\([3003]\) & Timeout error \\
\hline\([3004]\) & - & \begin{tabular}{l} 
Command error
\end{tabular} \\
\hline- & - & \begin{tabular}{l} 
When the main switch is turned on or starting the self-diagnostic, the HDD \\
stays busy for the specified time or more.
\end{tabular} \\
\hline- & \begin{tabular}{l} 
Leose connection \\
- Defective controller
\end{tabular} \\
\hline- & \begin{tabular}{l} 
Check that the HDD is correctly connected to the controller. \\
Replace the HDD. \\
Replace the controller.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline 823 & B & \begin{tabular}{l} 
Self-diagnostic error: NIB \\
{\([X X X X]:\) Detailed error code }
\end{tabular} \\
\hline\([6101]\) & \begin{tabular}{l} 
MAC address check sum error \\
The result of the MAC address check sum does not match the check sum \\
stored in ROM.
\end{tabular} \\
\hline\([6104]\) & \begin{tabular}{l} 
PHY IC error \\
The PHY IC on the controller cannot be correctly recognized.
\end{tabular} \\
\hline\([6105]\) & \begin{tabular}{l} 
PHY IC loop-back error \\
An error occurred during the loop-back test for the PHY IC on the controller.
\end{tabular} \\
\hline- & Replace the controller.
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline 824 & D & \begin{tabular}{l} 
Self-diagnosis error: Standard NVRAM \\
The controller cannot recognize the standard NVRAM installed or detects \\
that the NVRAM is defective.
\end{tabular} \\
\hline \multirow{4}{*}{ [1401] } & \begin{tabular}{ll} 
- Loose connection \\
& - \(\quad\) Defective standard NVRAM \\
& \begin{tabular}{l} 
Chective controller
\end{tabular} \\
\hline & \begin{tabular}{l} 
Che the standard NVRAM is firmly inserted into the socket. \\
Replace the controller
\end{tabular} \\
\hline
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 826 & D & Self-diagnostic Error: RTC/optional NVRAM \\
\hline \multicolumn{2}{|l|}{\multirow{3}{*}{[1501]}} & The one second counted by the RTC is different from the one second counted by the CPU on the controller. \\
\hline & & - Defective the RTC device \\
\hline & & Replace the RTC device.. \\
\hline \multirow{3}{*}{[15FF]} & & The RTC device is not detected. \\
\hline & & \begin{tabular}{l}
- Defective RTC device \\
- NVRAM without RTC installed \\
- Discharged backup battery
\end{tabular} \\
\hline & & Replace the NVRAM with another NVRAM with an RTC device. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 827 & D & Self-diagnostic error: Standard SDRAM DIMM [XXXX]: Detailed error code \\
\hline \multicolumn{2}{|l|}{\multirow{4}{*}{[0201]}} & Verification error \\
\hline & & Error detected during a write/verify check for the standard RAM (SDRAM DIMM). \\
\hline & & \begin{tabular}{l}
- Loose connection \\
- Defective SDRAM DIMM \\
- Defective controller
\end{tabular} \\
\hline & & Turn the main switch off and on. Replace the SDRAM DIMM. Replace the controller. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline 828 & D & \begin{tabular}{l} 
Self-diagnostic error: ROM \\
{\([\mathrm{XXXX}]:\) Detailed error code }
\end{tabular} \\
\hline [0101] & \begin{tabular}{l} 
Check sum error 1 \\
The boot monitor and OS program stored in the ROM DIMM is checked. If \\
the check sum of the program is incorrect, this SC code is displayed.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 829 & D & Self-diagnostic error: Optional RAM [XXXX]: Detailed error code \\
\hline \multicolumn{2}{|l|}{\multirow{4}{*}{[0301]}} & Verification error \\
\hline & & Error detected during a write/verify check for the optional RAM (SDRAM DIMM). \\
\hline & & \begin{tabular}{l}
- Loose connection \\
- Defective SDRAM DIMM \\
- Defective controller
\end{tabular} \\
\hline & & \begin{tabular}{l}
Turn the main switch off and on. \\
Replace the SDRAM DIMM. \\
Replace the controller.
\end{tabular} \\
\hline \multirow{4}{*}{[0302]} & & Memory structure data error \\
\hline & & The memory structure data error for the optional RAM (SDRAM DIMM) is detected when the self-diagnostic is executed. \\
\hline & & \begin{tabular}{l}
- Defective RAM DIMM \\
- Defective SPD ROM on RAM DIMM \\
- Defective 12C bus
\end{tabular} \\
\hline & & Replace the RAM DIMM. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 833 & C & Self-diagnostic error 8: Engine I/F ASIC \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& {[0 F 30]} \\
& {[0 F 31]}
\end{aligned}
\]}} & ASIC (Mandolin) for system control could not be detected. After the PCI configuration, the device ID for the ASIC could not be checked. \\
\hline & & Replace the IPU. \\
\hline \multirow[t]{2}{*}{[0F41]} & & ASIC (Mandolin) for system control could not be detected. After the PCI configuration, the device ID for the ASIC could not be checked. \\
\hline & & Replace the IPU. \\
\hline \multirow{3}{*}{[50B1]} & & Could not initialize or read the bus connection. \\
\hline & & Check for loose connections at the mother board. \\
\hline & & Replace the IPU. \\
\hline \multirow{3}{*}{[50B2]} & & Value of the SSCG register is incorrect. \\
\hline & & Check for loose connections at the mother board. \\
\hline & & Replace the IPU. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 835 & C & Self-diagnostic error: Centronic device \\
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{[1102]}} & Loopback connector is connected but check results in an error. \\
\hline & & \begin{tabular}{l}
- IEEE1284 connector error \\
- Centronic loopback connector defective \\
Replace the controller board.
\end{tabular} \\
\hline \multirow[b]{2}{*}{[110C]} & & Loopback connector is connected but check results in an error. \\
\hline & & \begin{tabular}{l}
- ASIC device error \\
- IEEE1284 connector error \\
- Centronic loopback connector defective \\
Replace the controller board.
\end{tabular} \\
\hline \multirow{3}{*}{[1120]} & & Centronic loopback connector is not connected for detailed self-diagnostic test. \\
\hline & & \begin{tabular}{l}
- Centronic loopback connector not connected correctly \\
- Centronic loopback connector defective \\
- ASIC device defective
\end{tabular} \\
\hline & & Replace the controller board. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 838 & B & Self-diagnostic Error: Clock Generator \\
\hline & & A verify error occurred when setting data was read from the clock generator via the I2C bus. \\
\hline [2701] & & \begin{tabular}{l}
- Defective clock generator \\
- Defective I2C bus \\
- Defective I2C port on the CPU \\
Replace the controller board.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline 839 & B & USB flash error \\
\hline & & \begin{tabular}{l} 
This is a self-diagnostic error. \\
The device ID of the on-board \\
USB flash ROM was not \\
recognized.
\end{tabular} & • Replace the controller board
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline 851 & D & IEEE 1394 I/F Abnormal \\
\hline & & \multicolumn{3}{|l|}{} \\
\hline & IEEE1394 interface error. & \begin{tabular}{l} 
IEEE1394 interface board \\
defective \\
Controller board defective
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline 853 & D & Wireless LAN board error 1 & \\
\hline & & \begin{tabular}{l} 
At startup the wireless LAN board \\
could be accessed, but the wireless \\
LAN board (IEEE 802.11b or \\
Bluetooth) could not access the \\
controller board.
\end{tabular} & \begin{tabular}{l} 
-
\end{tabular} \\
\begin{tabular}{l} 
Wireless LAN board not \\
installed when the machine \\
was turned on
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline 854 & D & Wireless LAN board error 2 \\
\hline & \begin{tabular}{l} 
The board that holds the wireless LAN \\
board can be accessed, but the \\
wireless LAN board \\
(802.11b/Bluetooth) itself cannot be \\
accessed while the machine is \\
operating
\end{tabular} &.\(\quad\)\begin{tabular}{l} 
Wireless LAN board has been \\
removed during machine \\
operation.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|ll|}
\hline 855 & D & Wireless LAN board error 3 \\
\hline & & \begin{tabular}{l} 
An error was detected for the wireless \\
LAN board (802.11b or Bluetooth).
\end{tabular} & \begin{tabular}{l} 
• \\
\hline
\end{tabular} \begin{tabular}{l} 
Wireless LAN board defective \\
Wight
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline 856 & D & Wireless LAN board error \\
\hline & & \begin{tabular}{l} 
An error is detected for the wireless \\
LAN board (802.11b or Bluetooth).
\end{tabular} & • \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline 857 & D & USB I/F Error \\
\hline & & \begin{tabular}{l} 
The USB driver is unstable and generated an \\
error. The USB I/F cannot be used. The USB \\
driver can generate three types of errors: RX, \\
CRC, and STALL errors. Only the STALL error \\
can generate this SC code.
\end{tabular} & • \begin{tabular}{l} 
USB 2.0 \\
disconnected \\
Controller board \\
defective
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 858 & A & \multicolumn{2}{|l|}{Data encryption conversion error} \\
\hline & & \multicolumn{2}{|l|}{A serious error occurred during data encryption.} \\
\hline 0 & A & Key acquisition error & - Replace the controller board \\
\hline 1 & A & HDD key setting error & \begin{tabular}{l}
- Turn the machine power off/on \\
- If the error reoccurs, replace the controller board
\end{tabular} \\
\hline 2 & A & NVRAM read/write error & - Replace the NVRAM \\
\hline 30 & A & NVRAM error & \begin{tabular}{l}
- Turn the machine power off/on \\
- If the error reoccurs, replace the controller board
\end{tabular} \\
\hline 31 & A & & - See SC991 \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|l|}
\hline 859 & B & HDD data encryption error \\
\hline & & Encryption of data on the hard disk failed. \\
\hline 8 & B & HDD check error & - \(\quad\) Format the HDD \\
\hline 6 & B & \begin{tabular}{l} 
Power loss during \\
encryption
\end{tabular} & . \(\quad\) Format the HDD \\
\hline 10 & B & Data read/write error & . \(\quad\) See SC863 below \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 860 & B & \multicolumn{2}{|l|}{HDD error 1} \\
\hline & & The hard disk connection is not detected because it is defective or has not been formatted & \begin{tabular}{l}
- Cable between HDC and HDD loose or defective \\
- HDD power connector loose or defective \\
- HDD not formatted \\
- HDD defective \\
- Replace the controller board
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 861 & B & \multicolumn{2}{|l|}{HDD error 2} \\
\hline & & The HDD did not enter the ready status within 30 sec. after power on. & \begin{tabular}{l}
- Cable between HDC and HDD loose or defective \\
- HDD power connector loose or defective \\
- HDD defective \\
- Replace the controller board
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline 862 & D & Bad sector number error \\
\hline & \begin{tabular}{l} 
The number of bad sectors in the HDD (image data area) goes over \\
101.
\end{tabular} \\
\hline \begin{tabular}{l} 
Defective \\
HDD
\end{tabular} & \\
\hline \begin{tabular}{l} 
Format the \\
HDD with \\
SP5-832-002. \\
Replace the \\
HDD.
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline 863 & B & HDD error 3 \\
\hline & & \begin{tabular}{l} 
Startup without HD data lead. Data \\
stored on the hard disk is not read \\
correctly, due to a bad sector on the \\
HDD
\end{tabular} & .
\end{tabular} \begin{tabular}{l} 
• Format the HDD \\
HDD defective \\
Controller board defective
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline 864 & & \begin{tabular}{l} 
HDD error 4
\end{tabular} & \\
\cline { 2 - 2 } & D & \begin{tabular}{l} 
HD data CRC error. During operation \\
of the HD, the HD responded with a \\
CRC error.
\end{tabular} & HDD defective \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline & & HDD error 5 \\
\cline { 2 - 4 } & D & \begin{tabular}{l} 
HDD responded to an error during \\
operation for a condition other than \\
those for SC863 or 864.
\end{tabular} & • HDD defective. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline 866 & D & \multicolumn{2}{|l|}{ SD card error 1: Recognition error } \\
\cline { 2 - 4 } & \begin{tabular}{l} 
The SD card in the slot contains illegal \\
program data.
\end{tabular} & \begin{tabular}{l} 
Use only SD cards that \\
contain the correct data.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline & & \multicolumn{3}{|l|}{ SD card error 2: SD card removed } \\
\cline { 2 - 4 } & D & \begin{tabular}{l} 
The SD card in the boot slot when the \\
machine was turned on was removed \\
while the machine power was on.
\end{tabular} & . \begin{tabular}{l} 
Insert the SD card, then turn \\
the machine off and on.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{868} & \multirow[b]{2}{*}{D} & SD card error 3: SD card access & \\
\hline & & An error occurred while an SD card was used. & \begin{tabular}{l}
- SD card not inserted correctly \\
- SD card defective \\
- Controller board defective \\
Note: If you want to try to reformat the SD card, use SD Formatter Ver 1.1.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline 870 & B & Address Book Data Error \\
\hline & & \begin{tabular}{l} 
I \\
Address book data stored on the hard \\
disk was detected as abnormal when it \\
was accessed from either the \\
operation panel or the network.
\end{tabular} & \begin{tabular}{l} 
Initize the address book \\
data (SP5-846-050). \\
Initialize the user information \\
(SP5-832-006). \\
Replace the HDD.HDD \\
defective
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline 872 & B & HDD mail RX data abnormal \\
\hline & & \begin{tabular}{l} 
An error was detected at power on. \\
The data received during mail receive \\
could be neither read nor written.
\end{tabular} & \begin{tabular}{l} 
HDD sector corrupted. \\
Reformat with SP5832 007. \\
If this does not repair the problem, \\
replace the HDD.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline & \multicolumn{3}{|l|}{\begin{tabular}{l} 
HDD mail TX data error \\
\cline { 2 - 4 }
\end{tabular}} \\
\cline { 2 - 4 } & B \begin{tabular}{l} 
An error was detected on the HDD \\
immediately after the machine was \\
turned on, or power was turned off \\
while the machine used the HDD.
\end{tabular} & \begin{tabular}{l} 
Do SP5832-8 (Format HDD - \\
Mail TX Data) to initialize the \\
HDD.
\end{tabular} \\
\begin{tabular}{l} 
Replace the HDD
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{874} & \multirow[b]{2}{*}{D} & Delete All error 1: HDD & \\
\hline & & \begin{tabular}{l}
A data error was detected for the HDD/NVRAM after the Delete All option was used. \\
Note: The source of this error is the Data Overwrite Security Unit D362 running from an SD card.
\end{tabular} & \begin{tabular}{l}
- Turn the main switch off/on, and try the operation again. \\
- Install the Data Overwrite Security Unit again. For more, see "Installation". \\
- HDD defective
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline & & \multicolumn{2}{|l|}{ Delete All error 2: Data area } \\
\cline { 2 - 4 } & D & \begin{tabular}{l} 
An error occurred while the machine \\
deleted data from the HDD. \\
Note: The source of this error is the \\
Data Overwrite Security Unit D362 \\
running from an SD card.
\end{tabular}
\end{tabular} \begin{tabular}{r} 
Turn the main switch off/on, \\
and try the operation again.
\end{tabular}\(\quad\)\begin{tabular}{l} 
\\
\hline
\end{tabular}
\(\left.\begin{array}{|l|l|l|l|}\hline 876 & \text { D } & \text { Log data abnormal } \\ \hline & \begin{array}{l}\text { An error was detected in the handling } \\ \text { of the log data at power on or during } \\ \text { machine operation. This can be } \\ \text { caused if you turn the machine off } \\ \text { while it is operating. }\end{array} & \begin{array}{l}\text { - }\end{array} & \begin{array}{l}\text { Software error. Update the } \\ \text { firmware } \\ \text { nVRAM defective }\end{array} \\ \text { HDD defective }\end{array}\right]\)
\begin{tabular}{|l|l|l|l|}
\hline \multirow{3}{*}{877} & \multicolumn{3}{|l|}{\begin{tabular}{l} 
Data Overwrite Security SD card error \\
\cline { 3 - 4 }
\end{tabular}} \\
\cline { 3 - 4 } & D \begin{tabular}{l} 
The 'all delete' function did not \\
execute but the Data Overwrite \\
Security Unit (D362) is installed \\
and activated.
\end{tabular} & \begin{tabular}{l} 
Replace the NVRAM \\
Reinstall the DOS from the SD \\
card
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline & & \multicolumn{3}{|l|}{} \\
\cline { 2 - 4 } & TPM electronic recognition error \\
\cline { 2 - 4 } & D & \begin{tabular}{l} 
The main machine firmware failed to recognize \\
TPM because USB flash is not operating or a \\
system module was updated incorrectly.
\end{tabular} &. \begin{tabular}{l} 
Replace the \\
controller board
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline 880 & D & File format converter error \\
\hline & & \begin{tabular}{l} 
A request for access to the File Format \\
Converter (MLB) was not answered \\
within the specified time.
\end{tabular} & \begin{tabular}{l} 
File format converter \\
disconnected
\end{tabular} \\
( File format converter board \\
defective
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 900 & D & \multicolumn{2}{|l|}{Electrical total counter error} \\
\hline & & The total count contains something that is not a number. & \begin{tabular}{l}
- NVRAM incorrect type \\
- NVRAM defective \\
- NVRAM data scrambled \\
- Unexpected error from external source
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline 901 & D & Mechanical total counter error \\
\hline & & \begin{tabular}{l} 
The counter was removed during \\
standby or while it is operating, \\
possibly damaging he connector.
\end{tabular} & - \(\quad\)\begin{tabular}{l} 
Check the connection of the \\
mechanical counter \\
Counter defective
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline 920 & D & Printer Error 1 \\
\hline \multirow{3}{|l|}{} & \(\begin{array}{l}\text { An internal application error was } \\
\text { detected and operation cannot } \\
\text { continue. }\end{array}\) & • & Software defective \\
Insufficient memory
\end{tabular}\(]\)\begin{tabular}{l} 
\\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline & & Printer error 2 \\
\cline { 2 - 4 } & B & \begin{tabular}{l} 
When the application started, the \\
necessary font was not on the SD \\
card.
\end{tabular} & . Font not on the SD card
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline 925 & D & Network File Error \\
\hline & & \begin{tabular}{l} 
The file that manages NetFile is \\
corrupted and operation cannot \\
continue.
\end{tabular} & • \begin{tabular}{l} 
Software defective
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline 5090 & D & \begin{tabular}{l} 
Software performance error \\
\cline { 2 - 3 }
\end{tabular} \\
\cline { 2 - 3 } & \begin{tabular}{l} 
The software attempted to perform an unexpected operation due to: 1) \\
software bug, 2) incorrect internal parameter, 3) insufficient working \\
memory.
\end{tabular} \\
\hline & \begin{tabular}{l} 
- Turn the machine power off/on \\
Note: When this SC occurs, the file name, address, and data will be stored \\
in NVRAM. This information can be checked by using SP7-403. Note the \\
above data and the situation in which this SC occurs. Then report the data \\
and conditions to your technical control center.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline 991 & C & Software continuity error \\
\hline & & \begin{tabular}{l} 
The software attempted to perform an \\
unexpected operation. However, unlike \\
SC990, the object of the error is \\
continuity of the software.
\end{tabular} & \begin{tabular}{l} 
- No operation required. \\
Note: This SC code does not \\
appear on the panel, and is only \\
logged.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline 992 & D & Unexpected Software Error \\
\hline & & \begin{tabular}{l} 
Software encountered an unexpected \\
operation not defined under any SC \\
code.
\end{tabular} & \begin{tabular}{ll} 
Voftware defective \\
An error undetectable by any \\
other SC code occurred
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline 997 & B & Application function selection error \\
\hline & & \begin{tabular}{l} 
Application selected by the operator did not start or end normally due to a \\
software problem. An option required by the application may not be \\
installed.
\end{tabular} \\
\hline & & \begin{tabular}{ll} 
- & Confirm which devices are required for the application. \\
- & \begin{tabular}{l} 
Make sure all devices are configured correctly.
\end{tabular} \\
If the problem is with the fax unit, the nesting of the fax group may be \\
too complicated
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{3}{*}{998} & \multirow[b]{3}{*}{D} & Application start error \\
\hline & & No applications start within 60 sec . after the power is turned on. \\
\hline & & \begin{tabular}{l}
- Loose connection of RAM-DIMM, ROM-DIMM \\
- Defective controller \\
- Software problem: check the setting of SP5875-001. If the setting is set to "1 (OFF)", change it to "0 (OFF)". \\
- Check if the RAM-DIMM and ROM-DIMM are correctly connected. \\
- Reinstall the controller system firmware. \\
- Replace the controller.
\end{tabular} \\
\hline
\end{tabular}

\section*{Service Call Conditions}

\section*{Note 1}

If a problem always occurs under specific conditions (for example. printer driver setting, image file), the problem may be caused by a software error. In this case, the following data and information need to be sent back to your product specialist. Please understand that it may take some time to get a reply on how to solve the problem, because in some cases the design staff in Japan must analyze the data.
- Symptom / Possible Causes / Action taken
- Summary sheet (SP mode "Printer SP", SP1-004 [Print Summary])
- SMC - All (SP5-990-001)
- SMC - Logging (SP5-990-004)
- Printer driver settings used when the problem occurs
- All data displayed on the screen (SC code, error code, and program address where the problem is logged.)
- Image file which causes the problem, if possible

\section*{APPENDIX: SERVICE PROGRAM MODE TABLES}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ APPENDIX 4} \\
\multicolumn{1}{l|}{ SERVICE PROGRAM MODES REVISION HISTORY } \\
\hline Page & Date & Added/Updated/New \\
\hline 232 & \(1 / 25 / 2011\) & Bit Switch 1001-006 \\
\hline
\end{tabular}

\section*{4. APPENDIX: SERVICE PROGRAM MODE} TABLES

\subsection*{4.1 SYSTEM SP TABLES-1}

\subsection*{4.1.1 SP1XXX: FEED}
\begin{tabular}{|c|c|c|}
\hline 1001* & \multicolumn{2}{|l|}{Leading Edge Registration} \\
\hline 1 & Tray & \multirow[t]{3}{*}{\begin{tabular}{l}
Adjusts the printing leading edge registration from each paper feed station using the Trimming Area Pattern (SP2902 Pattern No. 10). [+9.0 to -9.0 / + \(\mathbf{0 . 0}\) / 0.1 mm/step] Use the - key to toggle between + and before entering the value. \\
The specification is \(3 \pm 2 \mathrm{~mm}\). \\
See "Replacement and Adjustment - Copy Adjustment" for details.
\end{tabular}} \\
\hline 2 & By-pass & \\
\hline 3 & Duplex Side2 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 1002* & \multicolumn{2}{|l|}{Side-to-Side Registration} \\
\hline 1 & Tray 1 & \multirow[b]{3}{*}{Adjusts the printing side-to-side registration from each paper feed station using the Trimming Area Pattern (SP2902 Pattern No. 10). [+9.0 to -9.0 / + \(\mathbf{0 . 0}\) / 0.1 mm/step]} \\
\hline 2 & Tray 2 & \\
\hline 3 & Tray 3 (Optional PFU Tray 1, or LCT) & \\
\hline 4 & Tray 4 (Optional PFU Tray 2) & Use the - key to toggle between + and - before entering the value. The specification is \(2 \pm 1.5\) \\
\hline 5 & By-pass & Adjustment" for details. \\
\hline 6 & Duplex Side 2 & \\
\hline
\end{tabular}

System SP Tables-1
\begin{tabular}{|r|l|l|}
\hline 1003* & \multicolumn{2}{|l|}{ Registration Buckle Adjustment } \\
\hline 1 & Tray 1 & \begin{tabular}{l} 
Adjusts the paper feed clutch timing at \\
registration. The paper feed clutch timing \\
determines the amount of paper buckle at \\
registration. (A larger setting leads to more \\
buckling.) \\
{\([0\) to \(10 / 5 / 1 \mathrm{~mm} /\) step \(]\)}
\end{tabular} \\
\hline 2 & Tray 2/3/4 By-pass & [0 to \(20 / 6 / 1 \mathrm{~mm} / \mathrm{step}]\) \\
\hline 3 & Duplex Side 2 & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{\(1007^{*}\)} & \multicolumn{2}{|l|}{ By-pass Paper Size Detection } \\
\cline { 2 - 3 } & \multicolumn{2}{|l|}{ Controls paper size detection for the by-pass feed table. } \\
\hline 1 & Detection Timing & {\([-15\) to \(15 / 0 / 5 \mathrm{~mm}\) step \(]\)} \\
\hline 2 & LG Detection & \begin{tabular}{l}
{\([0\) to \(1 / 0 /-]\)} \\
\(0:\) LT SEF, 1: LG
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{3}{*}{1103} & \begin{tabular}{l} 
Fusing Idling \\
\cline { 2 - 4 }
\end{tabular} \\
\begin{tabular}{l} 
Switches fusing idling on/off. \\
{\([0=\) Off \(/ 1=\) On / 2 = Off plus machine temperature check] } \\
Switch on if fusing on the 1st and 2nd copies is incomplete (this may occur if \\
the room is cold.)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{4}{*}{1104} & Fusing Temperature Control DFU \\
\cline { 2 - 3 } & \begin{tabular}{l}
{\([0\) to \(1 / \mathbf{1} / 1]\)} \\
\(0:\) Hysterysis Control \\
\(1:\) Normal Control
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 1105* & \multicolumn{2}{|l|}{Fusing Temperature Adjustment} \\
\hline 1 & Roller Center & \multirow[t]{2}{*}{\begin{tabular}{l}
Adjusts the fusing temperature at the center and both ends of the hot roller for normal printing. \\
[120 to \(200 / 180 / 1^{\circ} \mathrm{C} /\) step]
\end{tabular}} \\
\hline 2 & Roller Ends & \\
\hline 3 & Energy Saver & \begin{tabular}{l}
Adjusts the fusing temperature at the center and both ends of the hot roller for energy saver mode. \\
[0 to \(160 / 150 / 1^{\circ} \mathrm{C} /\) step]
\end{tabular} \\
\hline 4 & Thick Paper - Roller Center & \multirow[t]{2}{*}{\begin{tabular}{l}
Adjusts the additional fusing temperature for thick paper for the 2nd paper tray and for the bypass tray. \\
[0 to \(30 / \mathbf{1 5} / 1^{\circ} \mathrm{C} /\) step]
\end{tabular}} \\
\hline 5 & Thick Paper - Roller Ends & \\
\hline 6 & After Warming-up - Center & \begin{tabular}{l}
Adjusts the fusing temperature at the center of the hot roller after the machine has warmed up. \\
[120 to \(200 / 180 / 1^{\circ} \mathrm{C} /\) step]
\end{tabular} \\
\hline 7 & After Warming-up - Ends & \begin{tabular}{l}
Adjusts the fusing temperature at both ends of the hot roller after the machine has warmed up. \\
[120 to \(200 / 185 / 1^{\circ} \mathrm{C} /\) step]
\end{tabular} \\
\hline 8 & After Warming-up - No. of Pages & In this machine, fusing temperature is kept \(10^{\circ} \mathrm{C}\) higher than the normal temperature for a number of pages after the machine has warmed up. This SP selects the number of pages made at this temperature. See Detailed Section Descriptions - Fusing for more details. [0 to 10 / 3 / 1 page/step] \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|}
\hline 9 & After Warming-up - Time & \begin{tabular}{l} 
In this machine, fusing temperature is kept \\
\(10^{\circ} \mathrm{C}\) higher than the normal temperature \\
for a short while after the machine warms \\
up. This SP selects the length of time that \\
this temperature is used. See Detailed \\
Section Descriptions - Fusing for more \\
details. \\
{\([0\) to \(180 / 60 / 1 s /\) step \(]\)}
\end{tabular} \\
\hline 10 & Wait Temp: Center Minus & \\
\hline 11 & Wait Temp: Ends Minus & \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|}
\hline 1106 & \multicolumn{2}{|l|}{ Fusing Temperature Display } \\
\hline 2 & Roller Center & \begin{tabular}{l} 
Displays the fusing temperature for the center or \\
both ends of the hot roller.
\end{tabular} \\
\hline 3 & \begin{tabular}{l} 
Roller Ends \\
In the Machine at Power
\end{tabular} & \begin{tabular}{l} 
Displays the temperature in the machine at \\
power on. \\
This temperature is monitored by the thermistor \\
on the SBCU board.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \(1108^{*}\) & Fusing Soft Start Adj: Cycle \\
\cline { 2 - 4 } & \begin{tabular}{l} 
Selects whether the fusing temperature control cycle is 1 or 3 seconds. \\
If this is "1 (3 s)", the power supply fluctuation caused by the fusing lamp \\
turning on is less often. \\
{\([0=1 \mathrm{~s} / 1=2 \mathrm{~s}]\)} \\
Default: \(0=\mathrm{N}\). America, Taiwan, 1 = Europe/Asia
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{\(1109^{*}\)} & \multicolumn{1}{|l|}{ Fusing Nip Band Check } \\
\cline { 2 - 3 } & \multicolumn{1}{|l|}{ Checks the fusing nip band. } \\
\hline 1 & Execution & \\
\hline 2 & Idling Rotation Time & {\([0\) to \(120 / \mathbf{6 0} / 1 \mathrm{sec}]\)} \\
\cline { 2 - 4 } & Specifies the fusing rotation time before executing SP1109-001. \\
\hline 3 & \begin{tabular}{l} 
Pre-Idling Time \\
\end{tabular} & \begin{tabular}{l} 
Specifies the time that the paper stops in the fusing unit for measuring the \\
nip.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{3}{*}{1159} & Fusing Jam Detection \\
\cline { 2 - 3 } & \begin{tabular}{l} 
Disables or enables the consecutive jam error for the fusing unit. \\
{\([0\) to \(1 / 0 / 1\) Step] } \\
When set to "1" (on) this SC code is issued after the 3rd consecutive jam in \\
the fusing unit.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{3}{*}{\(1902^{*}\)} & AC Frequency Display DFU \\
\cline { 2 - 4 } & \begin{tabular}{l} 
Displays the AC frequency for fusing temperature control. \\
{\([0\) to \(1 / 0 / 1\) Step] } \\
Used to check the measured number of interrupts for the zero cross signal. \\
Measured time interval is 500 ms with 5 interrupts per \(2 \mathrm{mms}:\) \\
\(10 \mathrm{~ms} \times 50=500\)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|}
\hline \(1903^{*}\) & \multicolumn{1}{|l|}{ Feed Clutch Re-energize } \\
\hline & \begin{tabular}{l} 
Adjusts the paper feed amount allowed by the clutch after correcting the \\
skew at registration. When paper jams occur after restarting paper feed after \\
registration, increase the value to help the registration roller feed the paper.
\end{tabular} \\
\hline 1 & By-pass Feed & {\([0\) to \(10 / 6 / 1 \mathrm{~mm} / \mathrm{step}]\)} \\
\hline 2 & Tray 1 Feed & \\
\hline 3 & Other Trays to \(10 / 0 / 1 \mathrm{~mm} / \mathrm{step}]\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline 1907* & Timing Adjustment DFU \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 1908 & F1 Plate Adj & Upper Tray: Main Machine (Standard) \\
\hline 1909 & F2 Plate Adj & Lower Tray: Main Machine (Standard) \\
\hline 1910 & F3 Plate Adj & Upper Tray: PTU (Option) \\
\hline 1911 & F4 Plate Adj & Lower Tray: PTU (Option) \\
\hline & \multicolumn{2}{|l|}{\begin{tabular}{l}
These SP codes adjust the initial amount of pressure that the bottom plate exerts on the bottom of the stack that presses against the feed roller. Adjust these SP codes if the machine is consistently double-feeding or failing to feed a specific paper size. These SP codes adjust the length of time that the lift motor runs forward or reverse to raise or lower the bottom plate under the stack after the top of stack has reached the feed position. \\
- Double feeding occurs when there is too much pressure. To correct this, increase the length of time the motor runs in reverse to lower the tray (to do this, reduce the value of the setting). \\
- Failure to feed occurs when there is not enough pressure. To correct this, increase the length of time the motor runs forward to raise the tray. (to do this, increase the value of the setting).
\end{tabular}} \\
\hline & \multicolumn{2}{|l|}{\begin{tabular}{l}
How to Read These SP Codes \\
- Each selection shows the paper size and a percentage that
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline & \begin{tabular}{l} 
indicates the amount of paper remaining in the tray when the setting \\
will take effect. For example, "B4,LG 70\%" means the setting will \\
take effect when B4 or Legal size paper is loaded in the tray and \\
\(70 \%\) of the paper remains in the tray. \\
The "Initial" notation in the display indicates the default value for the \\
setting. A positive number (+) indicates the length of time (ms) the \\
lift motor runs forward to raise the bottom plate and increase \\
pressure. A negative number (-) indicates the length of time (ms) the \\
lift motor runs in reverse to lower the bottom plate and reduce \\
pressure. \\
Please note that the "Initial" settings for some settings are negative \\
(reverse run time), others are positive (forward run time).
\end{tabular} \\
\hline Note: Before doing any adjustments with these SP codes, confirm that \\
the correct paper size has been selected for each tray with SP codes \\
\(1912,1913,1914,1915\).
\end{tabular}
\begin{tabular}{|l|l|}
\hline 1912 & Tray 1: Auto Paper Size Detection \\
\hline 1913 & Tray 2: Auto Paper Size Detection \\
\hline 1914 & Tray 3: Auto Paper Size Detection \\
\hline 1915 & Tray 4: Auto Paper Size Detection \\
\hline & \begin{tabular}{l} 
Some paper sizes are very nearly the same (A4, LT for example). The paper \\
size sensors are not sensitive enough to distinguish between such paper \\
sizes. Use these SP codes to select the paper size for the tray. A setting can \\
be done for each tray:
\end{tabular} \\
\hline
\end{tabular}

System SP Tables-1
\begin{tabular}{|c|c|c|}
\hline & \begin{tabular}{l}
Tray 1: Upper Tray (Main M \\
Tray 2: Lower Tray (Main \\
Tray 3: LCT Tray or Upper \\
Tray 4: Lower: Tray Paper
\end{tabular} & \begin{tabular}{l}
e) \\
e) \\
Paper Tray Unit \\
Unit
\end{tabular} \\
\hline 1 & Size 1: B5/Exe Landscape & \multirow[b]{2}{*}{\[
\begin{aligned}
& {[0 \text { to } 1 / 0 / 1]} \\
& 0: \text { ISO (A3, A4, A5, etc.) }
\end{aligned}
\]} \\
\hline 2 & Size 2: A5/HLT Landscape & \\
\hline 3 & Size 3: A4/LT & \multirow[t]{3}{*}{\begin{tabular}{l}
1: USA (DLT, LT, EXE, etc.) \\
Note: "Landscape" means LEF (Long Edge Feed)
\end{tabular}} \\
\hline 4 & Size 4: A4/LG & \\
\hline 5 & Size 5: A3/LT & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{1991} & \multicolumn{2}{|l|}{ Max Fusing Lamp Duty DFU } \\
\cline { 2 - 3 } & \multicolumn{2}{|l|}{ These SP codes are debugging tools. } \\
\hline 1 & Roller Center & \\
\hline 2 & Roller Ends & {\([40\) to 100/80/10\%] } \\
\hline 3 & After Warming-up - Center & \\
\hline 4 & After Warming-up - Ends & {\([40\) to 100/100/10\%] } \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{3}{*}{1992} & Mtr Rvrs Time at Fusing Drv RIs DFU \\
\cline { 2 - 4 } & \begin{tabular}{l} 
This is a debugging tool. \\
{\([0\) to 3/3/1] }
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|}
\hline \multirow{2}{*}{1996} & \multicolumn{2}{|l|}{ Heater Forced Off DFU } \\
\cline { 2 - 3 } & These are debugging tools & \\
\hline 1 & Starting Temperature (Center) & \\
\hline 2 & Starting Temperature (Side) & \\
\hline 3 & Time (Center) & \multirow{2}{*}{ [0 to \(5 / \mathbf{0} / 1]\)} \\
\hline 4 & Time (Side) & {\([0\) to \(5 / \mathbf{1} / 1]\)} \\
\hline 5 & After Printing & \\
\hline
\end{tabular}

\subsection*{4.2 SYSTEM SP TABLES-2}

\subsection*{4.2.1 SP2XXX: DRUM}
\begin{tabular}{|c|c|}
\hline 2001* & Charge Bias \\
\hline \multirow[b]{2}{*}{1*} & Setting (Copying) \\
\hline & \begin{tabular}{l}
Adjusts the voltage applied to the charge roller during printing. \\
This value will be changed automatically when the charge roller bias correction is performed. \\
Note that if this value is changed, the charge roller voltage will be corrected based on the new voltage. \\
[2100 to 1500 / -1700 / 1 V/step]
\end{tabular} \\
\hline \multirow[b]{2}{*}{2*} & ID Sensor Pattern \\
\hline & \begin{tabular}{l}
Adjusts the voltage applied to the charge roller when making the Vsdp ID sensor pattern (for charge roller bias correction). \\
The actual charge roller voltage is this value plus the value of SP2001 1. [0 to 400 / 200 / 1 V/step]
\end{tabular} \\
\hline \multirow[b]{2}{*}{3} & Temporary Input \\
\hline & \begin{tabular}{l}
Inputs the charge roller voltage temporarily for test purposes. \\
Do not change the value. \\
[0 to -2500 / 0 / 1 V/step]
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 2005* & Charge Bias Correction \\
\hline \multirow[b]{2}{*}{1} & Vsdp Min \\
\hline & \begin{tabular}{l}
Adjusts the lower threshold value for the charge roller correction. \\
When the value of Vsdp/Vsg is less than this value, the charge roller voltage increases by 50 V (e.g. from -500 to -550 ). The size of the increase depends on SP2005 3. \\
[0 to 100 / 90 / 1\%/step]
\end{tabular} \\
\hline \multirow[b]{2}{*}{2} & Vsdp Max \\
\hline & \begin{tabular}{l}
Adjusts the upper threshold value for the charge roller correction. When the value of Vsdp/Vsg is greater than this value, the charge roller voltage decreases by 50 V (e.g. from -550 to -500 ). The size of the decrease depends on SP2005 3. \\
[0 to 100 / 95 / 1 \%/step]
\end{tabular} \\
\hline \multirow[b]{2}{*}{3} & Charge Roller Bias Correction \\
\hline & \begin{tabular}{l}
Adjusts the size of the charge roller voltage correction. \\
[0 to 200 / 50 / 1 V/step]
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 2101* & Erase Margin Adjust \\
\hline \multirow[b]{2}{*}{1} & Leading Edge \\
\hline & \begin{tabular}{l}
Adjusts the leading edge erase margin. \\
The specification is \(3 \pm 2 \mathrm{~mm}\). See "Replacement and Adjustment - Copy \\
Adjustment" for details. \\
[0.0 to \(9.0 / 3.0 / 0.1 \mathrm{~mm} /\) step]
\end{tabular} \\
\hline \multirow[b]{2}{*}{2} & Trailing Edge - Small Paper \\
\hline & Adjusts the trailing edge erase margin for paper of length 216 mm or less. The specification is \(3 \pm 2 \mathrm{~mm}\). See "Replacement and Adjustment - Copy Adjustment" for details.
\[
\text { [0.0 to } 9.0 \text { / } 2.0 \text { / } 0.1 \text { mm/step] }
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow[b]{2}{*}{3} & Trailing Edge - Middle Paper \\
\hline & \begin{tabular}{l}
Adjusts the trailing edge erase margin for paper of length 216.1 to 297 mm . \\
The specification is \(3 \pm 2 \mathrm{~mm}\). See "Replacement and Adjustment - Copy \\
Adjustment" for details. \\
[0.0 to 9.0 / 3.0 / 0.1 mm/step]
\end{tabular} \\
\hline & Trailing Edge - Large Paper \\
\hline 4 & \begin{tabular}{l}
Adjusts the trailing edge erase margin for paper longer than 297 mm . \\
The specification is \(3 \pm 2 \mathrm{~mm}\). See "Replacement and Adjustment - Copy \\
Adjustment" for details. \\
[0.0 to 9.0 / \(4.0 / 0.1 \mathrm{~mm} /\) step]
\end{tabular} \\
\hline & Left Side \\
\hline 5 & \begin{tabular}{l}
Adjusts the left edge erase margin. \\
The specification is \(2 \pm 1.5 \mathrm{~mm}\). See "Replacement and Adjustment - Copy \\
Adjustment" for details. \\
[ 0.0 to 9.0 / \(2.0 / 0.1 \mathrm{~mm} /\) step]
\end{tabular} \\
\hline & Right Side \\
\hline 6 & \begin{tabular}{l}
Adjusts the right edge erase margin. \\
The specification is \(2+2.5 /-1.5 \mathrm{~mm}\). See "Replacement and Adjustment - \\
Copy Adjustment" for details. \\
[ 0.0 to 9.0 / 2.0 / 0.1 mm/step]
\end{tabular} \\
\hline & Rear - Trailing Edge (Duplex 2nd Side) \\
\hline 7 & \begin{tabular}{l}
Adjusts the trailing edge erase margin on the reverse side of duplex copies. The actual trailing edge erase margin on the reverse side is this value plus the value of SP2101-2 or 3 or 4. \\
The specification is \(3 \pm 2 \mathrm{~mm}\). See "Replacement and Adjustment - Copy Adjustment" for details \\
[ 0.0 to \(9.0 / 1.2\) / \(0.1 \mathrm{~mm} / \mathrm{step}\) ]
\end{tabular} \\
\hline & Rear - Left Side (Duplex 2nd Side) \\
\hline 8 & \begin{tabular}{l}
Adjusts the left side erase margin on the reverse side of duplex copies. \\
The actual left side erase margin on the reverse side is this value plus the
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
value of SP2101-5. \\
The specification is \(2 \pm 1.5 \mathrm{~mm}\). See "Replacement and Adjustment - Copy \\
Adjustment" for details. \\
[0.0 to 9.0 / 0.3 / \(0.1 \mathrm{~mm} /\) step]
\end{tabular} \\
\hline \multirow[b]{2}{*}{9} & Rear - Right Side (Duplex 2nd Side) \\
\hline & \begin{tabular}{l}
Adjusts the right side erase margin on the reverse side of duplex copies. \\
The actual right side erase margin on the reverse side is this value plus the value of SP2101-6. \\
The specification is \(2+2.5 /-1.5 \mathrm{~mm}\). See "Replacement and Adjustment Copy Adjustment" for details. \\
[0.0 to 9.0 / 0.3 / \(0.1 \mathrm{~mm} /\) step]
\end{tabular} \\
\hline \multirow[b]{2}{*}{10} & Printer - Rear Trailing Edge \\
\hline & \begin{tabular}{l}
In printer mode, adjusts the trailing edge erase margin on the reverse side of duplex copies. \\
The actual trailing edge erase margin on the reverse side is this value plus the value of SP2101-7. \\
The specification is \(3 \pm 2 \mathrm{~mm}\). See "Replacement and Adjustment - Copy \\
Adjustment" for details \\
[0.0 to \(9.0 / 0.0 / 0.1 \mathrm{~mm} /\) step]
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{3}{*}{\(2103^{*}\)} & LD Power Adjustment DFU \\
\cline { 2 - 3 } & \begin{tabular}{l}
{\([50\) to \(170 / 129 / 1 /\) step \(]\)} \\
Adjusts the LD power. \\
Do not change the value.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{3}{*}{ 2110* } & Test Mode dpi \\
\cline { 2 - 3 } & \begin{tabular}{l} 
Sets the scanning resolution (dpi). DFU \\
[See below / 8 / Oto18] \\
\(0: 400 \times 400 ~ d p i\) \\
\(4: 300 \times 300 ~ d p i ~\) \\
\(8: 600 \times 600 ~ d p i ~\) \\
\hline
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 2201* & Development Bias Adjust \\
\hline \multirow[b]{2}{*}{1} & Printing \\
\hline & \begin{tabular}{l}
Adjusts the development bias during printing. \\
This can be adjusted as a temporary measure if faint copies appear due to an aging drum.
\[
\text { [-1500 to -200 / -650 / } 1 \text { V/step] }
\]
\end{tabular} \\
\hline \multirow[b]{2}{*}{2} & ID Sensor Pattern \\
\hline & \begin{tabular}{l}
Adjusts the development bias for making the ID sensor pattern. \\
The actual development voltage for the ID sensor pattern is this value plus the value of SP2201-1. \\
This should not be used in the field, because it affects ID sensor pattern density, which affects toner supply.
\[
[0=\mathrm{N}(200 \mathrm{~V}) / 1=\mathrm{H}(240 \mathrm{~V}) / 2=\mathrm{L}(160 \mathrm{~V}) / 3=\mathrm{HH}(280 \mathrm{~V}) / 4=\mathrm{LL}(120 \mathrm{~V})]
\]
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 2210* & Bias Off Time \\
\hline \multirow[t]{2}{*}{} & Charge Bias DFU \\
\hline & \begin{tabular}{l}
Adjusts the charge voltage ( -1200 V ) application time. \\
When the charge voltage and development bias are turned off at the same time, toner or carrier will be attracted to the drum. To reduce the toner or carrier attraction, the machine applies -1200 V to the charge roller before the development bias is turned off. This SP adjusts the time for applying the charge. \\
[0 to \(150 / 80 / 1 \mathrm{~ms} / \mathrm{step}\) ]
\end{tabular} \\
\hline & Development Bias DFU \\
\hline & \begin{tabular}{l}
Adjusts the development bias off time. \\
[-120 to 120 / 0 / 1ms/step]
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{3}{*}{ 2211* } & PCU Reverse Interval \\
\cline { 2 - 4 } & \begin{tabular}{l} 
Adjusts the PCU reverse interval for cleaning during a job. \\
When the machine has made this number of copies in the middle of a job, \\
the machine reverses to clean the edge of the cleaning blade. After cleaning, \\
the machine resumes the job. Set to a shorter interval if thin white lines \\
appear on printouts. \\
[0 to 999 / 100 / 1 sheet/step] \\
\(0:\) Never cleans during job
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \(2213^{*}\) & Copies after Toner Near End \\
\cline { 2 - 3 } & \begin{tabular}{l} 
Selects the number of copies that can be made after toner near-end has \\
been detected. \\
{\([0=50\) pages \(/ 1=20\) pages \(]\)} \\
If the user normally makes copies with a high proportion of black, reduce the \\
interval.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 2220* & Vsg/V/Vsdp/Vt/Vts Dis & \\
\hline 1 & Vsg & \multirow{5}{*}{Displays the individual Vt, Vsg, Vsp, Vsdp, and Vts values.} \\
\hline 2 & V & \\
\hline 3 & Vsdp & \\
\hline 4 & Vt & \\
\hline 5 & Vts & \\
\hline 6 & Vsp/Vsg/Vsdp/Vt/Vts & Displays all the data used in process control, separated by slashes (/). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 2301* & Transfer Current Adjust \\
\hline \multirow[b]{2}{*}{1*} & Normal Paper \\
\hline & \begin{tabular}{l}
Adjusts the current applied to the transfer roller during copying from a paper tray when the user uses the "Normal" paper setting. \\
If the user normally feeds thicker paper from a paper tray, use a higher setting.
\[
[0=-2 \mu \mathrm{~A} / 1=0 \mu \mathrm{~A} / 2=+2 \mu \mathrm{~A} / 3=+4 \mu \mathrm{~A}]
\]
\end{tabular} \\
\hline \multirow[b]{2}{*}{2*} & Thick/Thin Paper \\
\hline & \begin{tabular}{l}
Adjusts the current applied to the transfer roller during copying from the by-pass tray. These settings are also used if the 2nd tray is used and specia paper is selected. \\
If the user normally feeds thicker paper from the by-pass tray/2nd tray (special paper), use a higher setting. If waste toner is re-attracted from the drum (this can occur when using an OHP sheet), use a higher setting.
\[
[0=-2 \mu \mathrm{~A} / 1=0 \mu \mathrm{~A} / 2=+2 \mu \mathrm{~A} / 3=+4 \mu \mathrm{~A}]
\]
\end{tabular} \\
\hline \multirow[b]{2}{*}{3*} & Duplex Side 2 \\
\hline & \begin{tabular}{l}
Adjusts the current applied to the transfer roller during copying from the duplex unit when the user uses the "Normal" paper setting. \\
Use this SP when the image on the rear side of the paper has a problem caused by poor image transfer.
\[
[0=-2 \mu \mathrm{~A} / 1=0 \mu \mathrm{~A} / 2=+2 \mu \mathrm{~A} / 3=+4 \mu \mathrm{~A}]
\]
\end{tabular} \\
\hline \multirow[b]{2}{*}{4*} & Cleaning \\
\hline & \begin{tabular}{l}
Adjusts the current applied to the transfer roller during roller cleaning. \\
If toner remains on the roller after cleaning (dirty background appears on the rear side of the paper), increase the current. \\
\([-10\) to \(0 /-4 / 1 \mu \mathrm{~A} / \mathrm{step}]\)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|r|l|}
\hline 5 & Input - Front DFU \\
\hline 6 & Input - Rear DFU \\
\hline 7 & Temp Inside the Machine \\
\cline { 2 - 4 } & \begin{tabular}{l} 
Displays the temperature measured inside the machine just after power-on \\
(by the thermistor on the SBCU board) the last time that the fusing unit was \\
less than \(40^{\circ} \mathrm{C}\) just after the machine was switched on. \\
The transfer current is corrected in accordance with this value.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{3}{*}{2801} & Developer Initialization \\
\cline { 2 - 3 } & \begin{tabular}{l} 
Initializes the developer and resets the TD and ID sensor outputs to their \\
defaults. Do this SP after you fill the PCU with developer at machine \\
installation and every time developer is replaced.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{3}{*}{2802} & Developer Mixing \\
\cline { 2 - 3 } & \begin{tabular}{l} 
Mixes the developer and checks Vt. The machine mixes the developer for 2 \\
minutes and while doing this, it reads the TD sensor output (Vt). It does not \\
initialize the TD sensor output. \\
If the machine has not been used for a long time, prints may have a dirty \\
background. In this case, use this SP mode to mix the developer.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \(2803^{*}\) & Developer Initialization Data \\
\hline & 1 \\
\cline { 2 - 4 } & \begin{tabular}{l} 
Vts \\
When the machine detects a new PCU (photoconductor unit) in the \\
machine, it checks the heat seals at the creation of the first ID sensor \\
pattern. After the agitator is rotated for 30 sec., the machine creates the \\
second ID sensor pattern and corrects the reference value of the TD sensor. \\
The corrected reference value for the TD sensor is recorded here.
\end{tabular} \\
\hline 2 & \begin{tabular}{l} 
ID Sensor PWM Value \\
Displays the PWM value of the ID sensor after performing the developer \\
initialization.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{4}{*}{2804} & New PCU Check DFU \\
\cline { 2 - 4 } & \begin{tabular}{l} 
This SP determines whether the machine is set to recognize a new PCU. \\
{\([0\) to 1/0/1] } \\
0: New PCU recognition on. \\
1: New PCU recognition off.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 2901* & Separation Voltage Adj \\
\hline \multirow[b]{2}{*}{1} & Front - Leading Edge \\
\hline & \begin{tabular}{l}
Adjusts the voltage that is applied to the separation plate during printing at the leading edge of the paper on the front side. \\
If the copies have pawl marks at the leading edge, increase this voltage.
\[
\text { [-4000 to -1000 / -1800 / } 1 \text { V/step] }
\]
\end{tabular} \\
\hline \multirow[b]{2}{*}{2} & Front - Image Area \\
\hline & \begin{tabular}{l}
Adjusts the voltage that is applied to the separation plate during printing on the image area of the paper on the front side. \\
If the copies have pawl marks in the image area, increase this voltage.
\[
\text { [-4000 to -1000 / -1800 / } 1 \text { V/step] }
\]
\end{tabular} \\
\hline \multirow[b]{2}{*}{3} & Rear - Leading Edge \\
\hline & \begin{tabular}{l}
Adjusts the voltage applied to the separation plate, during printing at the leading edge of the paper on the rear side. \\
See SP2901 1.
\[
\text { [-4000 to -1000 / -2100 / } 1 \text { V/step] }
\]
\end{tabular} \\
\hline \multirow[b]{2}{*}{4} & Rear - Image Area \\
\hline & \begin{tabular}{l}
Adjusts the voltage applied to the separation plate, during printing at the image area of the paper on the rear side. \\
See SP2901 2.
\[
\text { [-4000 to -1000 / -2100 / } 1 \text { V/step] }
\]
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \(2902^{*}\) & Test Pattern \\
\hline & \begin{tabular}{l} 
Prints the test patterns. Select the number of the test pattern that you want to \\
print. When adjusting the printing registration, select no.10 (Trimming Area \\
Pattern). [0 to \(24 / 0 / 1\) step]
\end{tabular} \\
\hline
\end{tabular}

System SP Tables-2
Test Patterns for SP2902
\begin{tabular}{|r|l|r|l|}
\hline 0 & None & 13 & Checker Flag Pattern \\
\hline 1 & Vertical Line (1 dot) & 14 & Black Band (Vertical) \\
\hline 2 & Horizontal Line (1 dot) & 15 & Independent Pattern (4 dot) \\
\hline 3 & Vertical Line (2 dot) & 16 & Grayscale Horizontal \\
\hline 4 & Horizontal Line (2 dot) & 17 & Grayscale Vertical \\
\hline 5 & Grid Pattern 1 & 18 & Grayscale Vertical Horizontal \\
\hline 6 & Independent Pattern (1 dot) & 19 & Grayscale Grid \\
\hline 7 & Independent Pattern (2 dot) & 20 & Grayscale (Horizontal Margin) \\
\hline 8 & Full Dot Pattern & 21 & Grayscale (Vertical Margin) \\
\hline 9 & Black Band (Horizontal) & 22 & Grayscale (Ver Hor Margin) \\
\hline 10 & Trimming Area & 23 & All White Pattern \\
\hline 11 & Argyle Pattern & 24 & Trimming Area Or Out \\
\hline 12 & Hounds Tooth Check (2 dot Hor) & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 2906* & \multicolumn{2}{|l|}{Tailing Correction} \\
\hline & \multicolumn{2}{|l|}{Shift Value} \\
\hline 1 & \multicolumn{2}{|l|}{Shifts the image across the page at the interval specified by SP2906 2. When making many copies of an original that contains vertical lines (such as a table), separation may not work correctly, then a tailing image will occur (ghosts of the vertical lines will continue past the bottom of the table). This SP prevents this problem. [ 0.0 to \(1.0 / 0.0\) / \(0.1 \mathrm{~mm} / \mathrm{step}\) ]} \\
\hline & \multicolumn{2}{|l|}{Interval} \\
\hline 2 & \multicolumn{2}{|l|}{Changes the interval for the image shift specified by SP2906 1. [ 0 to 10 / \(0 / 1\) page/step]} \\
\hline 2907* & \multicolumn{2}{|l|}{Filter Setting} \\
\hline & \multicolumn{2}{|l|}{Adjusts the line width for the copy mode. The default setting disables this function. A number smaller than the default makes lines thinner, a number larger than the default makes lines thicker.} \\
\hline 1 & Text: Multilevel Copy & [0 to 10/5/1 step] \\
\hline 2 & Photo: Multilevel Copy & [0 to 10 / 6 / 1 step] \\
\hline 3 & Text/Photo: Multilevel Copy & \multirow{3}{*}{[0 to 10 / 5 / 1 step]} \\
\hline 4 & Pale: Multilevel Copy & \\
\hline 5 & Generation: Multilevel Copy & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{3}{*}{2908} & Forced Toner Supply \\
\cline { 2 - 4 } & \begin{tabular}{l} 
Forces the toner bottle to supply toner to the toner supply unit. \\
Press Execute on the touch panel to start. \\
During this process, the machine supplies toner until the toner concentration \\
in the development unit reaches a standard level. However, if the toner \\
concentration does not reach a standard level, the machine supplies toner \\
for 2 minutes maximum.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow{2}{*}{2909*} & Main Scan Magnification Adj \\
\hline & [-0.5 to 0.5 / 0.0 / 0.1\%/step] \\
\hline \multirow[b]{2}{*}{1} & Copy: Short Edge Feed \\
\hline & Adjusts the main scan magnification in copy mode when the machine feeds the paper in the short edge feed orientation. \\
\hline \multirow[b]{2}{*}{2} & Printer: Short Edge Feed \\
\hline & Adjusts the main scan magnification in printer mode when the machine feeds the paper in the short edge feed orientation. \\
\hline \multirow[b]{2}{*}{3} & Copy: Long Edge Feed \\
\hline & Adjusts the main scan magnification in copy mode when the machine feeds the paper in the long edge feed orientation. \\
\hline \multirow[b]{2}{*}{4} & Printer: Long Edge Feed \\
\hline & Adjusts the main scan magnification in printer mode when the machine feeds the paper in the long edge feed orientation. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{3}{*}{\(2910^{*}\)} & Margin Adjust for By-pass \\
\cline { 2 - 3 } & \begin{tabular}{l} 
Adjusts the blank margin at the trailing edge of paper fed from the by-pass \\
table. \\
{\([-9.0\) to \(+9.0 / 0 \mathrm{~mm} / 0.1 \mathrm{~mm} / \mathrm{step}]\)}
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{3}{*}{\(2913^{*}\)} & ID Test Pattern \\
\cline { 2 - 3 } & \begin{tabular}{l} 
Adjusts the image density level for black pixels on test pattern printouts \\
(patterns are made with SP2902) \\
[0 to \(15 / 15 / 1 /\) step \(]\) \\
This SP affects all test patterns except for the grayscale test patterns.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{2915*} & \multicolumn{2}{|l|}{Polygon Motor Idling Time} \\
\hline & \multicolumn{2}{|l|}{\begin{tabular}{l}
Selects the polygon motor idling time. \\
The polygon motor starts rotating up to its operation speed if the user 1 ) sets an original, 2) touches a key, or 3) opens the platen cover or document feeder. This shortens the time to the first copy. However, with the default (10 \\
s) set, the motor stops if the user does nothing for 10 s after doing one of the actions above, and stops 10 s at the end of a job. \\
Note: If set at " 0 ", the polygon motor never turns off during stand-by. However, when the machine goes into energy saver mode, the polygon motor turns off regardless of this timer.
\end{tabular}} \\
\hline 1 & Idling Time Adj. & \\
\hline 2 & Post Idling Time Adj. & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{3}{*}{\(2921^{*}\)} & Toner Supply Mode \\
\cline { 2 - 3 } & \begin{tabular}{l} 
Selects the toner supply mode. \\
{\([0=\) Sensor \(1 / 1=\) Sensor \(2 / 2=\) Fixed \(1 / 3=\) Fixed \(2,4=\) Sensor 3] } \\
Normally, only use setting 0. Change to 3 temporarily if the TD sensor is \\
defective. Do not use settings 1,2 and 4; these are for designer's use only.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{3}{*}{\(2922^{*}\)} & Toner Supply Time \\
\cline { 2 - 3 } & \begin{tabular}{l} 
Adjusts the toner supply motor on time for sensor supply mode. \\
This SP is effective only when SP2921 is "0" or "1".
\end{tabular} \\
\begin{tabular}{l}
{\([0.1\) to \(5.0 / 0.6 / 0.1 \mathrm{~s} /\) step \(]\)} \\
Increasing this value increases the toner supply motor on time. So, use a \\
high value if the user tends to make lots of copies that have a high \\
proportion of black.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{2}{*}{ 2923* } & Toner Recovery Time \\
\cline { 2 - 4 } & \begin{tabular}{l} 
Adjusts the toner supply motor on time during recovery from toner \\
near-end/end. \\
This SP is effective only when SP2921 is "0", "1", or "2". \\
{\([1\) to \(60 / 30 / 1\) s/step] } \\
Note that toner recovery is done in a 3-second cycle. So, the input value \\
should be a multiple of 3 (e.g. 3, 6, 9). See "Toner Density Control" for more \\
details.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & Toner Supply Ratio \\
\hline 2925* & \begin{tabular}{l}
Adjusts the toner supply rate for fixed toner supply mode. \\
This SP is effective only when SP2921 is " 2 " or " 3 ". \\
Increasing this value increases the toner supply motor on time. So, use a \\
high value if the user tends to make lots of copies that have a high proportion of black. See "Toner Density Control" for more details. \\
[0 to 7 / 0 / 1/step] \\
0: t, 1: 2t, 2: 4t, 3: 8t, 4: 12t, 5: 16t, 6: On continuously, 7: 0 s \\
t: 200 ms
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{3}{*}{\(2926^{*}\)} & Standard Vt DFU \\
\cline { 2 - 3 } & \begin{tabular}{l} 
Adjusts Vts (Vt for a new PCU). The TD sensor output is adjusted to this \\
value during the TD sensor initial setting process. This SP is effective only \\
when SP2921 is "0", "1", or "2". \\
{\([0.00\) to \(5.00 / 2.50 / 0.05 \mathrm{~V}\) /step \(]\)}
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{3}{*}{ 2927* } & ID Sensor Control \\
\cline { 2 - 3 } & \begin{tabular}{l} 
Selects whether the ID sensor is used or not for toner density control. \\
{\([0=\) No \(/ 1=\) Yes \(]\)} \\
If this value is "0", dirty background may occur after the machine has not \\
been used for a long time.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & Toner End Clear \\
\hline 2928* & \begin{tabular}{l}
Clears the toner end condition. Press Execute on the touch panel to clear the toner end condition without adding new toner. \\
When you press Execute, the following are cleared: \\
- Toner end indicator (goes out) \\
- Toner near-end counter \\
- Toner near-end level \\
When making a lot of copies after changing this setting to " 1 ", the carrier may be attracted to the drum when the toner runs out, which may damage the drum.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline 2929* & Vref Adjustment \\
\hline \multirow{3}{*}{1} & Upper Limit \\
\cline { 2 - 3 } & Adjusts the upper limit for Vref. [0.5 to \(3.5 / 3.10 / 0.05 \mathrm{~V} /\) step] \\
\hline \multirow{3}{*}{} & Lower Limit \\
\cline { 2 - 3 } & Adjusts the lower limit for Vref. [0.5 to \(3.5 / 1.40 / 0.05 \mathrm{~V} /\) step \(]\) \\
\hline
\end{tabular}

System SP Tables-2
\begin{tabular}{|l|l|}
\hline \multirow{3}{*}{\(2930^{*}\)} & TD Sensor Manual Setting \\
\cline { 2 - 3 } & \begin{tabular}{l} 
Adjusts the TD sensor output. DFU \\
{\([0\) to \(5 / 0.0 \mathrm{~V} / 0.05 \mathrm{~V} /\) step \(]\)}
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{3}{*}{\(2931^{*}\)} & TD (V/wt\%) Setting \\
\cline { 2 - 3 } & \begin{tabular}{l} 
Adjusts the TD sensor sensitivity (coefficient: S) for toner density control. \\
DFU \\
{\([0.01\) to \(1.50 / 0.4 / 0.01 /\) step \(]\)}
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{3}{*}{\(2932^{*}\)} & \begin{tabular}{l} 
Toner Density Control Level \\
\cline { 2 - 3 }
\end{tabular} \\
\begin{tabular}{l} 
Adjusts the toner density control threshold level. \\
{\([0=\) Normal / \(1=\) Dark \(/ 2=\) Light \(/ 3=\) Darker \(/ 4=\) Lighter \(]\)} \\
Use this SP when you want to adjust the image density.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{3}{*}{\(2933^{*}\)} & ID Sensor Control Correction \\
\cline { 2 - 3 } & \begin{tabular}{l} 
Adjusts the ID sensor control coefficient. DFU \\
{\([0.5\) to \(3 / 1\) / 0.1/step \(]\)}
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \(2934^{*}\) & \multicolumn{2}{|l|}{ ID Sensor PWM Setting } \\
\hline & 1 & Display \\
\hline 3 & Upper Limit Correction & Displays the PWM of the ID Sensor LED. \\
\cline { 2 - 3 } & \begin{tabular}{l} 
Corrects the upper limit of the PWM for the ID sensor LED. DFU \\
[0 to \(255 / 50 / 1 /\) step \(]\)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{3}{*}{2935} & ID Sensor Initialization \\
\cline { 2 - 3 } & \begin{tabular}{l} 
Performs the ID sensor initial setting. \\
Press Execute on the touch panel to start. Perform this setting after \\
replacing or cleaning the ID sensor.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|}
\hline \multirow{2}{*}{2989} & \multicolumn{2}{|l|}{ Original PCU ID South Korea only } \\
\cline { 2 - 2 } & \begin{tabular}{l} 
Displays the ISSUER CODE of the loaded PCU. The history of the PCU ID \\
codes is stored in NVRAM for display.
\end{tabular} \\
\hline 1 & Latest & Most current code (in use). \\
\hline 2 & Last 1 & \\
\hline 3 & Last 2 & \begin{tabular}{l} 
Up to four issuer codes of toner lots in the same series can be \\
stored. If a PCU with a new series code is set, then the new code \\
replaces the history of the previous PCU.
\end{tabular} \\
\hline 4 & Last 3
\end{tabular}
\begin{tabular}{|r|l|l|}
\hline \multirow{2}{*}{2990} & \multicolumn{2}{|l|}{ Original Toner ID South Korea only } \\
\cline { 2 - 2 } & \begin{tabular}{l} 
Displays the ISSUER CODE of the loaded toner. The history of the toner ID \\
codes are stored in NVRAM for display.
\end{tabular} \\
\hline 1 & Latest & Most current code (in use). \\
\hline 2 & Last 1 & \\
\hline 3 & Last 2 & \begin{tabular}{l} 
Up to four issuer codes of toner lots in the same series can be \\
stored. If toner with a new series code is set, then the new code \\
replaces the history of the previous toner.
\end{tabular} \\
\hline 4 & Last 3
\end{tabular}

System SP Tables-2
\begin{tabular}{|r|l|l|}
\hline \multirow{2}{*}{2991} & \multicolumn{2}{|l|}{ Original Toner Counter South Korea only } \\
\cline { 2 - 2 } & \begin{tabular}{l} 
Displays the page counts for the issuer code history. \\
{\([0\) to \(65535 / 0 / 1]\)}
\end{tabular} \\
\hline 1 & Latest & \\
\hline 2 & Last 1 & \multirow{3}{*}{ This SP displays the page counts for each successive issuer } \\
\hline 3 & Last 2 & code. See SP2990 above.
\end{tabular}
\begin{tabular}{|r|l|l|}
\hline & \multicolumn{1}{|c|}{ Copies After TD Sensor Error } \\
& \begin{tabular}{l} 
Selects the number of copies that can be made after a TD sensor error has \\
been detected. When the machine copies this amount, an SC condition will \\
occur. If the optional fax unit is installed, the SC condition occurs \\
immediately regardless of the number of prints (this is because the sender of \\
the fax cannot check the image quality of the printout).
\end{tabular} \\
\hline 1 & \(0: 100\) Pages 1:200 Pages & \\
\hline 2 & Counter & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{2}{*}{\(2993^{*}\)} & ISSUER CODE Ref South Korea Only \\
\cline { 2 - 3 } & \begin{tabular}{l} 
Sets the standard issuer code, once it has been determined. \\
{\([0\) to 9999 / 0 / 1] }
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|}
\hline 2994* & Vts Limitation - Factory \\
\hline 1 & Upper Limit - Factory Only & DFU \\
\hline 2 & Lower Limit - Factory Only & DFU \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 2995* & ID Sensor Detection Interval \\
\hline & Warming-up \\
\hline 1 & \begin{tabular}{l}
This SP controls the temperature at which the ID sensor pattern is created after the machine is turned on, or after the machine returns to full operation from the energy saver or auto off mode. \\
[ 0 to 255/30/1 degree]
\end{tabular} \\
\hline & Number of Pages \\
\hline 2 & \begin{tabular}{l}
The machine makes an ID sensor pattern after the specified number of prints has been made. \\
[0 to 999 / 300 / 1 page/step]
\end{tabular} \\
\hline 3 & Job End/Interrupt \\
\hline & \begin{tabular}{l}
Determines when the ID sensor reads the ID sensor pattern. \\
0: Job End. Read pattern at job end. \\
1: Interrupt. Read pattern at interval set with SP2995-2, even if the job is not completed.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline 2996 & Transfer Roller Cleaning \\
\cline { 2 - 4 } & These SP codes determine how the transfer roller is cleaned. \\
\hline & \begin{tabular}{l} 
0:OFF 1:ON \\
\\
\hline
\end{tabular} \begin{tabular}{l} 
Selects whether the transfer roller is cleaned. Transfer roller cleaning is \\
necessary only when black spots occur in the image areas of copies. This \\
can occur when bad environmental conditions increase the toner density. \\
Set this to "1" when dirty background appears on the reverse side of the first \\
page of a copy job. However, the first copy time will be longer regardless of \\
the SP2996 001 setting. \\
[0 = No / 1 = Yes]
\end{tabular} \\
\hline 2 & \begin{tabular}{l} 
Interval \\
\hline
\end{tabular} \begin{tabular}{l} 
This SP sets the page interval for transfer roller cleaning when SP2996 001 \\
is set to "1" (Yes). Increase this setting only when absolutely necessary. A \\
higher setting increases wear on the PCU. \\
[Oto100/50/1 sheets] \\
Note: This SP does not execute for the first copy after power on or when the \\
machine returns from the energy save or auto off mode. \\
This SP setting does cannot correct poor copies if there is a problem with the \\
TD sensor.
\end{tabular} \\
\hline
\end{tabular}

\footnotetext{
2997*
Standard Vt (Factory Only) DFU
}
\begin{tabular}{|c|c|}
\hline 2998* & PCU Reverse Rotation Time DFU \\
\hline \multirow[b]{2}{*}{1} & Wait Time \\
\hline & \begin{tabular}{l}
Adjusts the waiting time for starting to rotate the drum in reverse after the end of each job. The wait time calculation formula is as follows. \\
[0 to 999 / 600/ 1] \\
This SP is adjusted in units of 30 ms ( 1 step \(=30 \mathrm{~ms}, 2\) steps \(=60 \mathrm{~ms}\), etc.) If " 0 " is selected, the drum reverses immediately at the end of the job.
\end{tabular} \\
\hline \multirow[b]{2}{*}{2} & Reverse Time \\
\hline & \begin{tabular}{l}
Adjusts the drum reverse rotation time. \\
[0 to 99 / 60/1] \\
This SP is adjusted in units of 60 ms ( 1 step \(=6 \mathrm{~ms}, 2\) steps \(=12 \mathrm{~ms}\), etc.) If " 0 " is selected, the drum does not reverse at the end of the job.
\end{tabular} \\
\hline \multirow[b]{2}{*}{3} & Brake Time \\
\hline & \begin{tabular}{l}
Adjusts the length of time of braking to stop reverse rotation of the drum. \\
[0 to 99/60/1] \\
This SP is adjusted in units of 6 ms ( 1 step \(=6 \mathrm{~ms}, 2\) steps \(=12 \mathrm{~ms}\), etc.) If " 0 " is selected, the drum stops reverse rotation immediately. \\
Note: Adjust the SP only if the PCU makes noise during braking when the drum rotation slows. To reduce or eliminate the noise, select a lower setting to reduce the braking time.
\end{tabular} \\
\hline
\end{tabular}

System SP Tables-3

\subsection*{4.3 SYSTEM SP TABLES-3}

\subsection*{4.3.1 SP3XXX}

There are no Group 3 SP codes for this machine.

\subsection*{4.4 SYSTEM SP TABLES-4}

\subsection*{4.4.1 SP4XXX: SCANNER}
\begin{tabular}{|l|l|}
\hline \multirow{3}{*}{\(4008^{*}\)} & Scanner Sub Scan Magnification \\
\cline { 2 - 5 } & \begin{tabular}{l} 
Adjusts the magnification of the sub scan direction during scanning. \\
Changing this value changes the scanner motor speed. Press \(O\) to toggle \\
\(\pm\). \\
{\([-1\) to \(1 / 0 / 0.1 \%]\)}
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{3}{*}{\(4010^{*}\)} & Scanner Leading Edge Registration \\
\cline { 2 - 3 } & \begin{tabular}{l} 
Adjusts the leading edge registration for scanning. Press \(\odot\) to toggle \(\pm\). \\
{\([-2 ~ t o ~ 2 / 0 / 0.1 ~ m m ~] ~\)} \\
As you enter a negative value, the image moves toward the leading edge.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{3}{*}{\(4011^{*}\)} & Scanner Side-to-side Registration \\
\cline { 2 - 4 } & \begin{tabular}{l} 
Adjusts side-to-side registration for scanning. Press \(\odot\) to toggle \(\pm\). \\
C: \([-2.5\) to \(+2.5 / 0.0 / 0.1 \mathrm{~mm}\) step \(]\) \\
M: \([-4.2\) to \(+4.2 / 0.0 / 0.1 \mathrm{~mm}\) step \(]\) \\
As you enter negative values, the image will disappear at the left, and as you \\
enter positive values, the image will appear at the left.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 4012* & \multicolumn{2}{|l|}{Scanner Erase Margin: Scale} \\
\hline & \multicolumn{2}{|l|}{\begin{tabular}{l}
Adjusts the erase margin at each side for scanning in book mode and ADF mode.
\(\square\) \\
- Do not adjust this unless the user wishes to have a scanner margin that is greater than the printer margin. \\
- These settings are adjusted to erase shadows caused by the gap between the original and the scale of the scanner unit.
\end{tabular}} \\
\hline 1 & Book: Leading Edge & [0 to \(3.0 / 1.0 / 0.1 \mathrm{~mm} / \mathrm{step}\) ] \\
\hline 2 & Book: Trailing Edge & [0 to 3.0 / 0.0 / \(0.1 \mathrm{~mm} / \mathrm{step}\) ] \\
\hline 3 & Book: Left & [0 to \(3.0 / 1.0\) / \(0.1 \mathrm{~mm} / \mathrm{step}\) ] \\
\hline 4 & Book: Right & \\
\hline 5 & ADF: Leading Edge & \\
\hline 7 & ADF: Right & \\
\hline 8 & ADF: Left & \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|}
\hline \multirow{2}{*}{4013} & \multicolumn{2}{|l|}{ Scanner Free Run } \\
\cline { 2 - 3 } & \multicolumn{2}{|l|}{ Performs a scanner free run with the exposure lamp on or off. } \\
\hline 001 & Lamp: ON & [0 to \(1 / 0 / 1]\) \\
\(0=\) Off, \(1=\) On
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multirow{3}{*}{4014} & \multicolumn{2}{l|}{ Scanner Free Run } \\
\cline { 2 - 2 } & \begin{tabular}{l} 
Performs a scanner free run with the exposure lamp on. \\
Note: The free run is done for full size (A3/DLT).
\end{tabular} \\
\hline 1 & HP Detection Enable &.\(\quad\)\begin{tabular}{l} 
Touch [Execute] to start this feature. \\
-
\end{tabular} \\
\hline 2 & HP Detection Disable & (Clear/Stop) key to stop. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow[b]{2}{*}{4020} & ADF Scan Glass Dust Check \\
\hline & This function checks the narrow scanning glass of the ADF for dust that can cause black lines in copies. If dust is detected a system banner message is displayed, but processing does not stop. \\
\hline \multirow[t]{2}{*}{} & Check On/Off Change \\
\hline & \begin{tabular}{l}
Issues a warning if there is dust on the narrow scanning glass of the ADF when the original size is detected before a job starts. This function can detect dust on the white plate above the scanning glass, as well as dust on the glass. Sensitivity of the level of detection is adjusted with SP4020 2. \\
[0 to 1 / 0 / 1] \\
0 : Off. No dust warning. \\
1: On. Dust warning. This warning does not stop the job. \\
- Before switching this setting on, clean the ADF scanning glass and the white plate above the scanning glass.
\end{tabular} \\
\hline \multirow[t]{2}{*}{} & Detect Level \\
\hline & \begin{tabular}{l}
Adjusts the sensitivity for dust detection on the ADF scanning glass. This SP is available only after SP4020 1 is switched on. \\
[0 to 8 / 4/ 1] \\
If you see black streaks in copies when no warning has been issued, raise the setting to increase the level of sensitivity. If warnings are issued when you see not black streaks in copies, lower the setting. \\
Note: Dust that triggers a warning could be removed from the glass by the originals in the feed path. If the dust is removed by passing originals, this is not detected and the warning remains on.
\end{tabular} \\
\hline 3 & Correction Level \\
\hline & \begin{tabular}{l}
Selects the level of the sub scan line correction when using the ARDF. [0 to 4 / 0 / 1 /step] \\
0: Off, 1: Weakest, 2: Weak, 3: Strong, 4: Strongest
\end{tabular} \\
\hline
\end{tabular}

System SP Tables-4
\begin{tabular}{|l|l|}
\hline \multirow{3}{*}{4301} & APS Scanner Output Display \\
\cline { 2 - 3 } & \begin{tabular}{l} 
Displays the status of the APS sensors and platen/DF cover sensor (see \\
"APS Output Display").
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{4}{*}{\(4303^{*}\)} & APS A5/LT Size Detection \\
\cline { 2 - 3 } & \begin{tabular}{l} 
Selects if the copier defaults to A5 SEF/LEF if the APS sensor cannot detect \\
the size of a small original. \\
{\([0\) to 2/0/1] } \\
0: Not detected as A5 \\
1: Detected as A5 SEF \\
2: Detected as A5 LEF
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{4}{*}{\(4305^{*}\)} & Original Size Detection \\
\cline { 2 - 4 } & \begin{tabular}{l} 
Selects whether the machine determines that the original is A4/LT, or \\
\(8 \mathrm{~K} / 16 \mathrm{~K}\). \\
\(8 \mathrm{~K} / 16 \mathrm{~K}\) is not available for USA models. \\
{\([0=\) Normal (LT for USA models, A4 for Europe/Asia models) } \\
\(1=\) Reversed [A4 for USA models, LT for Europe/Asia models] \\
\(2=8 \mathrm{~K} / 16 \mathrm{~K}]\)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|}
\hline \multirow{2}{*}{4400} & \multicolumn{2}{|l|}{ Scanner Erase Margin } \\
\cline { 2 - 2 } & \multicolumn{1}{|l|}{ These SPs set the area to be masked during platen (book) mode scanning. } \\
\hline 1 & Book: Leading Edge & \\
\hline 2 & Book: Trailing Edge & \multirow{3}{*}{ [0 to \(3.0 / 0.0 / 0.1 \mathrm{~mm} / \mathrm{step}]\)} \\
\hline 3 & Book: Left & \\
\hline 4 & Book: Right & [0 to \(3.0 / 2.0 / 0.1 \mathrm{~mm} / \mathrm{step}]\) \\
\hline 5 & ADF: Leading Edge & \\
\hline 7 & ADF: Right & {\([0\) to \(3.0 / 0 / 0.1 \mathrm{~mm} / \mathrm{step}]\)} \\
\hline 8 & ADF: Left & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow{18}{*}{4417} & \multicolumn{3}{|l|}{IPU Test Pattern} \\
\hline & \multicolumn{3}{|l|}{Selects the IPU test Pattern.} \\
\hline & \multirow{16}{*}{\begin{tabular}{l}
Test \\
Pattern \\
Selection
\end{tabular}} & \multicolumn{2}{|l|}{[0 to \(28 / 0 / 1]\)} \\
\hline & & 0: Scanned image & 15: Gray pattern (1) \\
\hline & & 1: Gradation main scan A & 16: Gray pattern (2) \\
\hline & & 2: Gradation main scan \(B\) & 17: Gray pattern (3) \\
\hline & & 3: Gradation main scan C & 18: Shading pattern \\
\hline & & 4: Gradation main scan D & 19: Thin line pattern \\
\hline & & 5: Gradation sub scan (1) & 20: Scanned + Grid pattern \\
\hline & & 6: Grid pattern & 21: Scanned + Grid scale \\
\hline & & 7: Slant grid pattern & 22: Scanned + Color patch \\
\hline & & 8: Gradation K & 23: Scanned + Slant Grid C \\
\hline & & 9: Check pattern 16 & 24: Scanned + Slant Grid D \\
\hline & & 10: Gray patch 16 (1) & 25: Gray Scale 18 text \\
\hline & & 11: Gray patch 16 (2) & 26: Gray Scale 18 photo \\
\hline & & 12: Gray patch 64 & 27: Gray Scale 256 text \\
\hline & & 13: Grid pattern (2) & 28: Gray Scale 256 photo \\
\hline & & 14: Color patch K & \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|}
\hline \multirow{2}{*}{4429} & \multicolumn{2}{|l|}{ ICI Output Selection } \\
\cline { 2 - 2 } & \multicolumn{2}{|l|}{ Adjusts the ICI density level. } \\
\hline 1 & Copy & \\
\hline 2 & Scanner & \begin{tabular}{l} 
[32 to \(255 / 128 / 1\) /step] \\
\(255:\) Strongest density
\end{tabular} \\
\hline 3 & Fax & \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|}
\hline \multirow{2}{*}{4450} & \multicolumn{2}{|l|}{ Scan Image Path Detection } \\
\cline { 2 - 3 } & Determines the method of image path detection. \\
\hline 1 & Black Reduction ON/OFF & Switches black image path detection on/off \\
\hline 2 & SH ON/OFf & \begin{tabular}{l} 
Switches shading image path detection \\
on/off
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|}
\hline \multirow{2}{*}{4460} & \multicolumn{2}{|l|}{ Digital AE Setting } \\
\cline { 2 - 3 } & Specifies the detection threshold for background deletion in ADS mode. \\
\hline 1 & Lower Limit & {\([0\) to 1024 / 364 / 4 digit/step \(]\)} \\
\hline 2 & Background Level & {\([512\) to 1532 / 972 / 1 digit/step \(]\)} \\
\hline
\end{tabular}

System SP Tables-4
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{4540} & \multicolumn{2}{|l|}{Printer Vector Correction} \\
\hline & \multicolumn{2}{|l|}{This SP corrects the printer coverage for 12 hues (RY, YR, YG, etc. \(\times 4\) Colors [R, G, B, Option]) for a total of 48 parameters.} \\
\hline 1-4 & RY Phase: Option/R/G/B & \multirow{12}{*}{\begin{tabular}{l}
Specifies the printer vector correction value. \\
[0 to 255 / 0 / 1 /step]
\end{tabular}} \\
\hline 5-8 & YR Phase: Option/R/G/B & \\
\hline 9-12 & YG Phase: Option/R/G/B & \\
\hline 13-16 & GY Phase: Option/R/G/B & \\
\hline 17-20 & GC Phase: Option/R/G/B & \\
\hline 21-24 & CG Phase: Option/R/G/B & \\
\hline 25-28 & CB Phase: Option/R/G/B & \\
\hline 29-32 & BC Phase: Option/R/G/B & \\
\hline 33-36 & BM Phase: Option/R/G/B & \\
\hline 37-40 & MB Phase: Option/R/G/B & \\
\hline 41-44 & MR Phase: Option/R/G/B & \\
\hline 45-48 & RM Phase: Option/R/G/B & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \(4550^{*}\) & Scanner: Text/Chart \\
\hline \(4551^{*}\) & Scanner: Text \\
\hline \(4552^{*}\) & Scanner: Text (Dropout Color) \\
\hline \(4553^{*}\) & Scanner: Text/Photo \\
\hline 4554 & Scanner: Photo \\
\hline 4565 & Scanner: Grayscale \\
\hline 4570 & Scanner: Color: Text/Photo \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 4571 & \multicolumn{2}{|l|}{Scanner: Color: Text/Photo} \\
\hline 4572 & \multicolumn{2}{|l|}{Scanner: Color: Auto Color} \\
\hline 5 & \multicolumn{2}{|l|}{MTF: 0(Off), 1-15 (On)} \\
\hline & \multicolumn{2}{|l|}{\begin{tabular}{l}
[0 to 15 / 8 / 1 /step] \\
0: MTF Off \\
When the CCD converts the original image to electrical signals, the contrast is reduced due to the influence that adjacent white and black pixels have on one another as a result of lens properties. Typically, you may see very narrow width and spacing between black and white areas. MTF corrects this problem and emphasizes image detail.
\end{tabular}} \\
\hline 6 & Smoothing & \begin{tabular}{l}
Selects the level of smoothing for originals that contain dithered images. \\
[0 to 7 / 4 / 0 / step] \\
0 : Default (Off) \(\rightarrow\) 7: Strongest
\end{tabular} \\
\hline 7 & Brightness & \begin{tabular}{l}
Sets the overall brightness of the image.
[1 to 255/128/1] \\
1: Weakest \(\leftarrow 128\) : Default \(\rightarrow\) 255: Strongest
\end{tabular} \\
\hline 8 & Contrast & \begin{tabular}{l}
Sets the overall contrast of the image.
\[
\text { [1 to } 255 / 128 / 1 \text { ] }
\] \\
1: Weakest \(\leftarrow 128\) : Default \(\rightarrow\) 255: Strongest
\end{tabular} \\
\hline 9 & Ind. Dot Erase & \begin{tabular}{l}
Sets the level of independent dot erasure to improve the appearance of background. \\
[0 to 7/0/1] \\
0 : Default (Off) \(\rightarrow\) 7: Strongest
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline 4580 & Fax: Text/Chart \\
\hline 4581 & Fax: Text \\
\hline 4582 & Fax: Text/Photo \\
\hline 4583 & Fax: Photo \\
\hline
\end{tabular}

System SP Tables-4
\begin{tabular}{|c|c|c|}
\hline 4584 & \multicolumn{2}{|l|}{Fax: Original 1} \\
\hline 4585 & \multicolumn{2}{|l|}{Fax: Original 2} \\
\hline 5 & \multicolumn{2}{|l|}{MTF: 0(Off), 1-15 (On)} \\
\hline & \multicolumn{2}{|l|}{\begin{tabular}{l}
[0 to 15 / 8 / 1 /step] \\
0: MTF Off \\
When the CCD converts the original image to electrical signals, the contrast is reduced due to the influence that adjacent white and black pixels have on one another as a result of lens properties. Typically, you will see very narrow width and spacing between black and white areas. MTF corrects this problem and emphasizes image detail.
\end{tabular}} \\
\hline 6 & Smoothing & \begin{tabular}{l}
Selects the level of smoothing for originals that contain dithered images. \\
[0 to 7 / 4 / 0 / step] \\
0 : Default (Off) \(\rightarrow\) 7: Strongest
\end{tabular} \\
\hline 7 & Brightness & \begin{tabular}{l}
Sets the overall brightness of the image.
\[
\text { [1 to } 255 / 128 / 1 \text { ] }
\] \\
1: Weakest \(\leftarrow\) 128: Default \(\rightarrow\) 255: Strongest
\end{tabular} \\
\hline 8 & Contrast & Sets the overall contrast of the image.
\[
\begin{aligned}
& \text { [1 to } 255 / 128 / 1] \\
& \text { 1: Weakest } \leftarrow ~ 128 \text { : Default } \rightarrow \text { 255: Strongest }
\end{aligned}
\] \\
\hline 9 & Ind. Dot Erase & \begin{tabular}{l}
Sets the level of independent dot erasure to improve the appearance of background. \\
[0 to 7/0/1] \\
0 : Default (Off) \(\rightarrow 7\) : Strongest
\end{tabular} \\
\hline 10 & Text Erasure & \begin{tabular}{l}
Sets the erasure level of textures. Set higher for stronger effect, lower for weaker effect. \\
[0 to 2 / 0 / 1 /step] \\
0 : Not activated \\
Note: This SP code exists for SP4580, SP4582 and SP4583 only.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{3}{*}{4600} & SBU Version \\
\cline { 2 - 3 } & Displays the version number of the SBU. \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|}
\hline 4602 & Scanner Memory Erase & \\
\hline 1 & Scanner Memory Access & \begin{tabular}{l} 
Enables the read and write check for the \\
SBU registers.
\end{tabular} \\
\hline 2 & Address Setting & Not used. \\
\hline 3 & Data Set & \\
\hline
\end{tabular}
\begin{tabular}{|r|l|}
\hline \multirow{2}{*}{4603} & AGC Execution DFU \\
\cline { 2 - 3 } & Executes the AGC. \\
\hline 1 & HP Detection Enable \\
\hline 2 & HP Detection Disable \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline 4604 & FGATE Open/Close \\
\cline { 2 - 4 } & \begin{tabular}{l} 
Opens or closes the FGATE signal. This SP automatically returns to the \\
default status (close) after exiting this SP. \\
{\([0\) or \(1 / 0 / 1 /\) step] } \\
\(0:\) OFF, 1: ON \\
Note: \\
\(-\quad\)\begin{tabular}{l} 
When the registration sensor goes ON, the BCU generates the FGATE \\
signal and sends it to the LD units.
\end{tabular} \\
\(-\quad\)\begin{tabular}{l} 
As soon as the LD units receive the FGATE signal, they send a \\
feedback signal to the BCU.
\end{tabular} \\
- SC230, SC231 if the FGATE signal fails to switch on or off.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline 4606 & White Balance Target: \(R\) \\
\hline 4607 & White Balance Target: \(G\) \\
\hline
\end{tabular}

System SP Tables-4
\begin{tabular}{|l|l|}
\hline 4608 & White Balance Target: B \\
\hline & \begin{tabular}{l} 
These SP codes set the target values for R, G, B (Red, Green, Blue) during \\
white level adjustment. \\
[0 to 1024 / 784 / 1 digit/step]
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 4623 & \multicolumn{2}{|l|}{\begin{tabular}{l}
Black Level Fine Adj. Display Note: \\
- RE: Red Even signal \\
- RO: Red Odd signal
\end{tabular}} \\
\hline 1 & Latest: RE Color & \begin{tabular}{l}
Displays the black offset value (rough adjustment) for the even red signal in the CCD circuit board (color printing speed). \\
[0 to 255 / 128 / 1 digit/step]
\end{tabular} \\
\hline 2 & Latest: RO Color & Displays the black offset value (rough adjustment) for the odd red signal in the CCD circuit board (color printing speed). \\
\hline 3 & Latest: RE Color & Displays the black offset value (fine adjustment) for the even red signal in the CCD circuit board (color printing speed). \\
\hline 4 & Latest: RO Color & Displays the black offset value (fine adjustment) for the odd red signal in the CCD circuit board (color printing speed). \\
\hline 5 & Latest: RE BW & Displays the black offset value (rough adjustment) for the even red signal in the CCD circuit board (black and white printing speed). [0 to 255 / 128 / 1 digit/step] \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|}
\hline 6 & Latest: RO BW & \begin{tabular}{l} 
Displays the black offset value (rough adjustment) \\
for the odd red signal in the CCD circuit board \\
(black and white printing speed).
\end{tabular} \\
\hline 7 & Latest: RE BW & \begin{tabular}{l} 
Displays the black offset value (fine adjustment) for \\
the even red signal in the CCD circuit board (black \\
and white printing speed).
\end{tabular} \\
\hline 8 & Latest: RO BW & \begin{tabular}{l} 
Displays the black offset value (fine adjustment) for \\
the odd red signal in the CCD circuit board (black \\
and white printing speed).
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|}
\hline 4624 & \multicolumn{2}{|l|}{\begin{tabular}{l} 
Black Level Rough Adj. Display \\
note: \\
- GE: Green Even signal \\
GO: Green Odd signal
\end{tabular}} \\
\hline 2 & Latest: GE Color & \begin{tabular}{l} 
Displays the black offset value (rough adjustment) \\
for the even green signal in the CCD circuit board \\
(color printing speed). \\
[0 to 255 / 128 / 1 digit/step]
\end{tabular} \\
\hline 2 & Latest: GO Color & \begin{tabular}{l} 
Displays the black offset value (rough adjustment) \\
for the odd green signal in the CCD circuit board \\
(color printing speed).
\end{tabular} \\
\hline 3 & Latest: GE Color & \begin{tabular}{l} 
Displays the black offset value (fine adjustment) for \\
the even green signal in the CCD circuit board \\
(color printing speed).
\end{tabular} \\
\hline 4 & Latest: GO Color & \begin{tabular}{l} 
Displays the black offset value (fine adjustment) for \\
the odd green signal in the CCD circuit board \\
(color printing speed).
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|}
\hline 5 & Latest: GE BW & \begin{tabular}{l} 
Displays the black offset value (rough adjustment) \\
for the even green signal in the CCD circuit board \\
(black and white printing speed). \\
[0 to \(255 / 128 / 1\) digit/step]
\end{tabular} \\
\hline 6 & Latest: GO BW & \begin{tabular}{l} 
Displays the black offset value (rough adjustment) \\
for the odd green signal in the CCD circuit board \\
(black and white printing speed).
\end{tabular} \\
\hline 8 & Latest: GE BW & \begin{tabular}{l} 
Displays the black offset value (fine adjustment) for \\
the even green signal in the CCD circuit board \\
(black and white printing speed).
\end{tabular} \\
\hline & \begin{tabular}{l} 
Displays the black offset value (fine adjustment) for \\
the odd green signal in the CCD circuit board \\
(black and white printing speed).
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 4625 & Black Level Rough/Fine Adj. Display (CS model only) \\
\hline \multirow[b]{2}{*}{001} & Latest: BE Color \\
\hline & \begin{tabular}{l}
[0 to 255 / 128 / 1 digit] \\
Displays the black offset value (rough adjustment) for the even blue signal in the SBU (color printing speed).
\end{tabular} \\
\hline \multirow[b]{2}{*}{002} & Latest: BO Color \\
\hline & \begin{tabular}{l}
[0 to 255 / 128 / 1 digit] \\
Displays the black offset value (rough adjustment) for the odd blue signal in the SBU (color printing speed).
\end{tabular} \\
\hline \multirow[b]{2}{*}{003} & Latest: BE Color \\
\hline & \begin{tabular}{l}
[0 to 255 / 128 / 1 digit] \\
Displays the black offset value (fine adjustment) for the even blue signal in the SBU (color printing speed).
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow[b]{2}{*}{004} & Latest: BO Color \\
\hline & \begin{tabular}{l}
[0 to 255 / 128 / 1 digit] \\
Displays the black offset value (fine adjustment) for the odd blue signal in the SBU (color printing speed).
\end{tabular} \\
\hline \multirow[b]{2}{*}{005} & Latest: BE B/W \\
\hline & \begin{tabular}{l}
[0 to 255 / 128 / 1 digit] \\
Displays the black offset value (rough adjustment) for the even blue signal in the SBU (black and white printing speed).
\end{tabular} \\
\hline \multirow[b]{2}{*}{006} & Latest: BO B/W \\
\hline & \begin{tabular}{l}
[0 to 255 / 128 / 1 digit] \\
Displays the black offset value (rough adjustment) for the odd blue signal in the SBU (black and white printing speed).
\end{tabular} \\
\hline \multirow[b]{2}{*}{007} & Latest: BE B/W \\
\hline & \begin{tabular}{l}
[0 to 255 / 128 / 1 digit] \\
Displays the black offset value (fine adjustment) for the even blue signal in the SBU (black and white printing speed).
\end{tabular} \\
\hline \multirow[b]{2}{*}{008} & Latest: BO B/W \\
\hline & \begin{tabular}{l}
[0 to 255 / 128 / 1 digit] \\
Displays the black offset value (fine adjustment) for the odd blue signal in the SBU (black and white printing speed).
\end{tabular} \\
\hline
\end{tabular}

System SP Tables-4
\begin{tabular}{|r|l|l|}
\hline \multirow{2}{*}{4628} & \multicolumn{2}{|l|}{ Gain Adjustment Display } \\
\cline { 2 - 2 } & \multicolumn{2}{|l|}{ Displays the gain value of the amplifiers on the controller for Red. } \\
\hline 1 & Latest: RE Color & \\
\hline 2 & Latest: RO Color & \multirow{3}{*}{ [0 to \(255 / 0 / 1\) digit/step] } \\
\hline 3 & Latest: RE BW & \\
\hline 4 & Latest: RO BW & \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|}
\hline \multirow{2}{*}{4629} & \multicolumn{2}{|l|}{ Gain Adjustment Display } \\
\cline { 2 - 2 } & \multicolumn{2}{|l|}{ Displays the gain value of the amplifiers on the controller for Green. } \\
\hline 1 & Latest: GE Color & \\
\hline 2 & Latest: GO Color & \\
\hline 3 & L0 to \(255 / 0 / 1\) digit/step] \\
\hline 4 & Latest: GE BW & \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|}
\hline \multirow{2}{*}{4630} & \multicolumn{2}{|l|}{ Gain Adjustment Display } \\
\cline { 2 - 2 } & \multicolumn{2}{|l|}{ Displays the gain value of the amplifiers on the controller for Blue. } \\
\hline 1 & Latest: BE Color & \\
\hline 2 & Latest: BO Color & \\
\hline 3 & L0 to \(255 / 0 / 1\) digit/step] \(]\) \\
\hline 4 & Latest: BO BW & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{4640} & \multicolumn{2}{|l|}{SBU Black Level Loop} & \\
\hline & \multicolumn{2}{|l|}{Displays the black level adjustment time for each mode. The black level adjustment is done twice. The 1st loop decides the reference value for the 2nd loop.} & \\
\hline 1 & Loop Count 1st: Color & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{1st adjustment [0 to 20 / 0 / 1 /step]}} \\
\hline 2 & Loop Count 1st: B/W & & \\
\hline 3 & Loop Count 2nd: Color & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{2nd adjustment [0 to 20 / 0 / 1 /step]}} \\
\hline 4 & Loop Count 2nd: B/W & & \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|}
\hline \multirow{3}{*}{4641} & \multicolumn{2}{|l|}{ SBU White Level Loop } \\
\cline { 2 - 3 } & \multicolumn{2}{|l|}{ Displays the white level adjustment time for each mode. } \\
\hline 1 & Loop Count: Color & \\
\hline 2 & Loop Count: B/W \(20 / 0 / 1\) /step \(]\) \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|}
\hline \multirow{2}{*}{ 4646* } & \multicolumn{1}{|l|}{ SBU Timeout Error } \\
\cline { 2 - 2 } & \begin{tabular}{l} 
Use this SP to determine whether the automatic scanner adjustment loop \\
has exceeded the prescribed number of loops and flagged a timeout.
\end{tabular} \\
\hline 1 & Black Level Adjustment 1 & \\
\hline 2 & Black Level Adjustment 2 & 0: OK \\
\hline 3 & White Level Adjustment & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{3}{*}{4647} & SBU Error \\
\cline { 2 - 3 } & Displays the result of the SBU connection check. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{4654} & \multicolumn{2}{|l|}{Black Level 1: Rough Adj. Display} \\
\hline & \multicolumn{2}{|l|}{RE: Red Even signal, RO: Red Odd signal} \\
\hline 1 & Previous: RE Color & \begin{tabular}{l}
Displays the previous black offset value (rough adjustment) for the even red signal in the CCD circuit board (color printing speed). \\
[0 to 255 / 112 / 1 digit/step]
\end{tabular} \\
\hline 2 & Previous: RO Color & Displays the previous black offset value (rough adjustment) for the odd red signal in the CCD circuit board (color printing speed). \\
\hline 3 & Previous: RE Color & \begin{tabular}{l}
Displays the previous black offset value (fine adjustment) for the even red signal in the CCD circuit board (color printing speed). \\
[ 0 to 255 / 128 / 1 digit/step]
\end{tabular} \\
\hline 4 & Previous: RO Color & Displays the previous black offset value (fine adjustment) for the odd red signal in the CCD circuit board (color printing speed). \\
\hline 5 & Previous: RE BW & Displays the previous black offset value (rough adjustment) for the even red signal in the CCD circuit board (black and white printing speed). [0 to 255 / 112 / 1 digit/step] \\
\hline 6 & Previous: RO BW & Displays the previous black offset value (rough adjustment) for the odd red signal in the CCD circuit board (black and white printing speed). \\
\hline 7 & Previous: RE BW & Displays the previous black offset value (fine adjustment) for the even red signal in the CCD circuit board (black and white printing speed). [ 0 to 255 / 128 / 1 digit/step] \\
\hline 8 & Previous: RO BW & Displays the previous black offset value (fine adjustment) for the odd red signal in the CCD circuit board (black and white printing speed). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{4655} & \multicolumn{2}{|l|}{Black Level 1: Rough Adj. Display} \\
\hline & \multicolumn{2}{|l|}{GE: Green Even signal, GO: Green Odd signal} \\
\hline 1 & Previous: GE Color & \begin{tabular}{l}
Displays the previous black offset value (rough adjustment) for the even green signal in the CCD circuit board (color printing speed). \\
[0 to 255 / 112 / 1 digit/step]
\end{tabular} \\
\hline 2 & Previous: GO Color & Displays the previous black offset value (rough adjustment) for the odd green signal in the CCD circuit board (color printing speed). \\
\hline 3 & Previous: GE Color & \begin{tabular}{l}
Displays the previous black offset value (fine adjustment) for the even green signal in the CCD circuit board (color printing speed). \\
[ 0 to 255 / 128 / 1 digit/step]
\end{tabular} \\
\hline 4 & Previous: GO Color & Displays the previous black offset value (fine adjustment) for the odd green signal in the CCD circuit board (color printing speed). \\
\hline 5 & Previous: GE BW & Displays the previous black offset value (rough adjustment) for the even green signal in the CCD circuit board (black and white printing speed). [0 to 255 / 112 / 1 digit/step] \\
\hline 6 & Previous: GO BW & Displays the previous black offset value (rough adjustment) for the odd green signal in the CCD circuit board (black and white printing speed). \\
\hline 7 & Previous: GE BW & Displays the previous black offset value (fine adjustment) for the even green signal in the CCD circuit board (black and white printing speed). [ 0 to 255 / 128 / 1 digit/step] \\
\hline 8 & Previous: GO BW & Displays the previous black offset value (fine adjustment) for the odd green signal in the CCD circuit board (black and white printing speed). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{4656} & \multicolumn{2}{|l|}{Black Level 1: Rough Adj. Display} \\
\hline & \multicolumn{2}{|l|}{BE: Blue Even signal, BO: Blue Odd signal} \\
\hline 1 & \begin{tabular}{l}
Previous: BE \\
Color
\end{tabular} & \begin{tabular}{l}
Displays the previous black offset value (rough adjustment) for the even blue signal in the CCD circuit board (color printing speed). \\
[ 0 to 255 / 112 / 1 digit/step]
\end{tabular} \\
\hline 2 & \begin{tabular}{l}
Previous: BO \\
Color
\end{tabular} & Displays the previous black offset value (rough adjustment) for the odd blue signal in the CCD circuit board (color printing speed). \\
\hline 3 & \begin{tabular}{l}
Previous: BE \\
Color
\end{tabular} & \begin{tabular}{l}
Displays the previous black offset value (fine adjustment) for the even blue signal in the CCD circuit board (color printing speed). \\
[ 0 to 255 / 128 / 1 digit/step]
\end{tabular} \\
\hline 4 & \begin{tabular}{l}
Previous: BO \\
Color
\end{tabular} & Displays the previous black offset value (fine adjustment) for the odd blue signal in the CCD circuit board (color printing speed). \\
\hline 5 & \begin{tabular}{l}
Previous: BE \\
BW
\end{tabular} & \begin{tabular}{l}
Displays the previous black offset value (rough adjustment) for the even blue signal in the CCD circuit board (black and white printing speed). \\
[0 to 255 / 112 / 1 digit/step]
\end{tabular} \\
\hline 6 & \begin{tabular}{l}
Previous: BO \\
BW
\end{tabular} & Displays the previous black offset value (rough adjustment) for the odd blue signal in the CCD circuit board (black and white printing speed). \\
\hline 7 & Previous: BE
BW & \begin{tabular}{l}
Displays the previous black offset value (fine adjustment) for the even blue signal in the CCD circuit board (black and white printing speed). \\
[ 0 to 255 / 128 / 1 digit/step]
\end{tabular} \\
\hline 8 & \begin{tabular}{l}
Previous: BO \\
BW
\end{tabular} & Displays the previous black offset value (fine adjustment) for the odd blue signal in the CCD circuit board (black and white printing speed). \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|}
\hline \multirow{2}{*}{4658} & \multicolumn{2}{|l|}{ Gain Adjustment Display } \\
\cline { 2 - 2 } & \multicolumn{2}{|l|}{ Displays the previous gain value of the amplifiers on the controller for Red. } \\
\hline 1 & Previous: RE Color & \\
\hline 2 & Previous: RO Color & \\
\hline 3 & Previous: RE BW & to \(255 / 0 / 1\) digit/step \(]\) \\
\hline 4 & Previous: RO BW & \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|}
\hline \multirow{3}{*}{4659} & \multicolumn{2}{|l|}{ Gain Adjustment Display } \\
\cline { 2 - 2 } & \begin{tabular}{l} 
Displays the previous gain value of the amplifiers on the controller for \\
Green.
\end{tabular} \\
\hline 1 & Previous: GE Color & \\
\hline 2 & Previous: GO Color & \multirow{3}{*}{ [0 to \(255 / 0 / 1\) digit/step] } \\
\hline 3 & Previous: GE BW & \\
\hline 4 & Previous: GO BW & \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|}
\hline \multirow{2}{*}{4660} & \multicolumn{2}{|l|}{ Gain Adjustment Display } \\
\cline { 2 - 3 } & \multicolumn{2}{|l|}{ Displays the previous gain value of the amplifiers on the controller for Blue. } \\
\hline 1 & Previous: BE Color & [0 to \(255 / 0 / 1\) digit/step] \\
\hline 2 & Previous: BO Color & \\
\hline 3 & Previous: BE BW & \\
\hline 4 & Previous: BO BW & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{4661} & \multicolumn{2}{|l|}{Black Level 2: Rough Adjustment Display} \\
\hline & \multicolumn{2}{|l|}{RE: Red Even signal, RO: Red Odd signal} \\
\hline 1 & Previous: RE Color & \begin{tabular}{l}
Displays the previous 2nd black offset value (rough adjustment) for the even red signal in the CCD circuit board (color printing speed). \\
[ 0 to 255 / 112 / 1 digit/step]
\end{tabular} \\
\hline 2 & Previous: RO Color & Displays the previous 2nd black offset value (rough adjustment) for the odd red signal in the CCD circuit board (color printing speed). \\
\hline 3 & Previous: RE Color & \begin{tabular}{l}
Displays the previous \(2 n d\) black offset value (fine adjustment) for the even red signal in the CCD circuit board (color printing speed). \\
[ 0 to 255 / 128 / 1 digit/step]
\end{tabular} \\
\hline 4 & Previous: RO Color & Displays the previous 2nd black offset value (fine adjustment) for the odd red signal in the CCD circuit board (color printing speed). \\
\hline 5 & Previous: RE BW & Displays the previous 2nd black offset value (rough adjustment) for the even red signal in the CCD circuit board (black and white printing speed). [ 0 to 255 / 112 / 1 digit/step] \\
\hline 6 & Previous: RO BW & Displays the previous 2nd black offset value (rough adjustment) for the odd red signal in the CCD circuit board (black and white printing speed). \\
\hline 7 & Previous: RE BW & Displays the previous 2 nd black offset value (fine adjustment) for the even red signal in the CCD circuit board (black and white printing speed). [0 to 255 / 128 / 1 digit/step] \\
\hline 8 & Previous: RO BW & Displays the previous 2nd black offset value (fine adjustment) for the odd red signal in the CCD circuit board (black and white printing speed). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{4662} & \multicolumn{2}{|l|}{Black Level 2: Rough Adjustment Display} \\
\hline & \multicolumn{2}{|l|}{GE: Green Even signal, GO: Green Odd signal} \\
\hline 1 & Previous: GE Color & \begin{tabular}{l}
Displays the previous 2nd black offset value (rough adjustment) for the even green signal in the CCD circuit board (color printing speed). \\
[0 to 255 / 112 / 1 digit/step]
\end{tabular} \\
\hline 2 & Previous: GO Color & Displays the previous 2nd black offset value (rough adjustment) for the odd green signal in the CCD circuit board (color printing speed). \\
\hline 3 & Previous: GE Color & \begin{tabular}{l}
Displays the previous 2nd black offset value (fine adjustment) for the even green signal in the CCD circuit board (color printing speed). \\
[0 to 255 / 128 / 1 digit/step]
\end{tabular} \\
\hline 4 & Previous: GO Color & Displays the previous 2nd black offset value (fine adjustment) for the odd green signal in the CCD circuit board (color printing speed). \\
\hline 5 & Previous: GE BW & \begin{tabular}{l}
Displays the previous 2nd black offset value (rough adjustment) for the even green signal in the CCD circuit board (black and white printing speed). \\
[0 to 255 / 112 / 1 digit/step]
\end{tabular} \\
\hline 6 & Previous: GO BW & Displays the previous 2nd black offset value (rough adjustment) for the odd green signal in the CCD circuit board (black and white printing speed). \\
\hline 7 & Previous: GE BW & \begin{tabular}{l}
Displays the previous 2nd black offset value (fine adjustment) for the even green signal in the CCD circuit board (black and white printing speed). \\
[0 to 255 / 128 / 1 digit/step]
\end{tabular} \\
\hline 8 & Previous: GO BW & Displays the previous \(2 n d\) black offset value (fine adjustment) for the odd green signal in the CCD circuit board (black and white printing speed). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{4663} & \multicolumn{2}{|l|}{Black Level 2: Rough Adjustment Display} \\
\hline & \multicolumn{2}{|l|}{BE: Blue Even signal, BO: Blue Odd signal} \\
\hline 1 & Previous: BE Color & \begin{tabular}{l}
Displays the previous 2nd black offset value (rough adjustment) for the even blue signal in the CCD circuit board (color printing speed). \\
[ 0 to 255 / 112 / 1 digit/step]
\end{tabular} \\
\hline 2 & Previous: BO Color & Displays the previous 2nd black offset value (rough adjustment) for the odd blue signal in the CCD circuit board (color printing speed). \\
\hline 3 & Previous: BE Color & \begin{tabular}{l}
Displays the previous \(2 n d\) black offset value (fine adjustment) for the even blue signal in the CCD circuit board (color printing speed). \\
[ 0 to 255 / 128 / 1 digit/step]
\end{tabular} \\
\hline 4 & Previous: BO Color & Displays the previous 2 nd black offset value (fine adjustment) for the odd blue signal in the CCD circuit board (color printing speed). \\
\hline 5 & Previous: BE BW & Displays the previous 2nd black offset value (rough adjustment) for the even blue signal in the CCD circuit board (black and white printing speed). [ 0 to 255 / 112 / 1 digit/step] \\
\hline 6 & Previous: BO BW & Displays the previous 2nd black offset value (rough adjustment) for the odd blue signal in the CCD circuit board (black and white printing speed). \\
\hline 7 & Previous: BE BW & Displays the previous 2 nd black offset value (fine adjustment) for the even blue signal in the CCD circuit board (black and white printing speed). [0 to 255 / 128 / 1 digit/step] \\
\hline 8 & Previous: BO BW & Displays the previous 2nd black offset value (fine adjustment) for the odd blue signal in the CCD circuit board (black and white printing speed). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{4673} & \multicolumn{2}{|l|}{Black Level 2: Rough Adjustment Display} \\
\hline & \multicolumn{2}{|l|}{RE: Red Even signal, RO: Red Odd signal} \\
\hline 1 & \begin{tabular}{l}
Factory Setting: \\
RE Color
\end{tabular} & \begin{tabular}{l}
Displays the factory setting values of the black level adjustment for the even red signal in the CCD circuit board (color printing speed).. \\
[0 to 255 / 112 / 1 digit/step]
\end{tabular} \\
\hline 2 & \begin{tabular}{l}
Factory Setting: \\
RO Color
\end{tabular} & Displays the factory setting values of the black level adjustment (rough adjustment) for the odd red signal in the CCD circuit board (color printing speed). \\
\hline 3 & \begin{tabular}{l}
Factory Setting: \\
RE Color
\end{tabular} & \begin{tabular}{l}
Displays the factory setting values of the black level adjustment (fine adjustment) for the even red signal in the CCD circuit board (color printing speed). \\
[ 0 to 255 / 128 / 1 digit/step]
\end{tabular} \\
\hline 4 & \begin{tabular}{l}
Factory Setting: \\
RO Color
\end{tabular} & Displays the factory setting values of the black level adjustment (fine adjustment) for the odd red signal in the CCD circuit board (color printing speed). \\
\hline 5 & \begin{tabular}{l}
Factory Setting: \\
RE BW
\end{tabular} & Displays the factory setting values of the black level adjustment (rough adjustment) for the even red signal in the CCD circuit board (black and white printing speed). [ 0 to 255 / 112 / 1 digit/step] \\
\hline 6 & \begin{tabular}{l}
Factory Setting: \\
RO BW
\end{tabular} & Displays the factory setting values of the black level adjustment (rough adjustment) for the odd red signal in the CCD circuit board (black and white printing speed). \\
\hline 7 & \begin{tabular}{l}
Factory Setting: \\
RE BW
\end{tabular} & Displays the factory setting values of the black level adjustment (fine adjustment) for the even red signal in the CCD circuit board (black and white printing speed). [ 0 to 255 / 128 / 1 digit/step] \\
\hline 8 & \begin{tabular}{l}
Factory Setting: \\
RO BW
\end{tabular} & Displays the factory setting values of the black level adjustment (fine adjustment) for the odd red signal in the CCD circuit board (black and white printing speed). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{4674} & \multicolumn{2}{|l|}{Black Level 2: Rough Adjustment Display} \\
\hline & \multicolumn{2}{|l|}{GE: Green Even signal, GO: Green Odd signal} \\
\hline 1 & Factory Setting: GE Color & \begin{tabular}{l}
Displays the factory setting values of the black level adjustment (rough adjustment) for the even green signal in the CCD circuit board (color printing speed). \\
[0 to 255 / 112 / 1 digit/step]
\end{tabular} \\
\hline 2 & Factory Setting: GO Color & Displays the factory setting values of the black level adjustment (rough adjustment) for the odd green signal in the CCD circuit board (color printing speed). \\
\hline 3 & Factory Setting: GE Color & \begin{tabular}{l}
Displays the factory setting values of the black level adjustment (fine adjustment) for the even green signal in the CCD circuit board (color printing speed). \\
[ 0 to 255 / 128 / 1 digit/step]
\end{tabular} \\
\hline 4 & Factory Setting: GO Color & Displays the factory setting values of the black level adjustment (fine adjustment) for the odd green signal in the CCD circuit board (color printing speed). \\
\hline 5 & Factory Setting: GE BW & \begin{tabular}{l}
Displays the factory setting values of the black level adjustment (rough adjustment) for the even green signal in the CCD circuit board (black and white printing speed). \\
[0 to 255 / 112 / 1 digit/step]
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|}
\hline 6 & Factory Setting: GO BW & \begin{tabular}{l} 
Displays the factory setting values of the black \\
level adjustment (rough adjustment) for the odd \\
green signal in the CCD circuit board (black and \\
white printing speed).
\end{tabular} \\
\hline 7 & Factory Setting: GE BW & \begin{tabular}{l} 
Displays the factory setting values of the black \\
level adjustment (fine adjustment) for the even \\
green signal in the CCD circuit board (black and \\
white printing speed). \\
[0 to \(255 / 128 / 1\) digit/step]
\end{tabular} \\
\hline 8 & Factory Setting: GO BW & \begin{tabular}{l} 
Displays the factory setting values of the black \\
level adjustment (fine adjustment) for the odd \\
green signal in the CCD circuit board (black and \\
white printing speed).
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{4675} & \multicolumn{2}{|l|}{Black Level 2: Rough Adjustment Display} \\
\hline & \multicolumn{2}{|l|}{BE: Blue Even signal, BO: Blue Odd signal} \\
\hline 1 & \begin{tabular}{l}
Factory Setting: BE \\
Color
\end{tabular} & Displays the factory setting values of the black level adjustment (rough adjustment) for the even blue signal in the CCD circuit board (color printing speed). [ 0 to 255 / 112 / 1 digit/step] \\
\hline 2 & \begin{tabular}{l}
Factory Setting: BO \\
Color
\end{tabular} & Displays the factory setting values of the black level adjustment (rough adjustment) for the odd blue signal in the CCD circuit board (color printing speed) \\
\hline 3 & \begin{tabular}{l}
Factory Setting: BE \\
Color
\end{tabular} & Displays the factory setting values of the black level adjustment (fine adjustment) for the even blue signal in the CCD circuit board (color printing speed). [0 to 255 / 128 / 1 digit/step] \\
\hline 4 & \begin{tabular}{l}
Factory Setting: BO \\
Color
\end{tabular} & Displays the factory setting values of the black level adjustment (fine adjustment) for the odd blue signal in the CCD circuit board (color printing speed). \\
\hline
\end{tabular}

System SP Tables-4
\begin{tabular}{|c|c|c|}
\hline 5 & Factory Setting: BE BW & \begin{tabular}{l}
Displays the factory setting values of the black level adjustment (rough adjustment) for the even blue signal in the CCD circuit board (black and white printing speed). \\
[0 to 255 / 112 / 1 digit/step]
\end{tabular} \\
\hline 6 & Factory Setting: BO BW & Displays the factory setting values of the black level adjustment (rough adjustment) for the odd blue signal in the CCD circuit board (black and white printing speed). \\
\hline 7 & Factory Setting: BE BW & \begin{tabular}{l}
Displays the factory setting values of the black level adjustment (fine adjustment) for the even blue signal in the CCD circuit board (black and white printing speed). \\
[0 to 255 / 128 / 1 digit/step]
\end{tabular} \\
\hline 8 & Factory Setting: BO BW & Displays the factory setting values of the black level adjustment (fine adjustment) for the odd blue signal in the CCD circuit board (black and white printing speed). \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{4677} & \multicolumn{3}{|l|}{ Gain Adjustment Display } \\
\cline { 2 - 2 } & \multicolumn{2}{|l|}{ Displays the factory setting values of the gain adjustment for Red. } \\
\hline 1 & Factory Setting: RE Color & \\
\hline 2 & Factory Setting: RO Color & \multirow{3}{*}{ [0 to \(255 / 0 / 1\) digit/step] } \\
\hline 3 & Factory Setting: RE BW & \\
\hline 4 & Factory Setting: RO BW & \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|}
\hline \multirow{2}{*}{4678} & \multicolumn{2}{|l|}{ Gain Adjustment Display } \\
\cline { 2 - 2 } & \multicolumn{2}{|l|}{ Displays the factory setting values of the gain adjustment for Green. } \\
\hline 1 & Factory Setting: GE Color & \\
\hline 2 & Factory Setting: GO Color & \multirow{3}{*}{ [0 to \(255 / 0 / 1\) digit/step] } \\
\hline 3 & Factory Setting: GE BW & \\
\hline 4 & Factory Setting: GO BW & \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|}
\hline \multirow{2}{*}{4679} & \multicolumn{2}{|l|}{ Gain Adjustment Display } \\
\cline { 2 - 2 } & \multicolumn{2}{|l|}{ Displays the factory setting values of the gain adjustment for Blue. } \\
\hline 1 & Factory Setting: BE Color & \\
\hline 2 & Factory Setting: BO Color & \\
\hline 3 & Fo to \(255 / 0 / 1\) digit/step \\
\hline 4 & Factory Setting: BE BW & \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|}
\hline \multirow{2}{*}{4685} & \multicolumn{2}{|l|}{ Gray Balance Set: R DFU } \\
\cline { 2 - 3 } & \multicolumn{2}{|l|}{ Adjusts the gray balance of the red signal for each scanning mode. } \\
\hline 1 & Book Read & \\
\hline 2 & DF Read & {\([-512\) to \(511 /-240 / 1\) digit/step \(]\)} \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|}
\hline \multirow{2}{*}{4686} & \multicolumn{2}{|l|}{ Gray Balance Set: G DFU } \\
\cline { 2 - 3 } & \multicolumn{2}{|l|}{ Adjusts the gray balance of the green signal for each scanning mode. } \\
\hline 1 & Book Read & \\
\hline 2 & DF Read & {\([-512\) to \(511 /-240 / 1\) digit/step \(]\)} \\
\hline
\end{tabular}

System SP Tables-4
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{4687} & \multicolumn{2}{|l|}{ Gray Balance Set: B DFU } \\
\cline { 2 - 2 } & \multicolumn{2}{|l|}{ Adjusts the gray balance of the blue signal for each scanning mode. } \\
\hline 1 & Book Read & \\
\hline 2 & DF Read & {\([-512\) to \(511 /-240 / 1\) digit/step] } \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{4}{*}{4688} & DF: Density Adjustment \\
\cline { 2 - 4 } & \begin{tabular}{l} 
Adjusts the white shading parameter when scanning an image with the DF. \\
Adjusts the density level if the ID of outputs made in the DF and Platen \\
mode is different. \\
{\([50\) to \(150 / 109 / 1 \% /\) step \(]\)}
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|}
\hline \multirow{2}{*}{4690} & \multicolumn{2}{|l|}{ White Peak Level } \\
\cline { 2 - 2 } & \multicolumn{2}{|l|}{ Displays the peak level of the white level scanning. } \\
\hline 001 & RE & \\
\hline 002 & RO & \multirow{3}{*}{0 to \(1023 / 0 / 1\) digit \(]\)} \\
\hline 003 & RE: BK & \\
\hline 004 & RO: \(B K\) & \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|}
\hline \multirow{2}{*}{4691} & \multicolumn{2}{|l|}{ White Peak Level } \\
\cline { 2 - 2 } & Displays the peak level of the white level scanning. \\
\hline 001 & GE & \\
\hline 002 & GO & \\
\hline 003 & GE: BK to \(1023 / 0 / 1\) digit \(]\) \\
\hline 004 & GO: \(B+\) & \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|}
\hline \multirow{2}{*}{4692} & \multicolumn{2}{|l|}{ White Peak Level } \\
\cline { 2 - 2 } & Displays the peak level of the white level scanning. \\
\hline 001 & BE & \\
\hline 002 & BO & \\
\hline 003 & BE: \(B K\) & to \(1023 / 0 / 1\) digit \(]\) \\
\hline 004 & BO: \(B K\) & \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|}
\hline \multirow{2}{*}{4693} & \multicolumn{2}{|l|}{ Black Peak Level } \\
\cline { 2 - 2 } & \multicolumn{2}{|l|}{ Displays the peak level of the black level scanning. } \\
\hline 001 & RE & \\
\hline 002 & RO & \\
\hline 003 & RE: \(B K\) & to \(1023 / 0 / 1\) digit \(]\) \\
\hline 004 & RO: \(B K\) & \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|}
\hline \multirow{2}{*}{4694} & \multicolumn{2}{|l|}{ Black Peak Level } \\
\cline { 2 - 2 } & \multicolumn{2}{|l|}{ Display the peak level of the black level scanning. } \\
\hline 001 & GE & \\
\hline 002 & GO & \\
\hline 003 & GE: BK & to \(1023 / 0 / 1\) digit \(]\) \\
\hline 004 & GO: BK & \\
\hline
\end{tabular}

System SP Tables-4
\begin{tabular}{|r|l|l|}
\hline \multirow{2}{*}{4695} & \multicolumn{2}{|l|}{ Black Peak Level } \\
\cline { 2 - 2 } & \multicolumn{2}{|l|}{ Display the peak level of the black level scanning. } \\
\hline 001 & BE & \\
\hline 002 & BO & \multirow{4}{*}{ [0 to \(1023 / 0 / 1\) digit \(]\)} \\
\hline 003 & BE: BK & \\
\hline 004 & BO: BK & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline 4800 & SBU ID Check Setting DFU \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|}
\hline \multirow{3}{*}{4802} & \multicolumn{1}{|l|}{ DF Shading Free Run } \\
\cline { 2 - 3 } & \begin{tabular}{l} 
Executes the scanner free run for shading movement with the exposure \\
lamp on or off. The free run moves the scanning lamp a short distance and \\
immediately returns it to its home position.
\end{tabular} \\
\hline 1 & Lamp ON & - \(\quad\)\begin{tabular}{l} 
Touch [ON] to start the free run \\
- Be sure to touch "OFF" to stop the free run.
\end{tabular} \\
\hline 2 & Lamp OFF & - \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{3}{*}{4803} & Home Position Adjustment \\
\cline { 2 - 3 } & \begin{tabular}{l} 
Adjusts the home position of the exposure lamp. \\
{\([-1\) to \(1 / 0.1 / 0.1]\)}
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{3}{*}{4804} & Returning to Scanner HP \\
\cline { 2 - 3 } & \begin{tabular}{l} 
Moves the exposure lamp a short distance and immediately returns it to its \\
home position. Touch [Execute]> "Completed"> [Exit].
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow[b]{2}{*}{4806} & Moving from Scanner HP \\
\hline & \begin{tabular}{l}
Moves the exposure lamp a short distance away from the home position and stops. \\
- Touch [Execute]> "Completed"> [Exit] \\
- Do SP4804 to return the exposure lamp to its home position. \\
Note \\
- This SP is done before shipping the machine to another location. \\
- Turning the machine power off/on also returns the exposure lamp to its home position.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 4903* & \multicolumn{2}{|l|}{Filter Settings} \\
\hline & \multicolumn{2}{|l|}{\begin{tabular}{l}
This SP code sets the threshold value for independent dot erase. \\
- The " 0 " setting disables independent dot erase. \\
- A higher setting detects more spurious dots for erasing. However, this could cause dots to erase in images that contain areas filled by dithering.
\end{tabular}} \\
\hline 1 & Independent Dot Erase: Text/Photo & \multirow{2}{*}{[0 to 7/0/1]} \\
\hline 2 & Independent Dot Erase: Generation & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{3}{*}{\(4905^{*}\)} & Dither Selection DFU \\
\cline { 2 - 3 } & \begin{tabular}{l} 
Changes the parameters for dithering. \\
{\([0\) to \(255 / 0 / 1 /\) step \(]\)}
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multirow{3}{*}{4906} & \multicolumn{2}{|l|}{ Filter Setting: Other } \\
\cline { 2 - 3 } & Outline level Adj & {\([0 / 10 / 0 / 1]\)} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline 4907 & SBU Test Pattern Change \\
\hline & \begin{tabular}{l} 
Selects the test pattern generated by the controller board. \\
[0 to 255 / \(0 / 1\) /step] \\
\(0:\) Default (Scanning Image) \\
1: Grid pattern \\
2: Gradation main scan \\
3: Gradation sub scan \\
4 to 250: Default (Scanning Image)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline 4908 & Factory Setting Input DFU \\
\hline 1 & Execution: ON/OFF \\
\hline 2 & Execution Flag \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline 4918 & Manual Gamma Adjustment DFU \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multirow{3}{*}{4991} & \multicolumn{2}{|l|}{ IPU Image Pass [Path] Selection (RGB Frame Memory) DFU } \\
\cline { 2 - 3 } & \begin{tabular}{l} 
Selects the image path. Enter the number to be selected using the 10-key \\
pad. \\
[0 to 11/ 2/ 1]
\end{tabular} \\
\hline & 0 & Scanner input RGB images \\
\hline & 1 & Scanner I/F RGB images \\
\hline & 3 & \begin{tabular}{l} 
RGB images done by Shading correction (Shading ON, Black offset \\
ON)
\end{tabular} \\
\hline & 4 & Inner pattern data: Gray scale \\
\hline & 5 & RGB images done by Line skipping correction \\
\hline & 6 & RGB images done by Digital AE \\
\hline
\end{tabular}
\begin{tabular}{|l|c|l|}
\hline & 7 & RGB images done by Vertical line correction \\
\hline & 8 & RGB image done by Scanner gamma correction \\
\hline & 9 & RGB image done by Filtering correction \\
\hline & 10 & RGB images done by Full color ADS \\
\hline & 11 & RGB image done by Color correction \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{4993} & \multicolumn{2}{|l|}{Highlight Correction} \\
\hline & \multicolumn{2}{|l|}{Selects the level of highlight correction.} \\
\hline 1 & Sensitivity Selection & \begin{tabular}{l}
Selects the Highlight correction level. \\
[0 to 9 / 4 / 1 /step] \\
0: weakest sensitivity \\
9: strongest sensitivity
\end{tabular} \\
\hline 2 & Range Selection & \begin{tabular}{l}
Selects the range level of Highlight correction. \\
[0 to 9 / 4 / 1 /step] \\
0 : weakest skew correction, \\
9: strongest skew correction
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{4}{*}{4994} & Text/Photo Detection Level Adj. \\
\cline { 2 - 4 } & \begin{tabular}{l} 
Selects the definition level between Text and Photo for high compression \\
PDF. \\
{\([0\) to \(2 / 1\) / 1 /step \(]\)} \\
0: Text priority \\
1: Normal \\
2: Photo priority
\end{tabular} \\
\hline
\end{tabular}

\subsection*{4.5 SYSTEM SP TABLES-5}

\subsection*{4.5.1 SP5XXX: MODE}
\begin{tabular}{|l|l|}
\hline \multirow{3}{*}{\(5024^{\star}\)} & mm/inch Selection \\
\cline { 2 - 3 } & \begin{tabular}{l} 
Selects whether mm or inches are used in the display. \\
Note: After selecting the number, you must turn the main power switch off \\
and on. \\
Europe/Asia model: \([0=\mathrm{mm} / 1=\mathrm{inch}]\) \\
American model: \([0=\mathrm{mm} / 1=\mathrm{inch}]\)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline 5045 & Accounting Counter \\
\hline & Selects whether the printer counter is displayed on the LCD. \\
& {\([0-1 / 0 / 1]\)} \\
& \(0:\) Displays the total counter only. \\
\(1:\) Displays both total counter and printer counter. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline 5047 & Paper Display \\
\hline & \begin{tabular}{l} 
Determines whether the tray loaded with paper printed on one side is \\
displayed. \\
{\([0\) to \(1 / 1]\)} \\
\(0:\) Not displayed \\
\(1:\) Displayed
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{3}{*}{5052} & Return Time Priority Type \\
\cline { 2 - 3 } & \begin{tabular}{l} 
The recovery time of the Basic model is 5 sec. so two settings are provided, \\
one for energy save priority and one for start time priority. \\
0: Energy save priority \\
1: Start time priority
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{3}{*}{\(5055^{*}\)} & Display IP Address \\
\cline { 2 - 2 } & \begin{tabular}{l} 
Display or does not display the IP address on the LCD. \\
{\([0\) to \(1 / 0 / 1]\)} \\
\(0:\) OFF, 1: ON
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \(5056^{*}\) & Coverage Counter Display \\
\hline & \begin{tabular}{l} 
Display or does not display the coverage counter on the LCD. \\
{\([0\) to \(1 / 0\) / 1] } \\
\(0:\) Not displayed, 1: Displayed
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \(5061^{*}\) & Toner Remaining Icon Display \\
\hline & \begin{tabular}{l} 
Display or does not display the remaining toner display icon on the LCD. \\
{\([0\) to 1 / \(\mathbf{~ / ~ 1 ~ ] ~}\)} \\
\(0:\) Not display, 1: Display
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline 5104* & A3/DLT Double Count (SSP) \\
\hline & \begin{tabular}{l} 
Specifies whether the counter is doubled for A3/DLT. "Yes" counts except \\
from the bypass tray. When "Yes" is selected, A3 and DLT paper are \\
counted twice, that is A4 \(\times 2\) and LT \(\times 2\) respectively.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{4}{*}{\(5106^{*}\)} & Density Level Setting \\
\cline { 2 - 4 } & \begin{tabular}{l} 
Selects the image density level used in ADS mode. \\
[1 to \(7 / 4 / 1\) notch per step] \\
Example: If you set SP5106 to "2": Pressing the Auto Image Density key \\
toggles the display off and manual notch 2 is selected. \\
Adjust this SP if the customer cannot attain clean copies after performing \\
automatic density adjustment
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 5113 & Optional Counter Type \\
\hline \multirow[b]{2}{*}{1} & Default Optional Counter Type \\
\hline & \begin{tabular}{l}
Selects the type of counter: \\
0 : None \\
1: Key Card (RK3, 4) Japan only \\
2: Key Card Down \\
3: Pre-paid Card \\
4: Coin Lock \\
5: MF Key Card (Must be enabled with SP5114) \\
11: Exp Key Card (Add) \\
12: Exp Key Card (Deduct)
\end{tabular} \\
\hline \multirow[b]{2}{*}{2} & External Optional Counter Type \\
\hline & \begin{tabular}{l}
Enables the SDK application. This lets you select a number for the external device for user access control. \\
Note: "SDK" refers to software on an SD card. \\
[0 to 3/1] \\
0: None \\
1: Expansion Device 1 \\
2: Expansion Device 2 \\
3: Expansion Device 3
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \(5114^{*}\) & Optional Counter I/F \\
\hline \multirow{3}{*}{001} & \begin{tabular}{l} 
MF Key Card Extension
\end{tabular} \\
\cline { 2 - 3 } & \begin{tabular}{l} 
Use this SP to change the setting to "1" only when the "5" (MF Key Card) is \\
selected with SP5113-001. \\
[0: Not installed/ 1: Installed (scanning accounting)]
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline 5118 & Disable Copying \\
\hline & Temporarily denies access to the machine. Japan Only \\
& {\([0\) to \(1 / 1]\)} \\
& 0: Release for normal operation \\
1: Prohibit access to machine \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{4}{*}{5120} & Mode Clear Opt. Counter Removal \\
\cline { 2 - 4 } & \begin{tabular}{l} 
Do not change. Japan Only \\
{\([0\) to \(2 / 1]\)} \\
0: Yes. Normal reset \\
1: Standby. Resets before job start/after completion \\
2: No. Normally no reset
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline 55121 & Counter Up Timing \\
\cline { 2 - 3 } & \begin{tabular}{l} 
Determines whether the optional key counter counts up at paper feed-in or at \\
paper exit. Japan Only \\
[0 to 1/1] \\
0: Feed count \\
1: No feed count
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{4}{*}{5126} & F Size Original Setting \\
\cline { 2 - 4 } & Selects the F-size original setting. \\
& {\([0\) to \(2 / 0 / 1 /\) step \(]\)} \\
\(0: 8.5^{\prime \prime} \times 13^{\prime \prime}\) (Foolscap) \\
\(1: 8.25 " \times 13^{\prime \prime}\) (Folio) \\
\(2: 8 " \times 13^{\prime \prime}\) (F) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline 5127 & \begin{tabular}{l} 
APS OFF Mode \\
\cline { 2 - 4 }
\end{tabular} \\
\begin{tabular}{l} 
This SP can be used to switch APS (Auto Paper Select) off when a coin lock \\
or pre-paid key card device is connected to the machine. \\
{\([0\) to 1/1] }
\end{tabular} \\
\begin{tabular}{l} 
0: On \\
\(1:\) Off
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{4}{*}{\(5129^{*}\)} & F Paper Size Selection \\
\cline { 2 - 4 } & Selects the "F" paper size. \\
{\([0\) to \(2 / 0 / 1\) step \(]\)} \\
\(0: 8 " \times 13^{\prime \prime}\) \\
\(1: 8.5 " \times 13 "\) \\
\(2: 8.25 " \times 13 "\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{4}{*}{\(5131^{*}\)} & Paper Size Type Selection \\
\cline { 2 - 3 } & \begin{tabular}{l} 
Selects the paper size (type) for both originals and copy paper. \\
[0 to 2 / DIP SW setting / 1 step] \\
0: Japan \\
1: North America \\
2: Europe \\
After changing the setting, turn the copier off and on. If the paper size of the \\
archive files stored on the HDD is different, abnormal copies could result. \\
Ask the customer to restore the archive files.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{4}{*}{5150} & Bypass Length Setting \\
\cline { 2 - 4 } & \begin{tabular}{l} 
Sets up the by-pass tray for long paper. \\
{\([0\) to 1/1] } \\
\(0:\) Off \\
\(1: ~ O n . ~ S e t s ~ t h e ~ t r a y ~ f o r ~ f e e d i n g ~ p a p e r ~ u p ~ t o ~\) \\
\hline
\end{tabular} \\
With this SP selected on, paper jams are not detected in the paper path.
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{4}{*}{5162} & App. Switch Method \\
\cline { 2 - 3 } & \begin{tabular}{l} 
Controls if the application screen is changed with a hardware switch or a \\
software switch. \\
{\([0\) to \(1 / 1]\)} \\
0: Soft Key Set \\
\(1:\) Hard Key Set
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|}
\hline \multirow{3}{*}{5165} & \multicolumn{2}{|l|}{ Z-Fold Position (Not Used) } \\
\cline { 2 - 2 } & \begin{tabular}{l} 
Adjusts the position of the first fold to decrease or increase the distance \\
between the leading edge and the crease of the 2nd fold.
\end{tabular} \\
\hline 1 & A3T (SEF) & \\
\hline 2 & B4T (SEF) & \\
\hline 3 & A4T (SEF) & \\
\hline 4 & DLTT \(\quad\) (SEF) & \\
\hline 5 & LGT (SEF) \(+4 / 0 / 0.2 \mathrm{~mm}]\) \\
\hline 6 & LTT (SEF) & \\
\hline 7 & \(12 \times 18\) (SEF) & \\
\hline 8 & Other & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{3}{*}{5167} & Fax Printing Mode at Optional Counter Off \\
\cline { 2 - 3 } & \begin{tabular}{l} 
Enables or disables the automatic print out without an accounting device. \\
This SP is used when the receiving fax is accounted for by an external \\
accounting device. \\
0: Automatic printing \\
1: No automatic printing
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{4}{*}{5169} & CE Login \\
\cline { 2 - 3 } & \begin{tabular}{l} 
If you will change the printer bit switches, you must 'log in' to service mode \\
with this SP before you go into the printer SP mode. \\
[0 to 1/1] \\
0: Off. Printer bit switches cannot be adjusted. \\
1: On. Printer bit switches can be adjusted.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{3}{*}{ 5179* } & Bypass Size Error \\
\cline { 2 - 3 } & \begin{tabular}{l} 
This SP determines whether a paper size error prompt appears when the \\
machine detects the wrong paper size for the job and jams during feed from the \\
bypass tray. \\
{\([0\) to \(1 / 0 / 1]\)} \\
0: Off \\
1: On
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{4}{*}{5186} & RK 4: Setting Japan Only \\
\cline { 2 - 4 } & \begin{tabular}{l} 
Enables or disables the prevention for RK4 (accounting device) disconnection. \\
If the RK4 is disconnected for 10 seconds when this SP is set to "1 (Enable)", \\
the machine automatically jams a sheet of paper and stops. \\
[0 or \(1 / 0 / 1 /\) step] \\
0: Disable \\
1: Enable
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline 5188 & Copy NV Version DFU \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline 5195 & Limitless SW DFU \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|}
\hline 5212 & \multicolumn{2}{|l|}{ Page Numbering } \\
\hline 3 & Duplex Printout Left/Right Position & \begin{tabular}{l} 
Horizontally positions the page numbers \\
printed on both sides during duplexing. \\
{\([-10\) to \(+10 / 1 \mathrm{~mm}]\)} \\
0 is center, minus is left, + is right.
\end{tabular} \\
\hline 4 & Duplex Printout High/Low Position & \begin{tabular}{l} 
Vertically positions the page numbers \\
printed on both sides during duplexing. \\
{\([-10\) to \(+10 / 1 \mathrm{~mm}]\)} \\
0 is center, minus is down, + is up.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline 55302 & Set Time DFU \\
\cline { 2 - 5 } & \begin{tabular}{l} 
Sets the time clock for the local time. This setting is done at the factory before \\
delivery. The setting is GMT expressed in minutes. \\
{\([-1440\) to \(1440 / 1\) min. \(]\)} \\
JA: +540 (Tokyo) \\
NA: -300 (NY) \\
EU: \(+6-\) (Paris) \\
CH: +480 (Peking) \\
TW: +480 (Taipei) \\
AS: +480 (Hong Kong)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow{9}{*}{5307} & \multicolumn{2}{|l|}{Summer Time} \\
\hline & \multicolumn{2}{|l|}{\begin{tabular}{l}
Lets you set the machine to adjust its date and time automatically with the change to Daylight Savings time in the spring and back to normal time in the fall. This SP lets you set these items: \\
- Day and time to go forward automatically in April. \\
- Day and time to go back automatically in October. \\
- Set the length of time to go forward and back automatically. \\
The settings for 002 and 003 are done with 8 -digit numbers:
\end{tabular}} \\
\hline & Digits & Meaning \\
\hline & 1st, 2nd & Month. 4: April, 10: October (for months 1 to 9 , the first digit of 0 cannot be input, so the eight-digit setting for 002 or 003 becomes a seven-digit setting) \\
\hline & 3rd & Day of the week. 0: Sunday, 1: Monday \\
\hline & 4th & The number of the week for the day selected at the 3 rd digit. If " 0 " is selected for "Sunday", for example, and the selected Sunday is the start of the 2 nd week, then input a " 2 " for this digit. \\
\hline & 5th, 6th & \begin{tabular}{l}
The time when the change occurs (24-hour as hex code). \\
Example: 00:00 (Midnight) \(=00,01: 00(1 \mathrm{a} . \mathrm{m})=\).01 , and so on.
\end{tabular} \\
\hline & 7th & The number of hours to change the time. 1 hour: 1 \\
\hline & 8th & If the time change is not a whole number (1.5 hours for example), digit 8 should be 3 ( 30 minutes). \\
\hline 1 & Setting & \begin{tabular}{l}
Enables/disables the settings for 002 and 003. \\
[0 to 1/1] \\
0 : Disable \\
1: Enable
\end{tabular} \\
\hline 2 & Rule Set (Start) & The start of summer time. \\
\hline 4 & Rule Set (End) & The end of summer time. \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|}
\hline \multirow{2}{*}{5401} & \multicolumn{2}{|l|}{ Access Control DFU } \\
\cline { 2 - 2 } & This SP stores the settings that limit uses access to SDK application data. \\
\hline 103 & Default Document ACL & \\
\hline 200 & SDK1 Unique ID & \\
\hline 201 & SDK1 Certification Method & \\
\hline 210 & SDK2 Unique ID & \begin{tabular}{l} 
DEV" is the "Software \\
Development Kit". This data can be \\
converted from SAS (VAS) when \\
installed or uninstalled. DFU
\end{tabular} \\
\hline 211 & SDK2 Certification Method & \\
\hline 220 & SDK3 Unique ID & \\
\hline 221 & SDK3 Certification Method & \\
\hline 230 & Certification Device & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{3}{*}{5404} & User Code Count Clear \\
\cline { 2 - 3 } & \begin{tabular}{l} 
Clears the counts for the user codes assigned by the key operator to restrict \\
the use of the machine. Press [Execute] to clear.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline 5411 & LDAP Certification \\
\hline & 4 \\
& \begin{tabular}{l} 
Easy Certification \\
Determines whether easy LDAP certification is done. \\
{\([0\) to \(1 / 1 / 1]\)} \\
1: On \\
0: Off
\end{tabular} \\
\hline & \begin{tabular}{l} 
Password Null Not Permit \\
This SP is referenced only when SP5411-4 is set to "1" (On). \\
[0 to 1/0/1] \\
0: Password NULL not permitted. \\
1: Password NULL permitted.
\end{tabular} \\
\hline
\end{tabular}

System SP Tables-5
\begin{tabular}{|l|l|}
\hline 5413 & Lockout Setting \\
\hline 1 & \begin{tabular}{l} 
Lockout On/Off \\
Switches on/off the lock on the local address book account. \\
{\([0\) to 1/0/1] } \\
\(0:\) Off \\
\(1:\) On
\end{tabular} \\
\hline 2 & \begin{tabular}{l} 
Lockout Threshold \\
Sets a limit on the frequency of lockouts for account lockouts. \\
{\([1\) to 10/5/1] }
\end{tabular} \\
\hline 3 & \begin{tabular}{l} 
Cancellation On/Off \\
Determines whether the system waits the prescribed time for input of a \\
correct user ID and password after an account lockout has occurred. \\
{\([0\) to 1/0/1] } \\
0: Off (no wait time, lockout not cancelled) \\
\(1:\) On (system waits, cancels lockout if correct user ID and password are \\
entered.
\end{tabular} \\
\hline 4 & \begin{tabular}{l} 
Cancellation Time \\
Determines the length of time that the system waits for correct input of the \\
user ID and password after a lockout has occurred. This setting is used only \\
if SP5413-3 is set to "1" (on). \\
{\([1\) to 999/60/1 min.] }
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline 5414 & Access Mitigation \\
\hline & \begin{tabular}{ll} 
Mitigation On/Off \\
Switches on/off masking of continuously used IDs and passwords that are \\
identical. \\
[0 to 1/0/1] \\
0: Off \\
1: On
\end{tabular} \\
\hline & \begin{tabular}{l} 
Mitigation Time \\
Sets the length of time for excluding continuous access for identical user IDs \\
and passwords. \\
[0 to 60/15/1 min.]
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline 5415 & Password Attack \\
\hline & \begin{tabular}{l} 
Permissible Number \\
Sets the number of attempts to attack the system with random passwords to \\
gain illegal access to the system. \\
{\([0\) to \(100 / 30 / 1\) attempt \(]\)}
\end{tabular} \\
\hline 2 & \begin{tabular}{l} 
Detect Time \\
Sets the time limit to stop a password attack once such an attack has been \\
detected. \\
{\([1\) to 10/5/1 sec. \(]\)}
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline 5416 & \begin{tabular}{rl} 
Access Information \\
\hline 1 & \begin{tabular}{l} 
Access User Max Number \\
Limits the number of users used by the access exclusion and password \\
attack detection functions. \\
{\([50\) to 200/200/1 users] }
\end{tabular} \\
\hline 2 & \begin{tabular}{l} 
Access Password Max Number \\
Limits the number of passwords used by the access exclusion and \\
password attack detection functions. \\
{\([50\) to 200/200/1 passwords] }
\end{tabular} \\
\hline 3 & \begin{tabular}{l} 
Monitor Interval \\
Sets the processing time interval for referencing user ID and password \\
information. \\
{\([1\) to 10/3/1 sec.] }
\end{tabular} \\
\hline
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline 5417 & Access Attack \\
\hline & \begin{tabular}{l} 
Access Permissible Number \\
Sets a limit on access attempts when an excessive number of attempts are \\
detected for MFP features. \\
{\([0\) to 500/100/1] }
\end{tabular} \\
\hline 2 & \begin{tabular}{l} 
Attack Detect Time \\
Sets the length of time for monitoring the frequency of access to MFP \\
features. \\
{\([10\) to 30/10/1 sec.] }
\end{tabular} \\
\hline 3 & \begin{tabular}{l} 
Productivity Fall Waite \\
Sets the wait time to slow down the speed of certification when an excessive \\
number of access attempts have been detected. \\
{\([0\) to \(9 / 3 / 1\) sec. \(]\)}
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline 4 & \begin{tabular}{l} 
Attack Max Number \\
Sets a limit on the number of requests received for certification in order to \\
slow down the certification speed when an excessive number of access \\
attempts have been detected. \\
{\([50\) to 200/200/1 attempt \(]\)}
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline 5420 & User Authentication \\
\hline & \begin{tabular}{l} 
These settings should be done with the System Administrator. \\
Note: These functions are enabled only after the user access feature has \\
been enabled.
\end{tabular} \\
\hline 1 & Copy \\
\hline 11 & \begin{tabular}{l} 
Determines whether certification is required before a user can use the copy \\
applications. \\
[0 to 1/0/1] \\
0: On \\
1: Off
\end{tabular} \\
\hline 1 \begin{tabular}{l} 
Document Server \\
Determines whether certification is required before a user can use the \\
document server. \\
[0 to 1/0/1] \\
0: On \\
\(1: ~ O f f\)
\end{tabular} \\
\hline 21 & \begin{tabular}{l} 
Fax \\
Determines whether certification is required before a user can use the fax \\
application. \\
[0 to 1/0/1] \\
\(0:\) On \\
\(1: ~ O f f\)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 31 & \multicolumn{2}{|l|}{\begin{tabular}{l}
Scanner \\
Determines whether certification is required before a user can use the scan applications. \\
[0 to 1/0/1] \\
0: On \\
1: Off
\end{tabular}} \\
\hline 41 & \multicolumn{2}{|l|}{\begin{tabular}{l}
Printer \\
Determines whether certification is required before a user can use the printer applications. \\
[0 to 1/0/1] \\
0: On \\
1: Off
\end{tabular}} \\
\hline 51 & SDK1 & \multirow[t]{3}{*}{\begin{tabular}{l}
[0 or 1/ 0 / 1] 0: ON. 1: OFF \\
Determines whether certification is required before a user can use the SDK application.
\end{tabular}} \\
\hline 61 & SDK2 & \\
\hline 71 & SDK3 & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{3}{*}{5481} & Authentication Error Code \\
\cline { 2 - 4 } & \begin{tabular}{rl} 
These SP codes determine how the authentication failures are displayed. \\
\hline & \begin{tabular}{l} 
System Log Disp \\
Determines whether an error code appears in the system log after a user \\
authentication failure occurs. \\
[0 to 1/0/1] \\
0: Off \\
1: On
\end{tabular} \\
\hline 2 & \begin{tabular}{l} 
Panel Disp \\
Determines whether an error code appears on the operation panel after a \\
user authentication failure occurs. \\
[0 to 1/1/1] \\
\(1: ~ O n\) \\
\(0: ~ O f f\)
\end{tabular} \\
\hline
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline 55490 & MF Keycard Japan Only \\
\cline { 2 - 4 } & \begin{tabular}{l} 
Sets up operation of the machine with a keycard. \\
{\([0\) to \(1 / 0 / 1]\)} \\
0: Disabled. Cancels operation if no code is input. \\
1: Enabled. Allows operation if another code is input and decrements the \\
counter once for use of the entered code.
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|l|l|}
\hline \multirow{4}{*}{\(5504^{*}\)} & Jam Alarm Japan Only \\
\cline { 2 - 4 } & \begin{tabular}{l} 
Sets the alarm to sound for the specified jam level (document misfeeds are \\
not included). RSS use only \\
{\([0\) to \(3 / 3 / 1\) step \(]\)} \\
0: Zero (Off) \\
1: Low (2.5K jams) \\
2: Medium (3K jams) \\
3: High (6K jams)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{3}{*}{\(5505^{*}\)} & Error Alarm \\
\cline { 2 - 3 } & \begin{tabular}{l} 
Sets the error alarm level. Japan only DFU \\
[0 to 255 / 50 / 100 copies per step]
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 5507 & Supply Alarm & \\
\hline 1 & Paper Supply Alarm
(0:Off \(1:\) On \()\) & \begin{tabular}{l}
Switches the control call on/off for the paper supply. DFU \\
0 : Off, 1: On \\
0 : No alarm. \\
1: Sets the alarm to sound for the specified number transfer sheets for each paper size (A3, A4, B4, B5, DLT, LG, LT, HLT)
\end{tabular} \\
\hline 2 & \begin{tabular}{l}
Staple Supply Alarm \\
(0:Off 1:On)
\end{tabular} & \begin{tabular}{l}
Switches the control call on/off for the stapler installed in the finisher. DFU \\
0 : Off, 1: On \\
0: No alarm \\
1: Alarm goes off for every 1 K of staples used.
\end{tabular} \\
\hline 3 & Toner Supply Alarm
(0:Off \(1:\) On) & \begin{tabular}{l}
Switches the control call on/off for the toner end \\
DFU \\
0 : Off, 1: On \\
If you select "1" the alarm will sound when the copier detects toner end.
\end{tabular} \\
\hline 128* & interval: Others & \multirow{10}{*}{The "Paper Supply Call Level: nn" SPs specify the paper control call interval for the referenced paper sizes. DFU [00250 to 10000 / 1000 / 1 Step]} \\
\hline 132* & Interval: A3 & \\
\hline 133* & Interval: A4 & \\
\hline 134* & Interval: A5 & \\
\hline 141* & Interval: B4 & \\
\hline 142* & Interval: B5 & \\
\hline 160* & Interval: DLT & \\
\hline 164* & Interval: LG & \\
\hline 166* & Interval: LT & \\
\hline 172* & Interval: HLT & \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|}
\hline 5508 & \multicolumn{2}{|l|}{ CC Call Japan Only } \\
\hline 1 & 2 & \(\begin{array}{l}\text { Jam Remains } \\
\text { Enables/disables initiating a call. } \\
\text { [0 to } 1 / 1] \\
\text { 0: Disable } \\
\text { 1: Enable }\end{array}\) \\
\hline 3 & \(\begin{array}{l}\text { Continuous Jams } \\
\text { Continuous Door } \\
\text { Open }\end{array}\) & \(\begin{array}{l}\text { Jam Detection: Time } \\
\text { Length }\end{array}\)
\end{tabular} \(\left.\begin{array}{l}\text { Sets the length of time to determine the length of an } \\
\text { unattended paper jam. } \\
\text { [03 to 30/1] }\end{array}\right]\)
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{5515} & \multicolumn{2}{|l|}{SC/Alarm Setting} \\
\hline & \multicolumn{2}{|l|}{With NRS (New Remote Service) in use, these SP codes can be set to issue an SC call when an SC error occurs. If this SP is switched off, the SC call is not issued when an SC error occurs.} \\
\hline 1 & SC Call & \multirow{4}{*}{\[
\begin{aligned}
& {[0 \text { or } 1 / 1 /-]} \\
& 0: \text { Off } \\
& \text { 1: On }
\end{aligned}
\]} \\
\hline 2 & Service Parts Near End Call & \\
\hline 3 & Service Parts End Call & \\
\hline 4 & User Call & \\
\hline 6 & Communication Test Call & \multirow[t]{3}{*}{\[
\begin{aligned}
& {\left[\begin{array}{l}
\text { or } 1 / 1 /-] \\
\text { 0: Off } \\
\text { 1: On }
\end{array}\right.}
\end{aligned}
\]} \\
\hline 7 & Machine Information Notice & \\
\hline 8 & Alarm Notice & \\
\hline
\end{tabular}

System SP Tables-5
\begin{tabular}{|r|l|}
\hline 9 & Non Genuine Toner Alarm \\
\hline 10 & Supply Automatic Ordering Call \\
\hline 11 & Supply Management Report Call \\
\hline 12 & Jam/Door Open Call \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline 5792 & MCS Debug Log DFU \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline 5793 & ECS Debug SW DFU \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{5801} & \multicolumn{2}{|l|}{Memory Clear} \\
\hline & \multicolumn{2}{|l|}{Resets NVRAM data to the default settings. Before executing any of these SP codes, print an SMC Report.} \\
\hline 1 & All Clear & Initializes items 2 to 15 below. \\
\hline 2 & Engine & Initializes all registration settings for the engine and copy process settings. \\
\hline 3 & SCS & Initializes default system settings, SCS (System Control Service) settings, operation display coordinates, and ROM update information. \\
\hline 4 & IMH Memory Clear & Initializes the image file system. (IMH: Image Memory Handler) \\
\hline 5 & MCS & \begin{tabular}{l}
Initializes the automatic delete time setting for stored documents. \\
(MCS: Memory Control Service)
\end{tabular} \\
\hline 6 & Copier application & Initializes all copier application settings. \\
\hline 7 & Fax application & Initializes the fax reset time, job login ID, all TX/RX settings, local storage file numbers, and off-hook timer. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 8 & Printer application & Initializes the printer defaults, programs registered, the printer SP bit switches, and the printer CSS counter. \\
\hline 9 & Scanner application & Initializes the defaults for the scanner and all the scanner SP modes. \\
\hline 10 & Web Service & \begin{tabular}{l}
Deletes the Netfile (NFA) management files and thumbnails, and initializes the Job login ID. \\
Netfiles: Jobs to be printed from the document server using a PC and the DeskTopBinder software
\end{tabular} \\
\hline 11 & NCS & \begin{tabular}{l}
Initializes the system defaults and interface settings (IP addresses also), the SmartNetMonitor for Admin settings, WebStatusMonitor settings, and the TELNET settings. \\
(NCS: Network Control Service)
\end{tabular} \\
\hline 12 & R-FAX & Initializes the job login ID, SmartNetMonitor for Admin, job history, and local storage file numbers. \\
\hline 14 & Clear DCS Setting & Initializes the DCS (Delivery Control Service) settings. \\
\hline 15 & Clear UCS Setting & Initializes the UCS (User Information Control Service) settings. \\
\hline 16 & MIRS Setting & Initializes the MIRS (Machine Information Report Service) settings. \\
\hline 17 & CCS & Initializes the CCS (Certification and Charge-control Service) settings. \\
\hline 18 & SRM Memory Clear & Initializes the SRM (System Resource Manager) settings. \\
\hline
\end{tabular}

System SP Tables-5
\begin{tabular}{|r|l|l|}
\hline 19 & LCS & \begin{tabular}{l} 
Initializes the LCS (Log Count Service) \\
settings.
\end{tabular} \\
\hline 20 & Web Apli & Initializes Web application settings. \\
\hline 21 & ECS & Initializes ECS (Engine Control Service). \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multirow{3}{*}{5802} & \multicolumn{2}{|l|}{ Free Run } \\
\cline { 2 - 3 } & \begin{tabular}{l} 
Performs a free run for both scanner and the printer. \\
- \(\quad\) Touch [ON] to start the free run. \\
Touch [OFF] to stop.
\end{tabular} \\
\hline 1 & A4 (LEF)/F1 & \begin{tabular}{l} 
Free run for A4-size paper, long-edge feed, from the \\
upper tray.
\end{tabular} \\
\hline 2 & A3/F2 & Free run for A3-size paper from the lower tray. \\
\hline 3 & A4 (SEF)/F2 & \begin{tabular}{l} 
Free run for A4-size paper, short-edge feed, from the \\
lower tray.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{3}{*}{5803} & Input Check \\
\cline { 2 - 3 } & \begin{tabular}{l} 
Displays signals received from sensors and switches. \\
Press the 怜 (Clear Modes) key to exit
\end{tabular} \\
\hline 1 & Original Size Sensor \\
\hline 2 & ENG Enable Signal \\
\hline 3 & Tray 2: Paper Height Sensor \\
\hline 4 & Tray 1: Paper Height Sensor \\
\hline 5 & Tray 2: Paper End Sensor \\
\hline 6 & Tray 2: Paper Feed Sensor \\
\hline 7 & Warm-up Signal \\
\hline 8 & ENG Down Time Signal \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 9 & Bank Motor Ready Signal \\
\hline 10 & Bank Paper Height Sensor \\
\hline 11 & Bank: Set Sensor \\
\hline 12 & Bank: Cover Open \\
\hline 13 & Fusing Unit Set \\
\hline 14 & Interchange Sensor \\
\hline 15 & Interchange Unit Set \\
\hline 16 & 1-Bin Unit Set \\
\hline 17 & 1-Bin Unit: Paper Set \\
\hline 18 & Tray 1: Paper Feed Sensor \\
\hline 19 & Tray 1: Paper End Sensor \\
\hline 20 & Tray 2: Paper Lift Sensor \\
\hline 21 & Tray 1: Paper Lift Sensor \\
\hline 22 & Tray 3: Paper End Sensor \\
\hline 23 & Tray 4: Paper End Sensor \\
\hline 24 & Tray 3: Paper Lift Sensor \\
\hline 25 & Tray 4: Paper Lift Sensor \\
\hline 26 & Duplex Unit Set \\
\hline 27 & Mechanical Counter Set \\
\hline 28 & By-pass Tray Unit Set \\
\hline 29 & By-pass: Paper End Sensor \\
\hline 30 & By-pass: Paper Size Sensor \\
\hline 31 & Duplex: Entrance Sensor \\
\hline
\end{tabular}

System SP Tables-5
\begin{tabular}{|c|c|}
\hline 32 & Duplex: Exit Sensor \\
\hline 33 & Registration Sensor \\
\hline 34 & Front Safety SW- 24V \\
\hline 35 & Front Safety SW - 5V \\
\hline 36 & Paper Overflow Sensor \\
\hline 37 & Fan Lock \\
\hline 38 & Bottle Lock Motor \\
\hline 39 & Destination Code \\
\hline 40 & SIU: BW/Color \\
\hline 42 & Bridge Exit Sensor \\
\hline 43 & Bridge Relay Sensor \\
\hline 44 & Bridge Center Cover Open \\
\hline 45 & Bridge Right Cover Open \\
\hline 46 & Bridge Unit Set Detection \\
\hline 47 & Bridge Motor Lock \\
\hline 48 & Shift Tray Unit Set \\
\hline 49 & Key Counter Set \\
\hline 50 & Key Card Set \\
\hline 51 & Tray 3: Paper Feed Sensor \\
\hline 52 & Tray 4: Paper Feed Sensor \\
\hline 53 & Tray 3: Paper Size Sensor \\
\hline 54 & Tray 4: Paper Size Sensor \\
\hline 55 & Paper Exit Sensor \\
\hline
\end{tabular}

System SP Tables-5
\begin{tabular}{|r|l|}
\hline 56 & PCU Set \\
\hline 57 & New PCU Sensor \\
\hline 58 & Tray 2: Paper Size Sensor \\
\hline 59 & Tray 1: Paper Size Sensor \\
\hline 60 & Main Motor Ready Signal \\
\hline 61 & Tray 2: Tray Set Sensor \\
\hline 62 & Tray 1: Tray Set Sensor \\
\hline 63 & Right Cover Open \\
\hline 200 & Scanner HP Sensor \\
\hline 201 & Platen Cover Sensor \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|}
\hline 5804 & Output Check \\
\hline 1 & Turns on electrical components individually for test purposes. \\
\hline 2 & Main Motor (Fwd) & Main motor (forward) \\
\hline 3 & Registration CL & Main motor (Reverse) Do not use \\
\hline 5 & \begin{tabular}{l} 
Toner Bottle Motor \\
Sphaust Fan Motor (High
\end{tabular} & Exhaust fan (High Speed) \\
\hline 7 & \begin{tabular}{l} 
Exhaust Fan Motor (Low \\
Speed)
\end{tabular} & Exhaust fan (Low Speed) \\
\hline 9 & 1st Paper Feed CL & Upper paper feed clutch \\
\hline 10 & 2 nd Paper Feed CL & Lower paper feed clutch \\
\hline 11 & 1 1st Paper Tray Up & Upper paper lift motor (Up) \\
\hline
\end{tabular}

System SP Tables-5
\begin{tabular}{|c|c|c|}
\hline 12 & 1st Paper Tray Down & Upper paper lift motor (Down) \\
\hline 13 & 2nd Paper Tray Up & Lower paper lift motor (Up) \\
\hline 14 & 2nd Paper Tray Down & Lower paper lift motor (Down) \\
\hline 15 & Paper Transport CL1 & Upper relay clutch \\
\hline 16 & Paper Transport CL2 & Lower relay clutch \\
\hline 17 & Fuser Drive Cancel SOL & Fusing drive release solenoid \\
\hline 21 & Paper Transport CL3 & Relay clutch (Optional paper tray unit) \\
\hline 22 & 3rd Paper Feed CL & Upper paper feed clutch (Optional paper tray unit) \\
\hline 23 & 4th Paper Feed CL & Lower paper feed clutch (Optional paper tray unit) \\
\hline 24 & Paper Bank Motor & Tray motor (Optional paper tray unit) \\
\hline 25 & 3rd/LCT Tray Up & Upper Paper lift motor (Up) (Optional paper tray unit or LCT) \\
\hline 26 & 3rd/LCT Tray Down & Upper paper lift motor (Down) (Optional paper tray unit or LCT) \\
\hline 27 & 4th Tray Up & Lower paper lift motor (Up) (Optional paper tray unit) \\
\hline 28 & 4th Tray Down & Lower paper lift motor (Down) (Optional paper tray unit) \\
\hline 33 & Exit Junction Gate SOL (Upper Unit) & Exit junction gate (Optional interchange unit) \\
\hline 41 & Interchange Motor CCW & Interchange motor (Reverse) (Optional duplex unit) \\
\hline 42 & Interchange Sensor SW & Interchange sensor \\
\hline 43 & Duplex Motor & Duplex transport motor (Optional duplex unit) \\
\hline 44 & Duplex SOL & Inverter gate solenoid (Optional duplex unit) \\
\hline
\end{tabular}

System SP Tables-5
\begin{tabular}{|c|c|c|}
\hline 51 & Relay Fan Motor & Bridge cooling fan motor (Optional bridge unit) \\
\hline 52 & Relay Transport Motor & Bridge unit drive motor (Optional bridge unit) \\
\hline 53 & Relay SOL & Junction gate solenoid (Optional bridge unit) \\
\hline 54 & Total Counter & Total counter \\
\hline 60 & Polygon Motor & Polygonal mirror motor \\
\hline 61 & Polygon Motor & Polygonal mirror motor and laser diode \\
\hline 62 & LD ON & Laser diode - Do not use \\
\hline 107 & QL & \\
\hline 108 & PP. Chrg. & \\
\hline 109 & PP. Development & \\
\hline 110 & PP. Image Transfer & \\
\hline 111 & PP. Separation Voltage & \\
\hline 202 & Scanner Lamp & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline 5810 & SC Reset \\
\cline { 2 - 4 } & \begin{tabular}{l} 
Resets all level A service call conditions, such as fusing errors. To clear the \\
service call, touch "Execute" on the LCD, then turn the main power switch \\
off/on.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{3}{*}{5811} & Machine No. Setting DFU \\
\cline { 2 - 3 } & \begin{tabular}{l} 
This SP presents the screen used to enter the 11-digit number of the \\
machine. The allowed entries are "A" to " Z " and "0" to " 9 ". The setting is \\
done at the factory, and should not be changed in the field.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|}
\hline 5812 & & Service Tel. No. Setting \\
\hline & 1 & Service
\end{tabular} \begin{tabular}{l} 
Inputs the telephone number of the CE (displayed when a \\
service call condition occurs.)
\end{tabular}\(|\)\begin{tabular}{lll|}
\hline 2 & Facsimile & \begin{tabular}{l} 
Use this to input the fax number of the CE printed on the \\
Counter Report (UP mode). Not Used
\end{tabular} \\
\hline 3 & Supply & Displayed on the initial SP screen. \\
\hline 4 & Operation & \begin{tabular}{l} 
Allows the service center contact telephone number to be \\
displayed on the initial screen.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 5816 & Remote Service \\
\hline \multirow[b]{2}{*}{001} & I/F Setting \\
\hline & \begin{tabular}{l}
Selects the remote service setting. \\
[0 to 2 / 2 / 1 /step] \\
0 : Remote service off \\
1: CSS remote service on \\
2: @Remote service on
\end{tabular} \\
\hline \multirow[b]{2}{*}{002} & CE Call \\
\hline & \begin{tabular}{l}
Performs the CE Call at the start or end of the service. \\
[0 or 1 / 0 / 1 /step] \\
0 : Start of the service \\
1: End of the service \\
NOTE: This SP is activated only when SP \(5816-001\) is set to " 2 ".
\end{tabular} \\
\hline \multirow[b]{2}{*}{003} & Function Flag \\
\hline & \begin{tabular}{l}
Enables or disables the remote service function. \\
[0 to 1 / 0 / 1 /step] \\
0 : Disabled, 1: Enabled \\
NOTE: This SP setting is changed to "1" after @Remote registor has been completed.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow[b]{2}{*}{007} & SSL Disable \\
\hline & \begin{tabular}{l}
Uses or does not use the RCG certification by SSL when calling the RCG. [0 to 1 / 0 / 1 /step] \\
0 : Uses the RCG certification \\
1: Does no use the RCG certification
\end{tabular} \\
\hline \multirow[b]{2}{*}{008} & RCG Connect Timeout \\
\hline & Specifies the connect timeout interval when calling the RCG. [1 to \(90 / \mathbf{1 0} / 1\) second /step] \\
\hline \multirow[b]{2}{*}{009} & RCG Write Timeout \\
\hline & Specifies the write timeout interval when calling the RCG. [1 to 100 / 60 / 1 second /step] \\
\hline \multirow[b]{2}{*}{010} & RCG Read Timeout \\
\hline & Specifies the read timeout interval when calling the RCG. [1 to 100 / \(60 / 1\) second /step] \\
\hline \multirow[b]{2}{*}{011} & Port 80 Enable \\
\hline & \begin{tabular}{l}
Enables/disables access via port 80 to the SOAP method. \\
[ 0 or \(1 / 0 /-\) ] \\
0 : Disabled, 1: Enabled
\end{tabular} \\
\hline \multirow[b]{2}{*}{013} & RFU (Remote Frimware Update) Timing \\
\hline & \begin{tabular}{l}
Selects the RFU timing. \\
[0 or \(1 / 1 /-\) ] \\
0 : RFU is executed whenever update request is received. \\
1: RFU is executed only when the machine is in the sleep mode.
\end{tabular} \\
\hline \multirow[b]{2}{*}{021} & RCG - C Registed \\
\hline & \begin{tabular}{l}
This SP displays the Embedded RC Gate installation end flag. \\
0: Installation not completed \\
1: Installation completed
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow[b]{2}{*}{022} & RCG - C Regist Detail \\
\hline & \begin{tabular}{l}
This SP displays the Embedded RC Gate installation status. \\
0 : RCG device not registered \\
1: RCG device registered \\
2: Device registered
\end{tabular} \\
\hline \multirow[b]{2}{*}{023} & Connect Type (N/M) \\
\hline & \begin{tabular}{l}
This SP displays and selects the Embedded RC Gate connection method. \\
[0 or 1 / 0 / 1 /step \\
0 : Internet connection \\
1: Dial-up connection
\end{tabular} \\
\hline \multirow{2}{*}{061} & Cert. Expire Timing DFU \\
\hline & Proximity of the expiration of the certification. \\
\hline \multirow[b]{2}{*}{062} & Use Proxy \\
\hline & This SP setting determines if the proxy server is used when the machine communicates with the service center. \\
\hline \multirow[b]{2}{*}{063} & Proxy Host \\
\hline & \begin{tabular}{l}
This SP sets the address of the proxy server used for communication between Embedded RC Gate-N and the gateway. Use this SP to set up or display the customer proxy server address. The address is necessary to set up Embedded RC Gate-N. \\
Nole \\
- The address display is limited to 128 characters. Characters beyond the 128 character are ignored. \\
- This address is customer information and is not printed in the SMC report.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow[b]{2}{*}{064} & Proxy Port Number \\
\hline & \begin{tabular}{l}
This SP sets the port number of the proxy server used for communication between Embedded RC Gate-N and the gateway. This setting is necessary to set up Embedded RC Gate-N.
\(\square\) \\
- This port number is customer information and is not printed in the SMC report.
\end{tabular} \\
\hline \multirow[b]{2}{*}{065} & Proxy User Name \\
\hline & \begin{tabular}{l}
This SP sets the HTTP proxy certification user name. \\
Nole \\
- The length of the name is limited to 31 characters. Any character beyond the 31st character is ignored. \\
- This name is customer information and is not printed in the SMC report.
\end{tabular} \\
\hline \multirow[b]{2}{*}{066} & Proxy Password \\
\hline & \begin{tabular}{l}
This SP sets the HTTP proxy certification password. \\
Nole \\
- The length of the name is limited to 31 characters. Any character beyond the 31st character is ignored. \\
- This name is customer information and is not printed in the SMC report.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 067 & \multicolumn{2}{|l|}{CERT: Up State} \\
\hline & \multicolumn{2}{|l|}{Displays the status of the certification update.} \\
\hline 0 & & The certification used by Embedded RC Gate is set correctly. \\
\hline 1 & & The certification request (setAuthKey) for update has been received from the GW URL and certification is presently being updated. \\
\hline 2 & & The certification update is completed and the GW URL is being notified of the successful update. \\
\hline 3 & & The certification update failed, and the GW URL is being notified of the failed update. \\
\hline 4 & & The period of the certification has expired and new request for an update is being sent to the GW URL. \\
\hline & 11 & A rescue update for certification has been issued and a rescue certification setting is in progress for the rescue GW connection. \\
\hline 12 & & The rescue certification setting is completed and the GW URL is being notified of the certification update request. \\
\hline 13 & & The notification of the request for certification update has completed successfully, and the system is waiting for the certification update request from the rescue GW URL. \\
\hline 14 & & The notification of the certification request has been received from the rescue GW controller, and the certification is being stored. \\
\hline 15 & & The certification has been stored, and the GW URL is being notified of the successful completion of this event. \\
\hline 16 & & The storing of the certification has failed, and the GW URL is being notified of the failure of this event. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 17 & & \multicolumn{2}{|l|}{The certification update request has been received from the GW URL, the GW URL was notified of the results of the update after it was completed, but a certification error has been received, and the rescue certification is being recorded.} \\
\hline 18 & & \multicolumn{2}{|l|}{The rescue certification of No. 17 has been recorded, and the GW URL is being notified of the failure of the certification update.} \\
\hline \multicolumn{4}{|c|}{CERT: Error} \\
\hline \multirow{8}{*}{068} & \multicolumn{3}{|l|}{Displays a number code that describes the reason for the request for update of the certification.} \\
\hline & 0 & Normal. There & equest for certification update in progress. \\
\hline & 1 & Request for ce has expired. & ion update in progress. The current certification \\
\hline & 2 & An SSL error n has expired. & ion has been issued. Issued after the certification \\
\hline & 3 & Notification of certification. & a common authentication to an individual \\
\hline & 4 & Notification of a & mon certification without ID2. \\
\hline & 5 & Notification tha & ertification was issued. \\
\hline & 6 & Notification tha & URL does not exist. \\
\hline 069 & \multicolumn{2}{|l|}{CERT: Up ID} & The ID of the request for certification. \\
\hline 083 & \multicolumn{2}{|l|}{Firmware Up Status} & Displays the status of the firmware update. \\
\hline 084 & \multicolumn{2}{|l|}{Non-HDD Firm Up} & \begin{tabular}{l}
This setting determines if the firmware can be updated, even without the HDD installed. \\
0 : Not allowed update \\
1: Allowed update
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 085 & Firm Up User Check & This SP setting determines if the operator can confirm the previous version of the firmware before the firmware update execution. If the option to confirm the previous version is selected, a notification is sent to the system manager and the firmware update is done with the firmware files from the URL. \\
\hline 086 & Firmware Size & Allows the service technician to confirm the size of the firmware data files during the firmware update execution. \\
\hline 087 & CERT: Macro Ver. & Displays the macro version of the @Remote certification. \\
\hline 088 & CERT: PAC Ver. & Displays the PAC version of the @Remote certification. \\
\hline 089 & CERT: ID2 Code & Displays ID2 for the @Remote certification. Spaces are displayed as underscores ( \()\) ). Asteriskes (*) indicate that no @Remote certification exists. "000000 \(\qquad\) indicates "Common certification". \\
\hline 090 & CERT: Subject & Displays the common name of the @Remote certification subject. CN = the following 17 bytes. Spaces are displayed as underscores ( \(\_\)). Asterisks (*) indicate that no @Remote certification exists. "000000 \(\qquad\) indicates "Common certification". \\
\hline 091 & CERT: Serial No. & Displays serial number for the @Remote certification. Asterisks (*) indicate that no @Remote certification exists. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 092 & CERT: Issuer & Displays the common name of the issuer of the @Remote certification. CN = the following 30 bytes. Asteriskes () indicate that no @Remote certification exists. \\
\hline 093 & CERT: Valid Start & Displays the start time of the period for which the current @Remote certification is enabled. \\
\hline 094 & CERT: Valid End & Displays the end time of the period for which the current @Remote certification is enabled. \\
\hline \multirow{2}{*}{150} & \multicolumn{2}{|l|}{Selection Country} \\
\hline & \multicolumn{2}{|l|}{Not used} \\
\hline \multirow{2}{*}{151} & \multicolumn{2}{|l|}{Line Type Automatic Judgment} \\
\hline & \multicolumn{2}{|l|}{Not used} \\
\hline \multirow{2}{*}{152} & \multicolumn{2}{|l|}{Line Type Judgment Result} \\
\hline & \multicolumn{2}{|l|}{Not used} \\
\hline \multirow{2}{*}{153} & \multicolumn{2}{|l|}{Selection Dial/Push} \\
\hline & \multicolumn{2}{|l|}{Not used} \\
\hline \multirow{2}{*}{154} & \multicolumn{2}{|l|}{Outside Line/Outgoing Number} \\
\hline & \multicolumn{2}{|l|}{- Not used} \\
\hline \multirow{2}{*}{156} & \multicolumn{2}{|l|}{Dial Up User Name} \\
\hline & \multicolumn{2}{|l|}{- Not used} \\
\hline \multirow{2}{*}{157} & \multicolumn{2}{|l|}{Dial Up Password} \\
\hline & - Not used & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow{2}{*}{161} & \multicolumn{3}{|l|}{Local Phone Number} \\
\hline & \multicolumn{3}{|l|}{Not used} \\
\hline \multirow{2}{*}{162} & \multicolumn{3}{|l|}{Connection Timing Adjustment: Incoming} \\
\hline & \multicolumn{3}{|l|}{Not used} \\
\hline \multirow{2}{*}{163} & \multicolumn{3}{|l|}{Access Point} \\
\hline & \multicolumn{3}{|l|}{Not used} \\
\hline \multirow{2}{*}{164} & \multicolumn{3}{|l|}{Line Connecting} \\
\hline & \multicolumn{3}{|l|}{Not used} \\
\hline 173 & Modem Serial Number & \multicolumn{2}{|l|}{Not used} \\
\hline \multirow{2}{*}{174} & \multicolumn{3}{|l|}{Retransmission Limit} \\
\hline & \multicolumn{3}{|l|}{Not used} \\
\hline \multirow{2}{*}{187} & FAX TX Priority & \multicolumn{2}{|l|}{} \\
\hline & \multicolumn{3}{|l|}{Not used} \\
\hline 200 & Manual Polling & & Not used \\
\hline & \multicolumn{3}{|l|}{Regist: Status} \\
\hline 201 & \multicolumn{3}{|l|}{\begin{tabular}{l}
Displays a number that indicates the status of the @Remote service device. \\
0: Neither the @Remote device nor Embedded RCG Gate is set. \\
1: The Embedded RCG Gate is being set. Only Box registration is completed. In this status, @Remote device cannot communicate with this device. \\
2: The Embedded RCG Gate is set. In this status, the @Remote device cannot communicate with this device. \\
3: The @Remote device is being set. In this status the Embedded RCG Gate cannot be set. \\
4: The @Remote module has not started.
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|}
\hline 202 & Letter Number & \begin{tabular}{l} 
Allows entry of the request number needed for the \\
Embedded RCG Gate.
\end{tabular} \\
\hline 203 & Confirm Execute & \begin{tabular}{l} 
Executes the confirmation request to the @Remote \\
Gateway.
\end{tabular} \\
\hline 204 & Confirm Result & \begin{tabular}{l} 
Displays a number that indicates the result of the confirmation executed with \\
SP5816-203. \\
0: Succeeded \\
1: Confirmation number error \\
2: Registration in progress \\
3: Proxy error (proxy enabled) \\
4: Proxy error (proxy disabled) \\
5: Proxy error (Illegal user name or password) \\
6: Communication error \\
7: Certification update error
\end{tabular} \\
\hline & \begin{tabular}{l} 
8: Other error \\
9: Confirmation executing
\end{tabular} \\
\hline 205 & \begin{tabular}{l} 
Confirm Place \\
\\
\hline 206 \\
Displays the result of the notification sent to the device from the Gateway in \\
answer to the confirmation request. Displayed only when the result is \\
registered at the Gateway.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{207} & \multicolumn{3}{|l|}{Register Result} \\
\hline & \multicolumn{3}{|l|}{\begin{tabular}{l}
Displays a number that indicates the registration result. \\
0: Succeeded \\
2: Registration in progress \\
3: Proxy error (proxy enabled) \\
4: Proxy error (proxy disabled) \\
5: Proxy error (Illegal user name or password) \\
6: Communication error \\
7: Certification update error \\
8: Other error \\
9: Registration executing
\end{tabular}} \\
\hline \multirow[b]{2}{*}{208} & \multicolumn{3}{|l|}{Error Code} \\
\hline & \multicolumn{3}{|l|}{Displays a number that describes the error code that was issued when either SP5816-204 or SP5816-207 was executed.} \\
\hline & Cause & Code & Meaning \\
\hline & \multirow{3}{*}{\begin{tabular}{l}
Illegal Modem \\
Parameter
\end{tabular}} & -11001 & Chat parameter error \\
\hline & & -11002 & Chat execution error \\
\hline & & -11003 & Unexpected error \\
\hline & \multirow{3}{*}{\begin{tabular}{l}
Operation Error, \\
Incorrect Setting
\end{tabular}} & -12002 & Inquiry, registration attempted without acquiring device status. \\
\hline & & -12003 & Attempted registration without execution of an inquiry and no previous registration. \\
\hline & & -12004 & Attempted setting with illegal entries for certification and ID2. \\
\hline & & -12005 & @Remote communication is prohibited. The device has an Embedded RC gate-related problem. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & & -12006 & A confirmation request was made after the confirmation had been already completed. \\
\hline & & -12007 & The request number used at registration was different from the one used at confirmation. \\
\hline & & -12008 & Update certification failed because mainframe was in use. \\
\hline & & -2385 & Attempted dial up overseas without the correct international prefix for the telephone number. \\
\hline & & -2387 & Not supported at the Service Center \\
\hline & Response from GW & -2389 & Database out of service \\
\hline & & -2390 & Program out of service \\
\hline & & -2391 & Two registrations for same device \\
\hline & & -2392 & Parameter error \\
\hline & & -2393 & RCG device not managed \\
\hline & & -2394 & Device not managed \\
\hline & & -2395 & Box ID for RCG device is illegal \\
\hline & & -2396 & Device ID for RCG device is illegal \\
\hline & & -2397 & Incorrect ID2 format \\
\hline & & -2398 & Incorrect request number format \\
\hline 209 & Instl Clear & \begin{tabular}{l}
Releas \\
Gate se \\
NOTE: \\
this set
\end{tabular} & \begin{tabular}{l}
the machine from its Embedded RCG p. \\
urn off and on the main power switch after g has been changed.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline 250 & CommLog Print & Prints the communication log. \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|}
\hline 5821 & \multicolumn{2}{|l|}{ Remote Service Address Japan Only } \\
\hline 1 & CSS PI Device Code & \begin{tabular}{l} 
Sets the PI device code. After you change this \\
setting, you must turn the machine off and on.
\end{tabular} \\
\hline 2 & RCG IP Address & \begin{tabular}{l} 
Sets the IP address of the RCG (Remote \\
Communication Gate) destination for call \\
processing at the remote service center. \\
{\([00000000\) hoFFFFFFFFFh/1] }
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{3}{*}{5824} & NVRAM Data Upload \\
\cline { 2 - 3 } & \begin{tabular}{l} 
Uploads the NVRAM data to an SD card (B140). Push Execute. \\
Note: When uploading data in this SP mode, the front door must be open.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline 5825 & NVRAM Data Download \\
\cline { 2 - 3 } & \begin{tabular}{l} 
Downloads data from an SD card to the NVRAM in the machine. After \\
downloading is completed, remove the card and turn the machine power off \\
and on.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline 5828 & Network Setting \\
\hline 1 & IPv4 Address (Ethernet/IEEE 802.11) \\
\hline & \begin{tabular}{l} 
This SP allows you to confirm and reset the IPv4 address for Ethernet and a \\
wireless LAN (802.11): \\
aaa.bbb.ccc.ddd \\
For example, if the 8-bit entry is "192.168.000.001" this is read \\
"OCOA80001h"
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|r|l|}
\hline 2 & IPv4 Subnet Mask (Ethernet/IEEE 802.11) \\
\hline & \begin{tabular}{l} 
This SP allows you to confirm and reset the IPv4 subnet mask for Ethernet \\
and a wireless LAN (802.11): \\
aaa.bbb.ccc.ddd \\
For example, if the 8-bit entry is "255.255.255.00" this is read "FFFFFF00h".
\end{tabular} \\
\hline 3 & \begin{tabular}{l} 
IPv4 Default Gateway (Ethernet/IEEE 802.11)
\end{tabular} \\
\hline & \begin{tabular}{l} 
This SP allows you to confirm and reset the IPv4 default gateway used by the \\
network for Ethernet and wireless LAN (802.11): \\
aaa.bbb.ccc.ddd \\
For example, if the 8-bit entry is "192.169.000.001" this is read \\
"0COA80001h"
\end{tabular} \\
\hline 6 & \begin{tabular}{l} 
DHCP (Ethernet/IEEE 802.11)
\end{tabular} \\
\hline This SP code allows you confirm and change the setting that determines \\
whether the IP address is used with DHCP on an Ethernet or wireless \\
(802.11) LAN network. \\
[0 to 1/1/0] \\
\(0:\) Not used (manual setting) \\
1: Used
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline 2 & \multicolumn{2}{|l|}{IPP} & Reserved (Not Used) \\
\hline 3 & \multicolumn{2}{|l|}{SMB} & Reserved (Not Used) \\
\hline 90 & \multicolumn{3}{|l|}{TELNET (0:OFF 1:ON)} \\
\hline & \multicolumn{3}{|l|}{\begin{tabular}{l}
Disables or enables Telnet operation. If this SP is disabled, the Telnet port is closed. \\
[0 to 1/1] \\
0: Disable \\
1: Enable
\end{tabular}} \\
\hline 91 & \multicolumn{3}{|l|}{Web Operation (0:OFF 1:ON)} \\
\hline & \multicolumn{3}{|l|}{\begin{tabular}{l}
Disables or enables the Web operation. \\
[0 to 1/1] \\
0 : Disable \\
1: Enable
\end{tabular}} \\
\hline 145 & \multicolumn{3}{|l|}{ActIPv6LinkLocal} \\
\hline & \multicolumn{3}{|l|}{\begin{tabular}{l}
This is the IPv6 local address referenced on the Ethernet or wireless LAN (802.11) in the format: \\
"Link-Local address" + "Prefix Length" \\
The IPv6 address consists of a total 128 bits configured in 8 blocks of 16 bits each. These notations can be abbreviated. See "Note: IPV6 Addresses " below this table.
\end{tabular}} \\
\hline 147 & ActIPv6Sttles1 & \multicolumn{2}{|l|}{\multirow[b]{5}{*}{\begin{tabular}{l}
These SPs are the IPv6 stateless addresses (1 to 5) referenced on the Ethernet or wireless LAN (802.11) in the format: \\
"Stateless Address" + "Prefix Length" \\
The IPv6 address consists of a total 128 bits configured in 8 blocks of 16 bits each.
\end{tabular}}} \\
\hline 149 & ActIPv6Sttles2 & & \\
\hline 151 & ActIPv6Sttles3 & & \\
\hline 153 & ActIPv6Sttles4 & & \\
\hline 155 & ActIPv6Sttles5 & & \\
\hline
\end{tabular}
\begin{tabular}{|r|l|}
\hline 156 & IPv6 Manual Address \\
\hline & \begin{tabular}{l} 
This SP is the IPv6 manually set address referenced on the Ethernet or \\
wireless LAN (802.11) in the format: \\
"Manual Set Address" + "Prefix Length" \\
The IPv6 address consists of a total 128 bits configured in 8 blocks of 16 bits \\
each. These notations can be abbreviated. See "Note: IPV6 Addresses" \\
below this table.
\end{tabular} \\
\hline 158 & IPv6 Gateway \\
\hline & \begin{tabular}{l} 
This SP is the IPv6 gateway address referenced on the Ethernet or wireless \\
LAN (802.11). The IPv6 address consists of a total 128 bits configured in 8 \\
blocks of 16 bits each. These notations can be abbreviated. See "Note: IPV6 \\
Addresses " below this table.
\end{tabular} \\
\hline
\end{tabular}

Note: IPV6 Addresses
Ethernet and the Wireless LAN (802.11) reference the IPV6 "Link-Local address + Prefix Length". The IPV6 address consists of 128 bits divided into 8 blocks of 16 bits: aaaa:bbbb:cccc:dddd:eeee:ffff:gggg:hhhh:

The prefix length is inserted at the 17th byte (Prefix Range: \(0 \times 0 \sim 0 \times 80\) ). The initial setting is \(0 \times 40(64)\).
For example, the data:
2001123456789012abcdef012345678940h
is expressed:
2001:1234:5678:9012:abcd:ef01:2345:6789: prefixlen 64
However, the actual IPV6 address display is abbreviated according to the following rules.

\section*{Rules for Abbreviating IPV6 Addresses}
3. The IPV6 address is expressed in hexadecimal delmited by colons (:) with the following characters:
0123456789abcdefABCDEF
4. A colon is inserted as a delimiter every 4th hexadecimal character.
fe80:0000:0000:0000:0207:40ff:0000:340e
5. The notations can be abbreviated by elminating zeros where the MSB and digits following the MSB are zero. The example in " 2 " above, then, becomes: fe80:0:0:0207:40ff:0:340e
6. Sections where only zeros exist can be abbreviated with double colons (::). This abbreviation can be done also where succeeding sections contain only zeros (but this can be done only at one point in the address). The example in "2" and " 3 " above then becomes:
fe80::207:40ff:0:340e (only the first null sets zero digits are abbreviated as "::")
-or-
fe80:0:0:0:207:40ff::340e (only the last null set before "340e" is abbreviated as "::")
\begin{tabular}{|l|l|}
\hline 161 & \begin{tabular}{l} 
IPv6 Stateless Auto Setting \\
Enables/disables the stateless automatic setting for Ethernet/wireless LAN \\
operation. \\
[0 to 1/1/1] \\
\(1:\) Enable \\
0: Disable
\end{tabular} \\
\hline 236 & \begin{tabular}{l} 
Web Item Invisible \\
Determines whether each item can be set in Websys. \\
[0x0000 to 0xffff/0xffff \(]\) \\
Bit 1: NetRICOH \\
Bit2: Vendor for consumables \\
Bit2-15: Reserved
\end{tabular} \\
\hline 237 & \begin{tabular}{l} 
Web Shopping Link Invisible \\
Determines whether the NetRICOH link is displayed on the Websys top page \\
and link page. \\
[0 to 1/1/1] \\
\(1:\) Display \\
\(0:\) No display
\end{tabular} \\
\hline 238 & \begin{tabular}{l} 
Web Supplies Link Invisible \\
Determines whether the consumable vendor link is displayed on the Websys \\
top page and link page. \\
[0 to 1/1/1] \\
\(1: ~ D i s p l a y ~\) \\
\(0: ~ N o ~ d i s p l a y ~\)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|r|l|}
\hline 239 & \begin{tabular}{l} 
Web Link 1 Name \\
Determines whether an name entered for "URL1" is displayed on the Websys \\
link page. The name length is limited to 31 characters.
\end{tabular} \\
\hline 240 & \begin{tabular}{l} 
Web Link 1 URL \\
Sets the URL referenced for URL1 linked to the Websys linked page. The link \\
name is limited to 127 characters.
\end{tabular} \\
\hline 241 & \begin{tabular}{l} 
Web Link 1 Visible \\
Determines whether the link for URL1 is displayed on the Websys top page. \\
{\(\left[\begin{array}{l}\text { to 1/1/1] } \\
\text { 1: Display } \\
\text { 0: No display }\end{array}\right.\)} \\
\hline 242
\end{tabular} \begin{tabular}{l} 
Web Link 2 Name \\
Determines whether a name entered for "URL2" is displayed on the Websys \\
link page. The name length is limited to 31 characters.
\end{tabular} \\
\hline 243 & \begin{tabular}{l} 
Web Link 2 URL \\
Sets the URL referenced for URL2 linked to the Websys linked page. The link \\
name is limited to 127 characters.
\end{tabular} \\
\hline 244 & \begin{tabular}{l} 
Web Link 2 Visible \\
Determines whether the link for URL2 is displayed on the Websys top page. \\
{\([0\) to 1/1/1] } \\
1: Display \\
: No display
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|r|l|}
\hline \multirow{3}{*}{5832} & HDD Formatting \\
\cline { 2 - 3 } & \begin{tabular}{l} 
Enter the SP number for the partition to initialize, then press \#. When the \\
execution ends, cycle the machine off and on.
\end{tabular} \\
\hline .1 & HDD Formatting (All) \\
\hline .2 & HDD Formatting (IMH) \\
\hline .3 & HDD Formatting (Thumbnail) \\
\hline .4 & HDD Formatting (Job Log) \\
\hline 5 & HDD Formatting (Printer Fonts) \\
\hline .6 & HDD Formatting (User Info) \\
\hline .7 & Mail RX Data \\
\hline .8 & Mail TX Data \\
\hline .9 & HDD Formatting (Data for Design) \\
\hline .10 & HDD Formatting (Log) \\
\hline .11 & HDD Formatting (Ridoc I/F) (for Ridoc Desk Top Binder) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 5836 & \multicolumn{2}{|l|}{Capture Setting} \\
\hline & \multicolumn{2}{|l|}{Capture Function (0:Off 1:On)} \\
\hline 1 & \multicolumn{2}{|l|}{\begin{tabular}{l}
With this function disabled, the settings related to the capture feature cannot be initialized, displayed, or selected. \\
[0 to 1/1] \\
0 : Disable \\
1: Enable
\end{tabular}} \\
\hline & \multicolumn{2}{|l|}{Panel Setting} \\
\hline 2 & \multicolumn{2}{|l|}{\begin{tabular}{l}
Determines whether each capture related setting can be selected or updated from the initial system screen. \\
[0 to 1/1] \\
0: Disable \\
1: Enable \\
The setting for SP5836-001 has priority.
\end{tabular}} \\
\hline 71 & Reduction for Copy Color & \[
\begin{aligned}
& {[0 \text { to } 3 / 1]} \\
& 0: 1,1: 1 / 2,2: 1 / 3,3: 1 / 4 \text { DFU }
\end{aligned}
\] \\
\hline 72 & Reduction for Copy B\&W Text & \[
\begin{aligned}
& \text { [0 to } 6 / 1] \\
& 0: 1,1: 1 / 2,2: 1 / 3,3: 1 / 4,6: 2 / 3
\end{aligned}
\] \\
\hline 73 & Reduction for Copy B\&W Other & \[
\begin{aligned}
& \text { [0 to } 6 / 1] \\
& 0: 1,1: 1 / 2,2: 1 / 3,3: 1 / 4,6: 2 / 3
\end{aligned}
\] \\
\hline 74 & Reduction for Printer Color & \[
\begin{aligned}
& \text { [0 to } 3 / 1] \\
& 0: 1,1: 1 / 2,2: 1 / 3,3: 1 / 4 \quad \text { DFU }
\end{aligned}
\] \\
\hline 75 & Reduction for Printer B\&W & \[
\begin{aligned}
& \text { [0 to } 6 / 1] \\
& 0 \text { 1, 1:1/2, 2:1/3, 3:1/4, 6:2/3 }
\end{aligned}
\] \\
\hline 76 & Reduction for Printer B\&W HQ & \[
\begin{aligned}
& \text { [1 to } 5 / 1] \\
& 1: 1 / 2,3: 1 / 4,4: 1 / 6,5: 1 / 8
\end{aligned}
\] \\
\hline 81 & Format for Copy Color & \begin{tabular}{l}
[0 to 3/1] \\
0: JFIF/JPEG, 1: TIFF/MMR, 2: TIFF/MH, 3: \\
TIFF/MR DFU
\end{tabular} \\
\hline
\end{tabular}
\(\left.\begin{array}{|r|l|l|}\hline 82 & \begin{array}{l}\text { Format for Copy B\&W } \\ \text { Text }\end{array} & \begin{array}{l}\text { [0 to 3/1] } \\ 0: \text { JFIF/JPEG, 1: TIFF/MMR, 2: TIFF/MH, 3: } \\ \text { TIFF/MR }\end{array} \\ \hline 83 & \begin{array}{l}\text { Format Copy B\&W } \\ \text { Other }\end{array} & \begin{array}{l}{[0 \text { to 3/1] }} \\ 0: \text { JFIF/JPEG, 1: TIFF/MMR, 2: TIFF/MH, 3: } \\ \text { TIFF/MR }\end{array} \\ \hline 84 & \begin{array}{l}\text { Format for Printer } \\ \text { Color }\end{array} & \begin{array}{l}\text { [0 to 3/1] } \\ \text { 0: JFIF/JPEG, 1: TIFF/MMR, 2: TIFF/MH, 3: } \\ \text { TIFF/MR DFU }\end{array} \\ \hline 85 & \begin{array}{l}\text { Format for Printer } \\ \text { B\&W }\end{array} & \begin{array}{l}\text { [0 to 3/1] } \\ 0: \text { JFIF/JPEG, 1: TIFF/MMR, 2: TIFF/MH, 3: } \\ \text { TIFF/MR }\end{array} \\ \hline 86 & \begin{array}{l}\text { Format for Printer } \\ \text { B\&W HQ }\end{array} & \begin{array}{l}\text { [0 to 3/1] } \\ 0: ~ J F I F / J P E G, ~ 1: ~ T I F F / M M R, ~ 2: ~ T I F F / M H, ~ 3: ~\end{array} \\ \text { TIFF/MR }\end{array}\right]\)
\begin{tabular}{|c|c|}
\hline 5840 & IEEE 802.11 \\
\hline & Channel MAX \\
\hline 6 & Sets the maximum range of the bandwidth for the wireless LAN. This bandwidth setting varies for different countries.
\[
\text { [1 to } 14 / 1 \text { ] }
\] \\
\hline & Channel MIN \\
\hline 7 & Sets the minimum range of the bandwidth for operation of the wireless LAN. This bandwidth setting varies for different countries.
\[
\text { [1 to } 14 / 1 \text { ] }
\] \\
\hline & \begin{tabular}{l|l} 
Transmission Speed & {\([0 \times 00\) to \(0 \times\) FF/ \(0 \times\) FF to Auto / -] } \\
\hline
\end{tabular} \\
\hline 8 & \begin{tabular}{l|l}
\(0 \times\) FF to Auto [Default] & \\
\(0 \times 11-55 \mathrm{M}\) Fix & \(0 \times 07-11 \mathrm{M}\) Fix \\
\(0 \times 10-48 \mathrm{M}\) Fix & \(0 \times 05-5.5 \mathrm{M}\) Fix \\
\(0 \times 0 \mathrm{~F}-36 \mathrm{M}\) Fix & \(0 \times 08-1 \mathrm{M}\) Fix \\
\(0 \times 0 \mathrm{E}-18 \mathrm{M}\) Fix & \(0 \times 13-0 \times\) FE (reserved) \\
\(0 \times 0 \mathrm{D}-12 \mathrm{M}\) Fix & \(0 \times 12-72 \mathrm{M}\) (reserved) \\
\(0 \times 0 \mathrm{~B}-9 \mathrm{M}\) Fix & \(0 \times 09-22 \mathrm{M}\) (reserved) \\
\(0 \times 0 \mathrm{~A}-6 \mathrm{M}\) Fix &
\end{tabular} \\
\hline & WEP Key Select \\
\hline 11 & \begin{tabular}{l}
Determines how the initiator (SBP-2) handles subsequent login requests. \\
[0 to 1/1] \\
0 : If the initiator receives another login request while logging in, the request is refused. \\
1: If the initiator receives another login request while logging in, the request is refused and the initiator logs out. \\
Note: Displayed only when the wireless LAN card is installed.
\end{tabular} \\
\hline 42 & Fragment Thresh \\
\hline & Adjusts the fragment threshold for the IEEE802.11 card.
\[
\text { [256 to } 2346 \text { / } 2346 \text { / 1] }
\] \\
\hline
\end{tabular}
\begin{tabular}{|r|l|}
\hline & This SP is displayed only when the IEEE802.11 card is installed. \\
\hline 43 & 11 g CTS to Self \\
\hline & \begin{tabular}{l} 
Determines whether the CTS self function is turned on or off. \\
{\([0\) to \(1 / 1 / 1] 0:\) Off, 1: On } \\
This SP is displayed only when the IEEE802.11 card is installed.
\end{tabular} \\
\hline 44 & \begin{tabular}{l}
11 g Slot Time
\end{tabular} \\
\hline 45 & \begin{tabular}{l} 
Selects the slot time for IEEE802.11. \\
{\([0\) to \(1 / 0 / 1] 0: 20 ~ \mu \mathrm{~m}, 1: 9 \mu \mathrm{~m}\)} \\
This SP is displayed only when the IEEE802.11 card is installed.
\end{tabular} \\
\hline & \begin{tabular}{l} 
WPA Debug Lvl \\
{\([1\) to \(3 / 3 / 1]\) 1: Info, 2: warning, 3: error } \\
This SP is displayed only when the IEEE802.11 card is installed.
\end{tabular} \\
\hline
\end{tabular}

System SP Tables-5
\begin{tabular}{|r|l|l|}
\hline \multirow{2}{*}{5841} & \multicolumn{2}{|l|}{ Supply Name Setting } \\
\cline { 2 - 3 } & \begin{tabular}{rl} 
Press the User Tools key. These names appear when the user presses the \\
Inquiry button on the User Tools screen.
\end{tabular} \\
\hline 1 & \begin{tabular}{l} 
Toner Name Setting: \\
Black
\end{tabular} & \\
\hline 7 & Org Stamp & \\
\hline 11 & StapleStd1 & Not Used \\
\hline 12 & StapleStd2 & \\
\hline 13 & StapleStd3 & \\
\hline 14 & StapleStd4 & \\
\hline 21 & StapleBnd1 & \\
\hline 22 & StapleBnd2 & \\
\hline 23 & StapleBnd3 & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{3}{*}{5842} & GWWS Analysis DFU \\
\cline { 2 - 3 } & \begin{tabular}{l} 
This is a debugging tool. It sets the debugging output mode of each Net File \\
process
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 5844 & USB \\
\hline \multirow[b]{2}{*}{1} & Transfer Rate \\
\hline & \begin{tabular}{l}
Sets the speed for USB data transmission. \\
[Full Speed] \\
[Auto Change]
\end{tabular} \\
\hline \multirow[b]{2}{*}{2} & Vendor ID \\
\hline & \begin{tabular}{l}
Sets the vendor ID: \\
Initial Setting: 0x05A Ricoh Company [0x0000 to 0xFFFF/1] DFU
\end{tabular} \\
\hline \multirow[b]{2}{*}{3} & Product ID \\
\hline & Sets the product ID. [0x0000 to 0xFFFFF/1] DFU \\
\hline \multirow[b]{2}{*}{4} & Device Release No. \\
\hline & \begin{tabular}{l}
Sets the device release number of the BCD (binary coded decimal) display. [0000 to 9999/1] DFU \\
Enter as a decimal number. NCS converts the number to hexadecimal number recognized as the BCD.
\end{tabular} \\
\hline
\end{tabular}

\(\left.\begin{array}{|r|l|}\hline & \begin{array}{l}\text { [0 to 255/1] } \\
\text { Bit7 = 1 Comment information exits } \\
\text { Bit6 = 1 Direct specification of mail address possible } \\
\text { Bit5 = 1 Mail RX confirmation setting possible }\end{array} \\
\text { Bit4 = 1 Address book automatic update function exists } \\
\text { Bit3 = 1 Fax RX delivery function exists } \\
\text { Bit2 = 1 Sender password function exists } \\
\text { Bit1 = 1 Function to link MK-1 user and Sender exists } \\
\text { Bit0 = 1 Sender specification required (if set to 1, Bit6 is set to "0") }\end{array}\right]\)\begin{tabular}{|l|l|}
\hline 11 & \begin{tabular}{l} 
These settings are for future use. They will let you increase the number of \\
registered devices (in addition to those registered for SP5845 010). \\
There are eight bits (Bit 0 to Bit 7). All are unused at this time.
\end{tabular} \\
\hline 13 & Server Scheme (Primary) \\
\hline 14 & Server Port Number (Primary) \\
\hline 15 & Server URL Path (Primary) \\
\hline 16 & Server Scheme (Secondary) \\
\hline 17 & Server Port Number (Secondary) \\
\hline 18 & Server URL Path (Secondary) \\
\hline 19 & Capture Server Scheme \\
\hline 20 & Capture Server Path Number \\
\hline 21 & Capture Server URL Path \\
\hline 22 & Report Setting Control \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 5846* & UCS Setting \\
\hline \multirow[b]{2}{*}{1} & Machine ID (for Delivery Server) \\
\hline & \begin{tabular}{l}
Displays the unique device ID in use by the delivery server directory. The value is only displayed and cannot be changed. \\
This ID is created from the NIC MAC or IEEE 1394 EUI. \\
The ID is displayed as either 6-byle or 8-byte binary.
\end{tabular} \\
\hline \multirow[b]{2}{*}{2} & Machine ID Clear (Delivery Server) \\
\hline & Clears the unique ID of the device used as the name in the file transfer directory. Execute this SP if the connection of the device to the delivery server is unstable. After clearing the ID, the ID will be established again automatically by cycling the machine off and on. \\
\hline \multirow[b]{2}{*}{3} & Maximum Entries \\
\hline & \begin{tabular}{l}
Changes the maximum number of entries that UCS can handle.
[2000 to 50000/1] \\
If a value smaller than the present value is set, the UCS managed data is cleared, and the data (excluding user code information) is displayed.
\end{tabular} \\
\hline \multirow[b]{2}{*}{6} & Delivery Server Retry Timer \\
\hline & \begin{tabular}{l}
Sets the interval for retry attempts when the delivery server fails to acquire the delivery server address book. \\
[0 to 255/1 s] \\
0 : No retries
\end{tabular} \\
\hline \multirow[b]{2}{*}{7} & Delivery Server Retry Times \\
\hline & \begin{tabular}{l}
Sets the number of retry attempts when the delivery server fails to acquire the delivery server address book. \\
[0 to 255/1]
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow[b]{2}{*}{8} & Delivery Server Maximum Entries \\
\hline & Lets you set the maximum number of account entries and information about the users of the delivery server controlled by UCS.
[20000 to 50000/1] \\
\hline \multirow[b]{2}{*}{10} & LDAP Search Timeout \\
\hline & Sets the length of the time-out for the search of the LDAP server.
[1 to 255/1] \\
\hline \multirow[b]{2}{*}{40} & Addr Book Migration (SD -> HDD) \\
\hline & \begin{tabular}{l}
This SP moves the address book data from an SD card to the HDD. You must cycle the machine off and on after executing this SP. \\
Turn the machine off. \\
Install the HDD. \\
Insert the SD card with the address book data in SD card slot C3. \\
Turn the machine on. \\
Do SP5846 040. \\
Turn the machine off. \\
Remove the SD card from SD card slot C3. \\
Turn the machine on. \\
Note \\
- Executing this SP overwrites any address book data already on the HDD with the data from the SD card. \\
- We recommend that you back up all directory information to an SD card with SP5846 051 before you execute this SP. \\
- After the address book data is copied to HDD, all the address book data is deleted from the source SD card. If the operation fails, the data is not erased from the SD card.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow[b]{2}{*}{41} & Fill Addr Acl Info. \\
\hline & \begin{tabular}{l}
This SP must be executed immediately after installation of an HDD unit in a basic machine that previously had no HDD. The first time the machine is powered on with the new HDD installed, the system automatically takes the address book from the NVRAM and writes it onto the new HDD. However, the new address book on the HDD can be accessed only by the system administrator at this stage. Executing this SP by the service technician immediately after power on grants full address book access to all users. \\
Procedure \\
1. Turn the machine off. \\
2. Install the new HDD. \\
3. Turn the machine on. \\
4. The address book and its initial data are created on the HDD automatically. However, at this point the address book can be accessed by only the system administrator or key operator. \\
5. Enter the SP mode and do SP5846 041. After this SP executes successfully, any user can access the address book.
\end{tabular} \\
\hline 43 & Addr Book Media \\
\hline 46 & Initialize All Settings \& Addr Book \\
\hline & Initialize Local Address Book \\
\hline 47 & Clears all of the address information from the local address book of a machine managed with UCS. \\
\hline & Initialize Delivery Addr Book \\
\hline 48 & Push [Execute] to delete all items (this does not include user codes) in the delivery address book that is controlled by UCS. \\
\hline & Initialize LDAP Addr Book \\
\hline 49 & Push [Execute] to delete all items (this does not include user codes) in the LDAP address book that is controlled by UCS. \\
\hline
\end{tabular}
\begin{tabular}{|r|l|}
\hline & Initialize All Addr Book \\
\cline { 2 - 4 } & \begin{tabular}{rl} 
Clears everything (including users codes) in the directory information \\
managed by UCS. However, the accounts and passwords of the system \\
administrators are not deleted.
\end{tabular} \\
\hline 51 & Backup All Addr Book \\
\cline { 2 - 3 } & \begin{tabular}{l} 
Uploads all directory information to the SD card. Do this SP before replacing \\
the HDD. The operation may not succeed if the HDD is damaged.
\end{tabular} \\
& \begin{tabular}{l} 
Restore All Addr Book \\
Downloads all directory information from the SD card. Upload the address \\
book from the old HDD with SP5846 51 before removing it. Do SP5846 52 \\
after installing the new HDD.
\end{tabular} \\
\hline 53 & \begin{tabular}{l} 
Clear Backup Info. \\
\\
\hline
\end{tabular} \begin{tabular}{l} 
Deletes the address book uploaded from the SD card in the slot. Deletes only \\
the files uploaded for that machine. This feature does not work if the card is \\
write-protected. \\
Note: After you do this SP, go out of the SP mode, turn the power off. Do not \\
remove the SD card until the Power LED stops flashing.
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline \multirow[b]{2}{*}{63} & Complexity Option 2 \\
\hline & \begin{tabular}{l}
Use this SP to set the conditions for password entry to access the local address book. Specifically, this SP limits the password entry to lower case and defines the length of the password. \\
[0 to 32/1] \\
Note \\
- This SP does not normally require adjustment. \\
- This SP is enabled only after the system administrator has set up a group password policy to control access to the address book.
\end{tabular} \\
\hline & Complexity Option 3 \\
\hline 64 & \begin{tabular}{l}
Use this SP to set the conditions for password entry to access the local address book. Specifically, this SP limits the password entry to numbers and defines the length of the password. \\
[0 to 32/1] \\
Note \\
- This SP does not normally require adjustment. \\
- This SP is enabled only after the system administrator has set up a group password policy to control access to the address book.
\end{tabular} \\
\hline & Complexity Option 4 \\
\hline 65 & \begin{tabular}{l}
Use this SP to set the conditions for password entry to access the local address book. Specifically, this SP limits the password entry to symbols and defines the length of the password. \\
[0 to 32/1] \\
Note \\
- This SP does not normally require adjustment. \\
- This SP is enabled only after the system administrator has set up a group password policy to control access to the address book.
\end{tabular} \\
\hline & FTP Auth. Port Settings \\
\hline 91 & \begin{tabular}{l}
Sets the FTP port to get the delivery server address book that is used in the individual authorization mode. \\
[0 to 65535/1]
\end{tabular} \\
\hline
\end{tabular}

System SP Tables-5
\begin{tabular}{|c|l|}
\hline 94 & Encryption Start \\
\cline { 2 - 4 } & \begin{tabular}{l} 
Shows the status of the encryption function of the address book on the LDAP \\
server. \\
[0 to 255/1] No default
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{5847} & \multicolumn{3}{|l|}{Rep Resolution Reduction} \\
\hline & \multicolumn{3}{|l|}{\begin{tabular}{l}
58471 through 58476 changes the default settings of image data sent externally by the Net File page reference function. [0 to 2/1] 584721 sets the default for JPEG image quality of image files controlled by NetFile. \\
"NetFile" refers to jobs to be printed from the document server with a PC and the DeskTopBinder software.
\end{tabular}} \\
\hline 58472 & Rate for Copy B\&W Text & [0 to 6/1] & \multirow[t]{4}{*}{\[
\begin{aligned}
& 0: 1 x \\
& 1: 1 / 2 x \\
& \text { 2: } 1 / 3 x \\
& 3: 1 / 4 x \\
& \text { 4: } 1 / 6 x \\
& \text { 5: } 1 / 8 x \\
& \text { 6: } 2 / 3 x 1 \\
& 1: \text { "6: } 2 / 3 x \text { " applies to } 003,005,006 \\
& \text { only. }
\end{aligned}
\]} \\
\hline 58473 & Rate for Copy B\&W Other & [0 to 6/1] & \\
\hline 58475 & Rate for Printer B\&W & [0 to 6/1] & \\
\hline 58476 & Rate for Printer B\&W HQ & [0 to 6/1] & \\
\hline & \multicolumn{3}{|l|}{Network Quality Default for JPEG} \\
\hline 584721 & \multicolumn{3}{|l|}{\begin{tabular}{l}
Sets the default value for the quality of JPEG images sent as NetFile pages. This function is available only with the MLB (Media Link Board) option installed. \\
[5 to 95/1]
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{5848} & \multicolumn{2}{|l|}{Web Service} \\
\hline & \multicolumn{2}{|l|}{58472 sets the 4-bit switch assignment for the access control setting. Setting of 0001 has no effect on access and delivery from Scan Router. 5847100 sets the maximum size of images that can be downloaded. The default is equal to 1 gigabyte.} \\
\hline & \multicolumn{2}{|l|}{Access Control.: NetFile (Lower 4 Bits Only)} \\
\hline 1 & \multicolumn{2}{|l|}{\begin{tabular}{l}
Bit switch settings. \\
0000: No access control \\
0001: Denies access to Desk Top Binder. Access and deliveries from Scan Router have no effect on capture.
\end{tabular}} \\
\hline 2 & Acc. Ctrl.: Repository (only Lower 4 Bits) & \begin{tabular}{l}
0000: No access control \\
0001: Denies access to DeskTop Binder.
\end{tabular} \\
\hline 3 & Acc. Ctrl.: Doc. Svr. Print (Lower 4 Bits) & \multirow{8}{*}{\begin{tabular}{l}
Switches access control on and off. \\
0000: OFF, 0001: ON
\end{tabular}} \\
\hline 4 & Acc. Ctrl.: User Directory (Lower 4 Bits) & \\
\hline 5 & Acc. Ctrl.: Delivery Input (Lower 4 Bits) & \\
\hline 7 & Acc. Ctrl Comm. Log Fax (Lower 4 Bits) & \\
\hline 9 & Acc. Ctrl.: Job Control (Lower 4 Bits) & \\
\hline 11 & Acc. Ctrl: Device Management (Lower 4 Bits) & \\
\hline 21 & Acc. Ctrl: Delivery (Lower 4 Bits) & \\
\hline 22 & Acc. Ctrl: User Administration (Lower 4 Bits) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 41 & Acc. Ctrl: Security Setting (Lower 4 Bits only) & \\
\hline 100 & Repository: Download Image Max. Size & [1 to 1024/1 K] \\
\hline \multirow[b]{2}{*}{201} & \multicolumn{2}{|l|}{Access Ctrl: Regular Trans} \\
\hline & \multicolumn{2}{|l|}{\begin{tabular}{l}
No information is available at this time. \\
0: Not allowed \\
1: Allowed
\end{tabular}} \\
\hline \multirow{2}{*}{210} & \multicolumn{2}{|l|}{Setting: Log Type: Job 1} \\
\hline & \multicolumn{2}{|l|}{No information is available at this time.} \\
\hline \multirow{2}{*}{211} & \multicolumn{2}{|l|}{Setting: Log Type: Job 2} \\
\hline & \multicolumn{2}{|l|}{No information is available at this time.} \\
\hline \multirow{2}{*}{212} & \multicolumn{2}{|l|}{Setting: Log Type: Access} \\
\hline & \multicolumn{2}{|l|}{No information is available at this time.} \\
\hline \multirow{2}{*}{213} & \multicolumn{2}{|l|}{Setting: Primary Srv} \\
\hline & \multicolumn{2}{|l|}{No information is available at this time.} \\
\hline \multirow{2}{*}{214} & \multicolumn{2}{|l|}{Setting: Secondary Srv} \\
\hline & \multicolumn{2}{|l|}{No information is available at this time.} \\
\hline \multirow{2}{*}{215} & \multicolumn{2}{|l|}{Setting: Start Time} \\
\hline & \multicolumn{2}{|l|}{No information is available at this time.} \\
\hline \multirow{2}{*}{216} & \multicolumn{2}{|l|}{Setting: Interval Time} \\
\hline & \multicolumn{2}{|l|}{No information is available at this time.} \\
\hline \multirow{2}{*}{217} & \multicolumn{2}{|l|}{Setting: Timing} \\
\hline & \multicolumn{2}{|l|}{No information is available at this time.} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{5849} & \multicolumn{2}{|l|}{ Installation Date } \\
\cline { 2 - 4 } & \multicolumn{2}{|l|}{ Displays or prints the installation date of the machine. } \\
\hline 2 & Display & \begin{tabular}{l} 
The "Counter Clear Day" has been changed to \\
"Installation Date" or "Inst. Date".
\end{tabular} \\
\hline 2 & Switch to Print & \begin{tabular}{l} 
Determines whether the installation date is printed on the \\
printout for the total counter. \\
[0 to 1/1] \\
0: No Print \\
1: Print
\end{tabular} \\
\hline 3 & Total Counter & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline 5850* & Address Book Function Japan Only \\
\hline & \begin{tabular}{l} 
The machine is shipped ready to use with a G3 line. Use this SP to switch all \\
at once to G4 after adding a G4 line. If the G4 line becomes unusable for \\
some reason, you can use this SP to switch easily back to G3. Just touch \\
[Replacement].
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{3}{*}{5851} & Bluetooth Mode \\
\cline { 2 - 3 } & \begin{tabular}{l} 
Sets the operation mode for the Bluetooth Unit. Press either key. \\
[0: Public] [1: Private]
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline 5853 & Stamp Data Download \\
\cline { 2 - 4 } & \begin{tabular}{l} 
Push [Execute] to download the fixed stamp data from the machine ROM \\
onto the hard disk. Then these stamps can be used by the system. If this is \\
not done, the user will not have access to the fixed stamps ("Confidential", \\
"Secret", etc.). \\
You must always execute this SP after replacing the HDD or after formatting \\
the HDD. Always switch the machine off and on after executing this SP.
\end{tabular} \\
\hline
\end{tabular}

System SP Tables-5
\begin{tabular}{|c|l|}
\hline \multirow{3}{*}{5856} & Remote ROM Update \\
\cline { 2 - 4 } & \begin{tabular}{l} 
When set to "1" allows reception of firmware data via the local port (IEEE \\
\(1284)\) during a remote ROM update. This setting is reset to zero after the \\
machine is cycled off and on. Allows the technician to upgrade the firmware \\
using a parallel cable \\
{\([0\) to \(1 / 1]\)} \\
\(0:\) Not allowed \\
\(1: A l l o w e d ~\)
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline \multirow[b]{2}{*}{9} & Copy HDD to SD Card (Latest 4 MB ) \\
\hline & \begin{tabular}{l}
Takes the most recent 4 MB of the log written to the hard disk and copies them to the SD Card. \\
A unique file name is generated to avoid overwriting existing file names on the SD Card. Up to 4 MB can be copied to an SD Card. 4 MB segments can be copied one by one to each SD Card.
\end{tabular} \\
\hline \multirow[b]{2}{*}{10} & Copy HDD to SD Card Latest 4 MB Any Key) \\
\hline & \begin{tabular}{l}
Takes the log of the specified key from the log on the hard disk and copies it to the SD Card. \\
A unique file name is generated to avoid overwriting existing file names on the SD Card. Up to 4 MB can be copied to an SD Card. 4 MB segments can be copied one by one to each SD Card. This SP does not execute if there is no \(\log\) on the HDD with no key specified.
\end{tabular} \\
\hline \multirow{2}{*}{11} & Erase HDD Debug Data \\
\hline & Erases all debug logs on the HDD \\
\hline \multirow[b]{2}{*}{12} & Erase SD Card Debug Data \\
\hline & \begin{tabular}{l}
Erases all debug logs on the SD Card. If the card contains only debugging files generated by an event specified by SP5858, the files are erased when SP5857010 or 011 is executed. \\
To enable this SP, the machine must be cycled off and on.
\end{tabular} \\
\hline \multirow{2}{*}{13} & Free Space on SD Card \\
\hline & Displays the amount of space available on the SD card. \\
\hline \multirow[b]{2}{*}{14} & Copy SD to SD (Latest 4MB) \\
\hline & Copies the last 4MB of the log (written directly to the card from shared memory) onto an SD card. \\
\hline \multirow[b]{2}{*}{15} & Copy SD to SD (Latest 4MB Any Key) \\
\hline & This SP copies the log on an SD card (the file that contains the information written directly from shared memory) to a log specified by key number. \\
\hline
\end{tabular}

System SP Tables-5
\begin{tabular}{|r|l|}
\hline \multirow{2}{*}{16} & Make HDD Debug \\
\cline { 2 - 3 } & This SP creates a 32 MB file to store a log on the HDD. \\
\hline 17 & Make SD Debug \\
\cline { 2 - 3 } & This SP creates a 4 MB file to store a log on an SD card. \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|}
\hline \multirow{3}{*}{\(5858^{*}\)} & \multicolumn{1}{|l|}{ Debug Save When } \\
\cline { 2 - 3 } & \begin{tabular}{l} 
These SPs select the content of the debugging information to be saved to \\
the destination selected by SP5857 002. \\
SP5858 3 stores one SC specified by number.
\end{tabular} \\
\hline \(1^{*}\) & Engine SC Error (0:OFF 1:ON) & \begin{tabular}{l} 
Stores SC codes generated by copier \\
engine errors.
\end{tabular} \\
\hline \(2^{*}\) & \begin{tabular}{l} 
Controller SC Error (0:OFF \\
1:ON)
\end{tabular} & \begin{tabular}{l} 
Stores SC codes generated by GW \\
controller errors.
\end{tabular} \\
\hline \(3^{*}\) & Any SC Error (0:OFF 1:ON) & [0 to 65535 / 0 / 1] \\
\hline \(4^{*}\) & Jam (0:OFF 1:ON) & Stores jam errors. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 5859 & \multicolumn{3}{|l|}{Debug Log Save Function} \\
\hline 1 & & & \multirow{10}{*}{These SPs allow you to set up to 10 keys for log files for functions that use common memory on the controller board. [-9999999 to 9999999/1]} \\
\hline 2 & Key & & \\
\hline 3 & Key & 3 & \\
\hline 4 & Key & 4 & \\
\hline 5 & Key & 5 & \\
\hline 6 & & 6 & \\
\hline 7 & & 7 & \\
\hline 8 & Key & 8 & \\
\hline 9 & Key & 9 & \\
\hline 10 & Key & 10 & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline 5860 & SMTP/POP3/IMAP4 \\
\hline \multirow{4}{*}{20} & \begin{tabular}{l} 
Partial Mail Receive Timeout
\end{tabular} \\
\cline { 2 - 4 } & \begin{tabular}{l} 
[1 to 168/72/1] \\
Sets the amount of time to wait before saving a mail that breaks up during \\
reception. The received mail is discarded if the remaining portion of the mail \\
is not received during this prescribed time.
\end{tabular} \\
\hline 21 & \begin{tabular}{l} 
MDN Response RFC2298 Compliance
\end{tabular} \\
\hline & \begin{tabular}{l} 
Determines whether RFC2298 compliance is switched on for MDN reply mail. \\
[0 to 1/1] \\
0: No \\
1: Yes
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow[b]{2}{*}{22} & SMTP Auth. From Field Replacement \\
\hline & \begin{tabular}{l}
Determines whether the FROM item of the mail header is switched to the validated account after the SMTP server is validated. \\
[0 to 1/1] \\
0: No. "From" item not switched. \\
1: Yes. "From" item switched.
\end{tabular} \\
\hline \multirow[b]{2}{*}{25} & SMTP Auth Direct Sending \\
\hline & \begin{tabular}{l}
Occasionally, SMTP certification may fail with encryption enabled for the SMTP server. This can occur if the SMTP server does not meet RFC standards. In such cases you can use this SP to set the SMTP certification method directly. However, this SP can be used only encryption has been enabled. \\
Bit 0: LOGIN \\
Bit 1: PLAIN \\
Bit 2: CRAM_MD5 \\
Bit 3: DIGEST_MD5 \\
Bit 4 to Bit 7: Not Used
\end{tabular} \\
\hline 26 & S/MIMI: MIME Header Setting \\
\hline & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline 5866 & \multicolumn{2}{|l|}{ E-Mail Report Not Used } \\
\hline 1 & Report Validity & \begin{tabular}{l} 
Enables or disables the E-mail alert function. \\
{\([0\) or \(1 / 0 /-] 0:\) Enabled, 1: Disabled }
\end{tabular} \\
\hline 2 & Add Date Field & \begin{tabular}{l} 
Adds or does not add the date field to the header of the \\
alert mail. \\
[0 or \(1 / 0 /-]\) \\
0: Not added, 1: Added
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|}
\hline \multirow{3}{*}{5870} & \multicolumn{2}{|l|}{ Common Key Info Writing } \\
\cline { 2 - 2 } & \begin{tabular}{l} 
Writes to flash ROM the common proof for validating the device for NRS \\
specifications.
\end{tabular} \\
\hline 1 & Writing & \\
\hline 3 & Initialize & \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|}
\hline \multirow{3}{*}{5873} & \multicolumn{2}{|l|}{ SD Card Apli. Move } \\
\cline { 2 - 3 } & \begin{tabular}{l} 
Allows you to move applications from one SD card another. For more, see \\
"Merging Applications on One SD Card".
\end{tabular} \\
\hline 1 & Move Exec & Executes the move from one SD card to another. \\
\hline 2 & Undo Exec & This is an undo function. It cancels the previous execution. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline 5875 & \multicolumn{1}{|l|}{\begin{tabular}{l} 
SC Auto Reboot
\end{tabular}} \\
\hline & \begin{tabular}{l} 
This SP determines whether the machine reboots automatically when an SC \\
error occurs. \\
Note: The reboot does not occur for Type A SC codes.
\end{tabular} \\
\hline 1 & \begin{tabular}{l} 
Reboot \\
Setting
\end{tabular} & \begin{tabular}{l} 
[0 to \(1 / 0 / 1]\) \\
\(0:\) The machine reboots automatically after the machine issues \\
an SC error and logs the SC error code. If the same SC occurs \\
again, the machine does not reboot. \\
\(1:\) The machine does not reboot when an SC error occurs.
\end{tabular} \\
\hline 2 & Reboot Type & \begin{tabular}{l} 
[0 to 1/0 / 1] \\
\(0:\) Manual reboot, 1: Automatic reboot
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|}
\hline \multirow{3}{*}{5878} & \multicolumn{2}{|l|}{ Option Setup } \\
\cline { 2 - 3 } & \begin{tabular}{l} 
Use this SP to enable the Data Overwrite Security option or HDD Encryption \\
Option after installation.
\end{tabular} \\
\hline 1 & Data Overwrite Security & \\
\hline 2 & Encryption Option & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{3}{*}{5879} & Editing Option Setup DFU \\
\cline { 2 - 3 } & This SP is used to install the edit option card. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline 5881 & Fixed Phase Block Erasing DFU \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 5885 & \multicolumn{2}{|l|}{Set WIM Function} \\
\hline 20 & Doc Svr Acc Ctrl & \begin{tabular}{l}
Close or disclose the functions of web image monitor. \\
0: OFF, 1: ON \\
Bit: \\
0 : Forbid all document server access \\
1: Forbid user mode access \\
2: Forbid print function \\
3: Forbid Fax \\
4: Forbid scan sending \\
5: Forbid download \\
6: Forbid delete \\
7: Forbid guest user
\end{tabular} \\
\hline 50 & DocSvr Format & \begin{tabular}{l}
Selects the display type for the document box list. \\
[0 to \(2 / 0 / 1\) ] \\
0: Thumbnail, 1: Icon, 2: Details
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|}
\hline 51 & DocSvr Trans & \begin{tabular}{l} 
Sets the number of documents to be displayed in \\
the document box list. \\
{\([5\) to \(20 / 10 / 1]\)}
\end{tabular} \\
\hline 100 & Set Signature & \begin{tabular}{l} 
Determines whether the scanned documents \\
with WIM are encrypted when they are \\
transmitted by an e-mail. \\
{\([0\) to 1/0/1] } \\
\(0:\) Not encrypted, 1:Encryption
\end{tabular} \\
\hline 101 & Set Encryption & Detect Mem Leak
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{3}{*}{\(5886^{*}\)} & Farm (Firmware) Update Procedure \\
\cline { 2 - 3 } & \begin{tabular}{l} 
This SP determines whether the ROM can be updated remotely. \\
{\([0\) or \(1 / 0 / 1\) step] } \\
\(0:\) ON, 1: OFF
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{3}{*}{\(5888^{*}\)} & Personal Information Protect \\
\cline { 2 - 3 } & \begin{tabular}{l} 
Selects the protection level for logs. \\
l0 to \(1 / 0 / 1\}\) \\
\(0:\) No authentication, No protection for logs \\
1: No authentication, Protected logs (an administrator can see the logs)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline 5507 & \begin{tabular}{l} 
Plug \& Play Maker/Model Name \\
\cline { 2 - 4 } \\
\end{tabular} \begin{tabular}{l} 
Selects the brand name and the production name for Windows Plug \& Play. \\
This information is stored in the NVRAM. If the NVRAM is defective, these \\
names should be registered again. \\
After selecting, press the "Original Type" key and "\#" key at the same time. \\
When the setting is completed, the beeper sounds five times.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow[b]{2}{*}{5908*} & LCT Paper Size \\
\hline & \begin{tabular}{l}
Selects the paper size for the LCT. Use this SP after changing the paper size in the optional LCT (i.e., after changing the side plate position for the LCT). \\
[0 to 1 / 1 / 1] North America \\
0 : A4 \\
1: LT \\
[0 to 1 / 0 / 1] Other Areas (Europe/Asia) \\
0 : A4 \\
1: LT
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline 5913 & Switchover Permission Time \\
\hline & \begin{tabular}{l} 
Sets the length of time to elapse before allowing another application to take \\
control of the display when the application currently controlling the display is \\
not operating because a key has not been pressed. \\
{\([3\) to 30/1 s] }
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{4}{*}{\(5915^{*}\)} & Mechanical Counter Detection \\
\cline { 2 - 4 } & \begin{tabular}{l} 
Checks whether the mechanical counter inside the inner cover is connected \\
or not. \\
Display: \\
0: Not detected \\
1: Detected \\
2: Unknown
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|r|l|}
\hline \multirow{3}{*}{} & Exhaust Fan Control \\
\cline { 2 - 3 }\(*\) & \begin{tabular}{l} 
Sets the timing for slowing the exhaust fan motor speed or shutting the motor \\
off for normal operation, depending on the following conditions:
\end{tabular} \\
\begin{tabular}{l} 
After the machine has entered energy saver mode or stand-by mode, the \\
machine slows the fan speed after this time runs out. \\
After the machine has entered the auto off mode or an error occurs, the \\
machine stops the fan after this time runs out. \\
{\([30\) to \(120 / 30\) s / 1 s] }
\end{tabular} \\
\hline 1 & Normal \\
\hline 2 & Energy Saver \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline 55967 & Copy Server: Set Function \\
\cline { 2 - 4 } & \begin{tabular}{l} 
Enables and disables the document server. This is a security measure that \\
prevents image data from being left in the temporary area of the HDD. After \\
changing this setting, you must switch the main switch off and on to enable the \\
new setting. \\
[0 to \(1 / 1]\) \\
0: ON \\
1: OFF
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{4}{*}{5974} & Cherry Server \\
\cline { 2 - 3 } & \begin{tabular}{l} 
Selects which version of the Scan Router application program, "Light" or "Full \\
(Professional)", is installed. \\
{\([0\) to \(1 / 0 / 1 /\) step] } \\
0: Light version (supplied with this machine) \\
1: Full version (optional)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|}
\hline \multirow{3}{*}{5985} & \multicolumn{2}{|l|}{ Device Setting } \\
\cline { 2 - 3 } & \begin{tabular}{l} 
The NIC and USB support features are built into the GW controller. In order to \\
use the NIC and USB functions built into the controller board, these SP codes \\
must be set to "1" (Default: 1 Enabled)
\end{tabular} \\
\hline 1 & On Board NIC & \\
\hline 2 & On Board USB & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{3}{*}{5987} & Mech. Counter \\
\cline { 2 - 3 } & \begin{tabular}{l} 
This SP detects that a mechanical counter device is removed. If it is \\
detected, SC610 occurs. \\
0: OFF. 1: ON
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|r|l|}
\hline \multirow{3}{*}{5990} & SP Print Mode (SMC Print) \\
\cline { 2 - 4 } & \begin{tabular}{l} 
In the SP mode, press Copy Window to move to the copy screen, select the \\
paper size, then press Start. Select A4/LT (Sideways) or larger to ensure \\
that all the information prints. Press SP Window to return to the SP mode, \\
select the desired print, and press Execute.
\end{tabular} \\
\hline 1 & All (Data List) \\
\hline 2 & SP (Mode Data List) \\
\hline 3 & User Program \\
\hline 4 & Logging Data \\
\hline 5 & Diagnostic Report \\
\hline 6 & Non-Default (Prints only SPs set to values other than defaults.) \\
\hline 7 & NIB Summary \\
\hline 8 & Capture Log \\
\hline
\end{tabular}
\begin{tabular}{|r|l|}
\hline 21 & Copier User Program \\
\hline 22 & Scanner SP \\
\hline 23 & Scanner User Program \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline 5995 & Factory Mode & DFU \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline 5996 & Machine State DFU & \\
\hline 1 & & \begin{tabular}{l} 
Shows intended destination of the engine \\
board. \\
0: Japan \\
1: North America \\
2: Europe \\
3: Mainland China \\
4: Taiwan
\end{tabular} \\
\hline 2 & SBCU ID & \\
\hline 3 & IPU ID & \begin{tabular}{l} 
Displays the CPM information for the engine \\
board. For example, 25 (25 cpm), 30 (30 \\
cpm), and so on.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{4.6 SYSTEM SP TABLES-6}

\subsection*{4.6.1 SP6XXX: PERIPHERALS}
\begin{tabular}{|c|c|}
\hline 6006 & ADF Registration Adjustment \\
\hline 1 & Side-to-Side Registration \\
\hline & Adjusts the side-to-side registration of originals with the ARDF. [-3.0 to \(3.0 / 0 / 0.1 \mathrm{~mm} / \mathrm{step}\) ] \\
\hline 3 & Leading Edge Registration \\
\hline & Adjusts the leading registration of originals with the ARDF. [-5.0 to \(5.0 / 0 / 0.1 \mathrm{~mm} / \mathrm{step}\) ] \\
\hline 5 & Buckle: Duplex Front \(\quad\) Adjust the amount of paper buckle to correct \\
\hline 6 & Buckle: Duplex Rear \([-5.0\) to \(5.0 / 0 / 0.1 \mathrm{~mm} /\) step ] \\
\hline 7 & Rear Edge Erase \\
\hline & Adjusts the erase margin at the original trailing edge. [-5.0 to \(5.0 / 0 / 0.1 \mathrm{~mm} / \mathrm{step}\) ] \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multirow{3}{*}{6007} & \multicolumn{2}{|l|}{ ADF Input Check } \\
\cline { 2 - 2 } & \begin{tabular}{l} 
Displays the signals received from the sensors and switches of the ARDF. Only \\
Bit 0 is used for ADF input check.
\end{tabular} \\
\hline 1 & Original B5 Sensor & \\
\hline 2 & Original A4 Sensor & \multirow{3}{*}{\begin{tabular}{l} 
0: Paper not detected \\
1: Paper detected
\end{tabular}} \\
\hline 3 & Original LG Sensor & \\
\hline 4 & Original Width Sensor S & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline 5 & Original Width Sensor M & \\
\cline { 1 - 2 } 6 & Original Width Sensor L & \\
\cline { 1 - 2 } 7 & Original Width Sensor LL & \\
\cline { 1 - 2 } 9 & Original Set Sensor & \\
\cline { 1 - 2 } 10 & Rear Edge Detection & \\
\cline { 1 - 2 } 11 & Skew Correction Sensor & \\
\cline { 1 - 2 } 13 & Registration Sensor & \\
\hline 14 & Exit Sensor & \multirow{3}{*}{0} \\
\hline 15 & Top Cover Sensor & Cover closed, 1: Cover open \\
\hline 16 & Lift Sensor & 0: ADF closed, 1: ADF open \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|}
\hline \multirow{3}{*}{6008} & \multicolumn{2}{|l|}{ ADF Output Check } \\
\cline { 2 - 4 } & \begin{tabular}{l} 
Switches on each electrical component (motors, solenoids, etc.) of the \\
ARDF for testing.
\end{tabular} \\
\hline 3 & Feed Motor: Fwd & \\
\hline 4 & Feed Motor: Rev & \\
\hline 5 & Transport Motor: Fwd & \\
\hline 6 & Transport Motor: Rev & \\
\hline 9 & Feed Clutch & \\
\hline 10 & Feed Solenoid & \\
\hline 11 & Junction Gate Solenoid & \\
\hline 12 & Stamp Solenoid & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{3}{*}{6009} & ADF Free Run \\
\cline { 2 - 3 } & \begin{tabular}{l} 
Performs an ARDF free run in duplex mode. Press [ON] to start, press [OFF] \\
to stop. \\
Note: This is a general free run controlled from the copier.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{3}{*}{ 6010* } & Stamp Position Adj. \\
\cline { 2 - 3 } & \begin{tabular}{l} 
Adjusts the stamp position in the sub-scan direction in fax mode. \\
{\([-5.0\) to \(+5.0 / 0 / 1 \mathrm{~mm} / \mathrm{step}]\)}
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{6016*} & \multicolumn{3}{|l|}{Original Size Detection Priority} \\
\hline & \multicolumn{3}{|l|}{\begin{tabular}{l}
Specifies the original size for a size detected by the original sensor, since original sensors cannot recognize all sizes. \\
(7) 00000000 (0) \\
Different bits are used for detection, depending on the location as shown below.
\end{tabular}} \\
\hline & Bit & Size & Location \\
\hline & 7 & A4 (L)/LT (L) & \multirow{2}{*}{Japan only} \\
\hline & 6 & 11" \(\times 15\) //DLT (L) & \\
\hline & 5 & DLT (L)/ 11" \(\times 15\) " & \multirow{4}{*}{NA only} \\
\hline & 4 & LT (S)/ US Exec (S) & \\
\hline & 3 & LT (L)/ 8" \(\times 10\) (L) & \\
\hline & 2 & LG (L)/ F4 (L) & \\
\hline & 1 & A4 (L)/ \(16 \mathrm{~K}(\mathrm{~L}\) ) & \multirow{2}{*}{EU/AA only} \\
\hline & 0 & 8K (L)/ DLT (L) & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{3}{*}{6017} & Sheet Through Magnification \\
\cline { 2 - 3 } & \begin{tabular}{l} 
Adjusts the magnification in the sub-scan direction for the ARDF. \\
{\([-5.0\) to \(5.0 / 0 / 0.1 \% /\) step \(]\)}
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|}
\hline \multirow{3}{*}{6117} & Finisher Input Check \\
\cline { 2 - 3 } & \begin{tabular}{l} 
Displays the signals received from finisher sensors and switches. (See the \\
tables below.)
\end{tabular} \\
\hline 1 & Group 1 & \\
\hline 2 & Group 2 & \\
\hline 3 & Group 3 (Only 1000 Fin) & \\
\hline 4 & Group 4 (Only 1000 Fin) & \\
\hline
\end{tabular}

Check the status of each item against the 8-digit bit display listed in the table below.
\begin{tabular}{|l|l|l|l|l|}
\hline \multirow{4}{*}{ Number } & \multirow{2}{*}{ Bit } & \multicolumn{2}{|c|}{ Description } & \multicolumn{2}{|c|}{ Reading } \\
\cline { 3 - 5 } & & & \multicolumn{1}{|c|}{\(\mathbf{0}\)} & \multicolumn{1}{c|}{\(\mathbf{1}\)} \\
\hline \multirow{5}{*}{ Group 1 } & 7 & \begin{tabular}{l} 
Stack Feed-out Belt HP \\
Sensor
\end{tabular} & Activated & Deactivated \\
\cline { 3 - 5 } & 6 & Not Used & & \\
\cline { 2 - 5 } & 5 & Jogger Fence HP Sensor & Activated & Deactivated \\
\cline { 2 - 5 } & 4 & Stapler HP Sensor & Activated & Deactivated \\
\cline { 2 - 5 } & 3 & Stapler Tray Entrance Sensor & Activated & Deactivated \\
\cline { 2 - 5 } & 2 & Not Used & & \\
\cline { 2 - 5 } & 1 & Lower Tray Exit Sensor & Activated & Deactivated \\
\hline & 0 & Entrance Sensor & Activated & Deactivated \\
\hline
\end{tabular}

System SP Tables-6
\begin{tabular}{|l|l|l|l|l|}
\hline \multirow{4}{*}{ Number } & \multirow{2}{*}{ Bit } & \multicolumn{1}{|c|}{ Description } & \multicolumn{2}{|c|}{ Reading } \\
\cline { 2 - 6 } & & & 0 & 1 \\
\hline \multirow{5}{*}{ Group 2 } & 7 & Not Used & & \\
\cline { 2 - 5 } & 6 & Not Used & & \\
\cline { 2 - 5 } & 5 & Stapler Ready Signal & Activated & Deactivated \\
\cline { 2 - 5 } & 4 & Not Used & & \\
\cline { 2 - 5 } & 3 & Not Used & & Deactivated \\
\cline { 2 - 5 } & 2 & Staple Sensor & & Deactivated \\
\cline { 2 - 5 } & 1 & Staple Hammer HP Sensor & Activated & Deactivated \\
\hline & 0 & Stapler Tray Paper Sensor & Activated & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{Number} & \multirow{2}{*}{Bit} & \multirow{2}{*}{Description} & \multicolumn{2}{|r|}{Reading} \\
\hline & & & 0 & 1 \\
\hline \multirow{8}{*}{Group 3} & 7 & Not Used & & \\
\hline & 6 & Lower Tray Lower Limit Sensor & Activated & Deactivated \\
\hline & 5 & Not used & & \\
\hline & 4 & Stack Height Sensor & Activated & Deactivated \\
\hline & 3 & Not Used & & \\
\hline & 2 & Not Used & & \\
\hline & 1 & Shift HP Sensor & Activated & Deactivated \\
\hline & 0 & Exit Guide HP Sensor & Activated & Deactivated \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline \multirow{4}{*}{ Number } & \multirow{2}{*}{ Bit } & \multicolumn{1}{|c|}{ Description } & \multicolumn{2}{|c|}{ Reading } \\
\cline { 2 - 5 } & & & \multicolumn{2}{|c|}{\(\mathbf{0}\)} \\
\hline \multirow{4}{*}{ Group 4 } & 7 & Not Used & & \\
\cline { 2 - 5 } & 6 & Not Used & & \\
\cline { 2 - 5 } & 5 & Not Used & & \\
\cline { 2 - 5 } & 4 & Not Used & & \\
\cline { 2 - 5 } & 3 & Upper Tray Paper Limit & & \\
\hline
\end{tabular}
\begin{tabular}{|r|l|}
\hline \multirow{3}{*}{6118} & Finisher Output Check \\
\cline { 2 - 3 } & \begin{tabular}{l} 
Switches on each electrical component of the finisher for testing. \\
Press [1] to switch on or [0] to switch off.
\end{tabular} \\
\hline 1 & Upper Transport/Main Motor \\
\hline 2 & Shift Tray Lift/Tray Motor \\
\hline 3 & Staple Hammer Motor \\
\hline 4 & Shift/Jogger Motor \\
\hline 5 & Lower Transport Motor \\
\hline 6 & Shift Tray Exit Motor \\
\hline 7 & Tray Junction Gate Sol \\
\hline 8 & Jogger Motor \\
\hline
\end{tabular}

System SP Tables-6
\begin{tabular}{|r|l|}
\hline 9 & Stapler Motor \\
\hline 10 & Stapler Junction Gate Motor \\
\hline 11 & Positioning Roller Sol \\
\hline 12 & Stack Feed-Out Motor \\
\hline 13 & Exit Guide Motor \\
\hline 14 & Paddle Sol \\
\hline 15 & Exit Unit Gear Sol \\
\hline 16 & Stack Height Lever Sol \\
\hline 17 & Transport Motor \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|}
\hline \multirow{2}{*}{6128} & \multicolumn{2}{|l|}{ Punch Position: Sub Scan } \\
\cline { 2 - 2 } & Adjusts the punching position in the sub scan direction. \\
\hline 1 & Domestic 2Hole & \\
\hline 2 & North America 3Hole & \\
\hline 3 & Europe 4Hole & \\
\hline 4 & North Europe 4Hole & \\
\hline 5 & North Europe 2 Hole & \(7.5 / 0 / 0.5 \mathrm{~mm} / \mathrm{step}]]\) \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|}
\hline \multirow{2}{*}{6129} & \multicolumn{2}{|l|}{ Punch Position: Main Scan } \\
\cline { 2 - 2 } & Adjusts the punching position in the main scan direction. \\
\hline 1 & Domestic 2Hole & \\
\hline 2 & North America 3Hole & \\
\hline 3 & Europe 4Hole & \\
\hline 4 & North Europe 4Hole & \\
\hline 5 & North Europe 2 Hole & \(2.0 / 0 / 0.4 \mathrm{~mm} / \mathrm{step}]]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{6130} & \multicolumn{2}{|l|}{Skew Correction: Buckle Adj.} \\
\hline & \multicolumn{2}{|l|}{Adjusts the paper buckle for each paper size (B793 finisher).} \\
\hline 1 & A3T (SEF) & \multirow{12}{*}{[-5.0 to 5.0 / 0 / \(0.25 \mathrm{~mm} / \mathrm{step}]\) ]} \\
\hline 2 & B4T (SEF) & \\
\hline 3 & A4T (SEF) & \\
\hline 4 & A4Y (LEF) & \\
\hline 5 & B5T (SEF) & \\
\hline 6 & B5Y (LEF) & \\
\hline 7 & DLT-T (SEF) & \\
\hline 8 & LG-T (SEF) & \\
\hline 9 & LT-T (SEF) & \\
\hline 10 & LT-Y (LEF) & \\
\hline 11 & 12 " x 18" & \\
\hline 12 & Other & \\
\hline
\end{tabular}

System SP Tables-6
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{6131} & \multicolumn{2}{|l|}{[Skew Correction Control]} \\
\hline & \multicolumn{2}{|l|}{Selects the skew correction control for each paper size. These are only activated for B793.} \\
\hline 1 & A3T (SEF) & \multirow{12}{*}{\begin{tabular}{l}
[0 to 2 / 1 / 1/step]] \\
0: No (No skew correction) \\
1: Roller Stop Skew Correction \\
2: Roller Reverse Skew Correction
\end{tabular}} \\
\hline 2 & B4T (SEF) & \\
\hline 3 & A4T (SEF) & \\
\hline 4 & A4Y (LEF) & \\
\hline 5 & B5T (SEF) & \\
\hline 6 & B5Y (LEF) & \\
\hline 7 & DLT-T (SEF) & \\
\hline 8 & LG-T (SEF) & \\
\hline 9 & LT-T (SEF) & \\
\hline 10 & LT-Y (LEF) & \\
\hline 11 & 12 " x 18" & \\
\hline 12 & Other & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{6132} & \multicolumn{2}{|l|}{Jogger Fence Fine Adj} \\
\hline & \multicolumn{2}{|l|}{This SP adjusts the distance between the jogger fences and the sides of the stack on the finisher stapling tray in the Booklet Finisher B793. The adjustment is done perpendicular to the direction of paper feed.} \\
\hline 1 & A3T (SEF) & \multirow{12}{*}{\begin{tabular}{l}
[-1.5 to 1.5 / 0 / 1/step] \\
+ Value: Increases distance between jogger fences and the sides of the stack. \\
- Value: Decreases the distance between the jogger fences and the sides of the stack.
\end{tabular}} \\
\hline 2 & B4T (SEF) & \\
\hline 3 & A4T (SEF) & \\
\hline 4 & A4Y (LEF) & \\
\hline 5 & B5T (SEF) & \\
\hline 6 & B5Y (LEF) & \\
\hline 7 & DLT-T (SEF) & \\
\hline 8 & LG-T (SEF) & \\
\hline 9 & LT-T (SEF) & \\
\hline 10 & LT-Y (LEF) & \\
\hline 11 & 12 " \(\times 18\) & \\
\hline 12 & Other & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{6133} & \multicolumn{2}{|l|}{Staple Position Adjustment} \\
\hline & \multicolumn{2}{|l|}{\begin{tabular}{l}
Adjusts the staple position for each finisher (B408/B793/D372). \\
+ Value: Moves the staple position to the rear side. \\
- Value: Moves the staple position to the front side.
\end{tabular}} \\
\hline 1 & Finisher 1 (B408/B793) & [-3.5 to 3.5 / 0 / 1/step]] \\
\hline 2 & Finisher 2 (D372) & [-2.0 to 2.0 / 0 / 1/step]] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 6134 & \multicolumn{2}{|l|}{Saddle Stitch Position Adjustment} \\
\hline & \multicolumn{2}{|l|}{Use this SP to adjust the stapling position of the booklet stapler when paper is stapled and folded in the Booklet Finisher B793.} \\
\hline 1 & A3 SEF & \multirow{9}{*}{\begin{tabular}{l}
[-3.0 to \(3.0 / 0 / 0.2 \mathrm{~mm} / \mathrm{step}]\) \\
+ Value: Shifts staple position toward the crease. \\
- Value: Shifts staple position away from the crease.
\end{tabular}} \\
\hline 2 & B4 SEF & \\
\hline 3 & A4 SEF & \\
\hline 4 & B5 SEF & \\
\hline 5 & DLT-T (SEF) & \\
\hline 6 & LG-T (SEF) & \\
\hline 7 & LT-T (SEF) & \\
\hline 8 & 12 " \(\times 18{ }^{\prime \prime}\) & \\
\hline 9 & Other & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 6135 & Folder Positio & ment \\
\hline & \multicolumn{2}{|l|}{This SP corrects the folding position when paper is stapled and folded in the Booklet Finisher B793.} \\
\hline 1 & A3 SEF & \multirow{9}{*}{\begin{tabular}{l}
[-3.0 to 3.0 / 0 / \(0.2 \mathrm{~mm} / \mathrm{step}\) ] \\
+ Value: Shifts staple position toward the crease. \\
- Value: Shifts staple position away from the crease.
\end{tabular}} \\
\hline 2 & B4 SEF & \\
\hline 3 & A4 SEF & \\
\hline 4 & B5 SEF & \\
\hline 5 & DLT-T (SEF) & \\
\hline 6 & LG-T (SEF) & \\
\hline 7 & LT-T (SEF) & \\
\hline 8 & 12 " \(\times 18\) " & \\
\hline 9 & Other & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline 6136 & Folding Number \\
\hline & \begin{tabular}{l} 
This SP sets the number of times the folding rollers are driven forward and \\
reverse to sharpen the crease of a folded booklet before it exits the folding \\
unit. \\
[2 to 30/2/1 times]
\end{tabular} \\
\hline
\end{tabular}

System SP Tables-6
\begin{tabular}{|r|l|l|}
\hline \multirow{2}{*}{6137} & \multicolumn{2}{|l|}{ Fin. Free Run } \\
\cline { 2 - 3 } & These SPs are used only for B793 finisher. \\
\hline 1 & Free Run 1 & Free run for paper edge stapling. \\
\hline 2 & Free Run 2 & Free run for booklet stapling. \\
\hline 3 & Free Run 3 & \begin{tabular}{l} 
Shipping free run. Simulates standby conditions during \\
shipping.
\end{tabular} \\
\hline 4 & Free Run 4 & DFU \\
\hline
\end{tabular}
\begin{tabular}{|r|l|c|c|}
\hline 6138 & \multicolumn{1}{|l|}{ FIN (TIG) Input Check } & \multicolumn{1}{|c|}{ 1000-Sheet Finisher B793 } \\
\hline & \multicolumn{1}{|l|}{ Note: The names in parentheses are the names used in the service manuals. } \\
\hline 1 & Component & \begin{tabular}{l} 
Interference Escape Sensor \\
(Stapler Safety Sensor)
\end{tabular} & \(\mathbf{0}\) \\
\hline 2 & \begin{tabular}{l} 
Staple Moving HP Sensor \\
(Staple Unit HP Sensor)
\end{tabular} & Inactive & Active \\
\hline 3 & \begin{tabular}{l} 
Stuck Relay1 Release HP Sensor \\
(Stopper S HP Sensor)
\end{tabular} & Not HP & At HP \\
\hline 4 & \begin{tabular}{l} 
Exit Junction Gate HP Sensor \\
(Stack Feed Out HP Sensor)
\end{tabular} & At HP & Not HP \\
\hline 5 & \begin{tabular}{l} 
Jogger HP Sensor \\
(Jogger Fence HP Sensor)
\end{tabular} & Not HP & At HP \\
\hline 6 & \begin{tabular}{l} 
Staple Tray Paper Sensor \\
(Staple Tray Paper Sensor)
\end{tabular} & No Paper & Paper \\
\hline 7 & \begin{tabular}{l} 
Rear Edge Fence HP Sensor \\
(Paper Stack Stopper HP Sensor)
\end{tabular} & Not HP & At HP \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 8 & Saddle Stitch Exit Sensor & Paper & No Paper \\
\hline 9 & Stuck Relay2 Roller HP Sensor (Clamp Roller HP Sensor) & At HP & Not HP \\
\hline 10 & \begin{tabular}{l}
Folder Tray Full Sensor 1 \\
(Bottom Tray HP 1 Sensor)
\end{tabular} & Full & Not full \\
\hline 11 & \begin{tabular}{l}
Folder Tray Full Sensor 2 \\
(Bottom Tray HP 2 Sensor)
\end{tabular} & Not full & Full \\
\hline 12 & \begin{tabular}{l}
Folder Plate HP Sensor \\
(Fold Plate HP Sensor)
\end{tabular} & Not HP & At HP \\
\hline 13 & Saddle Stitch Arrival Sensor (Fold Unit Entrance Sensor) & No Paper & Paper \\
\hline 14 & \begin{tabular}{l}
Folder Cam HP Sensor \\
(Fold Plate Cam HP Sensor)
\end{tabular} & Not HP & At HP \\
\hline 15 & \begin{tabular}{l}
Staple Exit Sensor \\
(Stapler Tray Exit Sensor)
\end{tabular} & Paper & No Paper \\
\hline 16 & \begin{tabular}{l}
Shift Tray Paper Sensor \\
(Shift Tray Paper Position Sensor)
\end{tabular} & No Tray & Tray \\
\hline 17 & Shift Tray Full & Full & Nor full \\
\hline 18 & Shift Roller HP Sensor & Not HP & At HP \\
\hline 20 & Entrance Sensor (Finisher Entrance Sensor) & Paper & No Paper \\
\hline 21 & \begin{tabular}{l}
Shift Exit Sensor \\
(Shift Tray Exit Sensor)
\end{tabular} & No Paper & Paper \\
\hline 22 & \begin{tabular}{l}
Proof Exit Sensor \\
(Proof Tray Exit Sensor)
\end{tabular} & Paper & No Paper \\
\hline 23 & Exit Guide Plate HP Sensor & Not HP & At HP \\
\hline
\end{tabular}

System SP Tables-6
\begin{tabular}{|c|c|c|c|}
\hline 24 & \begin{tabular}{l}
Proof Full Sensor \\
(Proof Tray Full Sensor)
\end{tabular} & Not full & Full \\
\hline 25 & Upper Cover Sensor & Open & Close \\
\hline 26 & Door SW (Front Door Switch) & Close & Open \\
\hline 27 & Clincher Timing Sensor & \multicolumn{2}{|c|}{Encoder} \\
\hline 28 & Clincher HP Sensor & At HP & Not HP \\
\hline 29 & Driver Timing Sensor & \multicolumn{2}{|c|}{Encoder} \\
\hline 30 & Staple Near End & Staples Remain & Staples N.E. \\
\hline 31 & Self Priming & Staples & No Staples \\
\hline 32 & Driver HP Sensor & At HP & Not HP \\
\hline 33 & Punch Registration Detection HP Sensor & Not HP & At HP \\
\hline 34 & \begin{tabular}{l}
Punch Moving HP Sensor \\
(Punch Movement HP Sensor)
\end{tabular} & Not HP & At HP \\
\hline 35 & \begin{tabular}{l}
Punch HP Sensor \\
(Punch HP Sensor)
\end{tabular} & At HP & Not HP \\
\hline 36 & Punch Pulse Count Sensor (Punch Encoder Sensor) & \multicolumn{2}{|c|}{Encoder} \\
\hline 37 & \begin{tabular}{l}
Punch Chad Full Sensor \\
(Punch Hopper Full Sensor)
\end{tabular} & Not full & Full \\
\hline 38 & Punch Registration Detection Sensor (Paper Position Sensor) & Paper & No Paper \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 6139 & FIN (KIN) Input Check & \multicolumn{2}{|l|}{1000-Sheet Finisher B408} \\
\hline & \multicolumn{3}{|l|}{Note: The names in parentheses are the names used in the service manuals.} \\
\hline & Component & 0 & 1 \\
\hline 1 & Entrance Sensor & Paper & No Paper \\
\hline 2 & \begin{tabular}{l}
Shift Exit Sensor \\
(Lower Tray Exit Sensor)
\end{tabular} & No Paper & Paper \\
\hline 3 & \begin{tabular}{l}
Staple Entrance Sensor \\
(Stapler Tray Entrance Sensor)
\end{tabular} & Paper & No Paper \\
\hline 4 & Staple Moving HP Sensor (Stapler HP Sensor) & Not HP & At HP \\
\hline 5 & \begin{tabular}{l}
Jogger HP Sensor \\
(Jogger Fence HP Sensor)
\end{tabular} & Not HP & At HP \\
\hline 6 & Stack Feed-out Belt HP Sensor & At HP & Not HP \\
\hline 7 & Staple Tray Paper Sensor & No Paper & Paper \\
\hline 8 & Staple Rotation Sensor (Staple Rotation HP Sensor) & Not HP & At HP \\
\hline 9 & Staple Sensor & Staples & No Staples \\
\hline 10 & Staple READY Detection & Staples & No Staples \\
\hline 11 & \begin{tabular}{l}
Exit Guide Plate HP \\
(Exit Guide Plate HP Sensor)
\end{tabular} & Not HP & At HP \\
\hline 12 & Shift HP Sensor & Not HP & At HP \\
\hline 13 & Paper Sensor (Stack Height Sensor) & No Tray & Tray \\
\hline
\end{tabular}
\begin{tabular}{|c|l|c|c|}
\hline 14 & \begin{tabular}{l} 
Tray Lower Sensor \\
(Lower Tray Lower Limit Sensor)
\end{tabular} & Lower limit & Not Lower Limit \\
\hline 15 & \begin{tabular}{l} 
Proof Full Sensor \\
(Paper Limit Sensor)
\end{tabular} & Not Full & Full \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 6143 & FIN (TIG) Output Check & 1000-Sheet Finisher B793 \\
\hline & \multicolumn{2}{|l|}{\begin{tabular}{l}
Displays the signals received from sensors and switches of the booklet finisher. \\
Note: In the table below, "Display" is what you see on the screen, and "Component" is the name used in the service manuals.
\end{tabular}} \\
\hline & Display & Component \\
\hline 1 & Shift Motor & Shift Tray Motor \\
\hline 2 & Entrance Motor & - \\
\hline 3 & Staple Relay Motor & Stapler Unit Motor \\
\hline 4 & Knock Solenoid & \\
\hline 5 & Junction Gate SOL 1 & Proof Tray Gate Solenoid \\
\hline 6 & Junction Gate SOL 2 & Staple Tray Gate Solenoid \\
\hline 7 & Folder Roller Rotation Motor & Fold Roller Motor \\
\hline 8 & Staple Motor & Staple Fold Motor \\
\hline 10 & Exit Guide Plate Motor & - \\
\hline 11 & Shift Relay Motor & Upper Transport Motor \\
\hline 12 & Tray Motor & Shift Tray Motor \\
\hline 13 & Stack Feed-out Motor & Positioning Roller Solenoid \\
\hline 14 & Stuck Relay1 Motor & Upper Clamp Roller Motor \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|}
\hline 15 & Stuck Relay1 Release Motor & Upper Retraction Motor \\
\hline 16 & Rear Edge Fence Drive Motor & Bottom Fence Lift Motor \\
\hline 17 & Folder Plate Motor & - \\
\hline 18 & Drive Roller Oscillating Motor & Lower Retraction Motor \\
\hline 19 & Staple Moving Motor & Staple Unit Driver Motor \\
\hline 20 & Jogger Motor & Jogger Motor \\
\hline 21 & Punch Registration Moving Motor & Paper Position Sensor Slide Motor \\
\hline 22 & Punch Motor & - \\
\hline 23 & Punch Moving Motor & Punch Movement Motor \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline 6144 & FIN (KIN) Output Check & 1000 -Sheet Finisher B408 \\
\hline & \begin{tabular}{l} 
Displays the signals received from sensors and switches of the booklet \\
finisher. \\
Note: In the table below, "Display" is what you see on the screen, and \\
"Component" is the name used in the service manuals.
\end{tabular} \\
\hline & Display & Component \\
\hline 1 & Relay Up Motor & Upper Transport Motor \\
\hline 2 & Relay Down Motor & Lower Transport Motor \\
\hline 3 & Exit Motor & - \\
\hline 4 & Proof Junction Gate SOL & Tray Junction Gate Solenoid \\
\hline 5 & Tray Up Motor & Lower Tray Lift Motor \\
\hline 6 & Jogger Motor & Jogger Fence Motor \\
\hline 7 & Staple Moving Motor & Stapler Motor \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline 8 & Staple Motor & Stapler Hammer \\
\hline 9 & Staple Junction Gate SOL & Stapler Junction Gate Solenoid \\
\hline 10 & Positioning Roller Solenoid & Positioning Roller Solenoid \\
\hline 11 & Stack Feed-out Motor & - \\
\hline 12 & Shift Motor & - \\
\hline 13 & Exit Guide Plate Motor & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 6145 & FIN (ELB) Input Check & \multicolumn{2}{|l|}{500-Sheet Finisher D372} \\
\hline & \multicolumn{3}{|l|}{\begin{tabular}{l}
Displays the signals received from sensors and switches of the finisher. \\
Note: \\
- The names in parentheses below are the names used in the service manuals. \\
"0" means LOW, "1" means HIGH.
\end{tabular}} \\
\hline & Component & 0 & 1 \\
\hline 1 & Entrance Sensor & Paper & No Paper \\
\hline 2 & \begin{tabular}{l}
Hitroll HP Sensor \\
(Positioning Roller HP Sensor)
\end{tabular} & Not HP & At HP \\
\hline 3 & \begin{tabular}{l}
Front Jogger HP Sensor \\
(Front Fence HP Sensor)
\end{tabular} & Not HP & At HP \\
\hline 4 & Rear Jogger HP Sensor (Rear Fence HP Sensor) & Not HP & At HP \\
\hline 5 & Staple Tray Paper Sensor & Paper & No Paper \\
\hline 6 & Staple Moving HP Sensor (Stapler HP Sensor) & Not HP & At HP \\
\hline 7 & \multicolumn{2}{|l|}{Stack Feed-Out Belt HP Sensor} & At HP \\
\hline
\end{tabular}
\begin{tabular}{|r|l|c|c|}
\hline 8 & Shift Tray Paper Sensor & Not HP & At HP \\
\hline 9 & Upper Cover Sensor & Not HP & At HP \\
\hline 10 & Stapler Rotation Sensor & HP & Not HP \\
\hline 11 & Staple Near End Sensor & HP & Not HP \\
\hline 12 & Self Priming (Stapler) & Not Full & Full \\
\hline 13 & \begin{tabular}{l} 
Shift Tray Limit Sensor \\
\((\) Tray Upper Limit SW)
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|}
\hline 6146 & FIN (ELB) Output Check & \(500-\) Sheet Finisher D372 \\
\hline & \begin{tabular}{l} 
Displays the signals received from sensors and switches of the booklet \\
finisher. \\
Note: In the table below, "Display" is what you see on the screen, and \\
"Component" is the name used in the service manuals.
\end{tabular} \\
\hline 1 & Display & Component \\
\hline 2 & Hitroll Motor Motor & Transport Motor \\
\hline 4 & Rront Jogger Motor & Positioning Roller Arm Motor \\
\hline 5 & Staple Moving Motor & Front Fence Motor \\
\hline 6 & Stack Feed-Out Motor & Rear Fence Motor \\
\hline 7 & Tray Motor & Stapler Movement Motor \\
\hline 8 & Staple Motor & Stapper Solenoid
\end{tabular}

\subsection*{4.7 SYSTEM SP TABLES-7}

\subsection*{4.7.1 SP7XXX: DATA LOG}
\begin{tabular}{|l|l|}
\hline \multirow{3}{*}{\(7001^{*}\)} & Main Motor Operation Time \\
\cline { 2 - 4 } & \begin{tabular}{l} 
The number of prints and drive time for drum revolutions can be obtained \\
by counting the main motor revolution time. If the amount of the time \\
required for the drum to revolve to print 1 copy increases, this data \\
combined with the number of copies can be used to analyze problems and \\
could be useful for future product development. \\
Display: 0000000 to 9999999 min.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{2}{*}{\(7401^{*}\)} & Total SC Counter \\
\cline { 2 - 2 } & Displays the total number of service calls that have occurred. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 7403* & \multicolumn{2}{|l|}{SC History} \\
\hline 1 & Latest & \multirow{10}{*}{Displays the most recent 10 service calls.} \\
\hline 2 & Latest 1 & \\
\hline 3 & Latest 2 & \\
\hline 4 & Latest 3 & \\
\hline 5 & Latest 4 & \\
\hline 6 & Latest 5 & \\
\hline 7 & Latest 6 & \\
\hline 8 & Latest 7 & \\
\hline 9 & Latest 8 & \\
\hline 10 & Latest 9 & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{2}{*}{\(7502^{*}\)} & Total Paper Jam Counter \\
\cline { 2 - 2 } & Displays the total number of paper jams. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{2}{*}{\(7503^{*}\)} & Total Original Jam Counter \\
\cline { 2 - 3 } & Displays the total number of original jams. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 12 & Trans 2 Sn: Late \\
\hline & Paper Jam Location \\
\hline 7504* & \begin{tabular}{l}
These SPs display the total number of paper jams by location. A \\
"Check-in" (paper late) error occurs when the paper fails to activate the sensor at the precise time. \\
Note \\
- Lag. Jam occurs when the paper remains at the sensor for longer than the prescribed time. \\
- Late: Jam occurs because paper fails to arrive at the prescribed time. \\
- KIN. 1000-Sheet Finisher (B408) \\
- TIG. 1000-Sheet Finisher (B793) \\
- ELB. 500-Sheet Finisher (D372)
\end{tabular} \\
\hline 1 & At Power On \\
\hline 3 & Tray 1: No Feed \\
\hline 4 & Tray 2: No Feed \\
\hline 5 & Tray 3: No Feed \\
\hline 6 & Tray 4: No Feed \\
\hline 7 & LCT: No Feed \\
\hline 8 & Bypass PE Sn: Off \\
\hline 9 & Duplex: No Feed \\
\hline 11 & Trans 1 Sn : Late \\
\hline
\end{tabular}

System SP Tables-7
\begin{tabular}{|c|c|}
\hline 12 & Trans 2 Sn: Late \\
\hline 13 & Bank Trans 1: Late \\
\hline 17 & Registration Sn: Late \\
\hline 20 & Main Exit Sn: Late \\
\hline 21 & Bridge Exit Sn: Late \\
\hline 22 & Bridge Trans Sn: Late \\
\hline 25 & Junction Gate Sn: Late \\
\hline 26 & Jct Inv Sn: Late \\
\hline 27 & Duplex Ent Sn: Late \\
\hline 51 & Trans 1 Sn: Lag \\
\hline 52 & Trans 2 Sn: Lag \\
\hline 53 & Trans 3 Sn: Lag \\
\hline 57 & Registration Sn: Lag \\
\hline 58 & LCT Trans Sn: Lag \\
\hline 60 & Main Ex Sn: Lag \\
\hline 61 & Bridge Ex Sn: Lag \\
\hline 62 & Bridge Trans Sn: Lag \\
\hline 65 & Jct Gate Sn: Lag \\
\hline 66 & Jct Inv Sn: Lag \\
\hline 67 & Duplex Ent Sn: Lag \\
\hline 100 & FIN Entrance: KIN \\
\hline 101 & FIN Shift Tray Exit:KIN \\
\hline 102 & FIN Staple: KIN \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 12 & Trans 2 Sn: Late \\
\hline 103 & FIN Exit: KIN \\
\hline 105 & FIN Tray Lift Motor: KIN \\
\hline 106 & FIN Jogger Motor: KIN \\
\hline 107 & FIN Shift Motor: KIN \\
\hline 108 & FIN Staple Motor: KIN \\
\hline 109 & FIN Exit Motor: KIN \\
\hline 130 & FIN Entrance: TIG \\
\hline 131 & FIN Proof Tray Exit: TIG \\
\hline 132 & FIN Shift Tray: TIG \\
\hline 133 & FIN Staple Exit: TIG \\
\hline 134 & FIN Exit: TIG \\
\hline 135 & FIN Fold: TIG \\
\hline 136 & FIN Fold: TIG \\
\hline 137 & FIN Guide Gate Motor: TIG \\
\hline 138 & FIN Staple Shift Motor: TIG \\
\hline 139 & FIN Paper Punch Motor: TIG \\
\hline 140 & FIN Tray Lift Motor: TIG \\
\hline 141 & FIN Jogger Motor: TIG \\
\hline 142 & FIN Shift Motor: TIG \\
\hline 143 & FIN Staple Motor: TIG \\
\hline 144 & FIN Staple Motor: TIG \\
\hline 145 & FIN Exit Motor: TIG \\
\hline
\end{tabular}

System SP Tables-7
\begin{tabular}{|c|c|}
\hline 12 & Trans 2 Sn: Late \\
\hline 146 & FIN Stack Release Motor 1: TIG \\
\hline 147 & FIN Stack Release Motor 2: TIG \\
\hline 148 & FIN Stopper Motor: TIG \\
\hline 160 & Entrance Sensor On: ELB \\
\hline 161 & Entrance Sensor Off: ELB \\
\hline 162 & FIN Entrance: ELB \\
\hline 163 & Positioning Roller: ELB \\
\hline 164 & Front Jogger Motor: ELB \\
\hline 165 & Rear Jogger Motor: ELB \\
\hline 166 & Exit Motor: ELB \\
\hline 167 & FIN Staple Shift Motor: ELB \\
\hline 168 & FIN Staple Motor: ELB \\
\hline 169 & FIN Tray Lift Motor: ELB \\
\hline 170 & FIN Stack Height SOL: ELB \\
\hline
\end{tabular}
\begin{tabular}{|r|l|}
\hline 7505 & \begin{tabular}{l} 
Original Jam Location \\
\cline { 2 - 4 }
\end{tabular} \begin{tabular}{l} 
Displays the total number of original jams by location. These jams occur when \\
the original does not activate the sensors. \\
Note \\
- Lag. Jam occurs when the paper remains at the sensor for longer than the \\
prescribed time.
\end{tabular} \\
\hline 1 & At Power On Jam occurs because paper fails to arrive at the prescribed time.
\end{tabular}
\begin{tabular}{|r|l|}
\hline 4 & Registration Sn: Late \\
\hline 5 & Exit Sn: Late \\
\hline 53 & Skew Correction Sn: Lag \\
\hline 54 & Registration Sn: Lag \\
\hline 55 & Exit Sn: Lag \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 7506* & \multicolumn{2}{|l|}{Jam Count by Paper Size} \\
\hline 5 & A4 LEF & \multirow{15}{*}{Displays the total number of copy jams by paper size.} \\
\hline 6 & A5 LEF & \\
\hline 14 & B5 LEF & \\
\hline 38 & LT LEF & \\
\hline 44 & HLT LEF & \\
\hline 132 & A3 SEF & \\
\hline 133 & A4 SEF & \\
\hline 134 & A5 SEF & \\
\hline 141 & B4 SEF & \\
\hline 142 & B5 SEF & \\
\hline 160 & DLT SEF & \\
\hline 164 & LG SEF & \\
\hline 166 & LT SEF & \\
\hline 172 & HLT SEF & \\
\hline 255 & Others & \\
\hline
\end{tabular}

System SP Tables-7
\begin{tabular}{|c|c|c|c|c|c|}
\hline 7507* & \multicolumn{5}{|l|}{Plotter Jam History} \\
\hline 75071 & Last & \multicolumn{4}{|l|}{\multirow[b]{2}{*}{Displays the copy jam history (the most recent 10 jams)}} \\
\hline 75072 & Latest 1 & & & & \\
\hline 75073 & Latest 2 & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Sample Display: \\
CODE:007 \\
SIZE:05h
\end{tabular}}} \\
\hline 75074 & Latest 3 & & & & \\
\hline 75075 & Latest 4 & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
TOTAL:0000334 \\
DATE: Mon Mar 15 11:44:50 2000
\end{tabular}}} \\
\hline 75076 & Latest 5 & & & & \\
\hline 75077 & Latest 6 & \multicolumn{4}{|l|}{\multirow[t]{3}{*}{CODE is the SP7504-*** number (see above. SIZE is the ASAP paper size code in hex. TOTAL is the total jam error count (SP7502) DATE is the date the jams occurred.}} \\
\hline 75078 & Latest 7 & & & & \\
\hline 75079 & Latest 8 & & & & \\
\hline 750710 & Latest 9 & & & & \\
\hline Size & Code & Size & Code & Size & Code \\
\hline A4 (S) & 05 & A3 (L) & 84 & DLT (L) & A0 \\
\hline A5 (S) & 06 & A4 (L) & 85 & LG (L) & A4 \\
\hline B5 (S) & OE & A5 (L) & 86 & LT (L) & A6 \\
\hline LT (S) & 26 & B4 (L) & 8D & HLT (L) & AC \\
\hline HLT (S) & 2C & B5 (L) & 8E & Others & FF \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 7508* & \multicolumn{2}{|l|}{Original Jam History} \\
\hline 1 & Last & \multirow[b]{3}{*}{Displays the original jam history (the most recent 10 jams). Sample Display:} \\
\hline 2 & Last 1 & \\
\hline 3 & Last 2 & \\
\hline 4 & Last 3 & SIZE:05h \\
\hline 5 & Last 4 & TOTAL:0000334 \\
\hline 6 & Last 5 & where: \\
\hline 7 & Last 6 & CODE is the SP7505*** number (see above. \\
\hline 8 & Last 7 & TOTAL is the total error count (SP7503) \\
\hline 9 & Last 8 & DATE is the date the jams occurred. \\
\hline 10 & Last 9 & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{3}{*}{7801} & ROM No./Firmware Version \\
\cline { 2 - 3 } & \begin{tabular}{l} 
This SP codes display the firmware versions of all ROMs in the system, \\
including the mainframe, the ARDF, and peripheral devices.
\end{tabular} \\
\hline
\end{tabular}

System SP Tables-7
\begin{tabular}{|r|l|l|}
\hline \multirow{2}{*}{\(7803^{*}\)} & \multicolumn{2}{|l|}{ PM Counter Display } \\
\cline { 2 - 3 } & Displays the PM counter since the last PM. \\
\hline 1 & Paper & \\
\hline 2 & Sheets 60K Part & \\
\hline 3 & Sheets 120K Part & \\
\hline 4 & Distance (m) 60 K & \\
\hline 5 & Distance (m) 120 & \\
\hline 6 & Distance 60K & \\
\hline 7 & Distance 120 K & \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|}
\hline \multirow{2}{*}{7804} & \multicolumn{2}{|l|}{ PM Counter Resets } \\
\cline { 2 - 3 } & \multicolumn{1}{|l|}{ Resets the PM counter. To reset, press Execute on the touch panel. } \\
\hline 1 & Paper & \\
\hline 2 & Sheets 60K & \\
\hline 3 & Sheets 120 K & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline 7807 & \begin{tabular}{l} 
SC/Jam Counter Reset \\
\cline { 2 - 4 }
\end{tabular} \\
\begin{tabular}{l} 
Resets the SC and jam counters. To reset, press Execute on the touch \\
panel. \\
This SP does not reset the jam history counters: SP7507, SP7508.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{7826} & \multicolumn{2}{|l|}{ MF Error Counter Japan Only } \\
\cline { 2 - 3 } & Displays the number of counts requested of the card/key counter. \\
\hline 1 & Error Total & \begin{tabular}{l} 
A request for the count total failed at power on. This error \\
will occur if the device is installed but disconnected.
\end{tabular} \\
\hline 2 & Error Staple & \begin{tabular}{l} 
The request for a staple count failed at power on. This error \\
will occur if the device is installed but disconnected.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{3}{*}{7827} & MF Error Counter Clear Japan Only \\
\cline { 2 - 3 } & Press Execute to reset to 0 the values of SP7826. Japan Only \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{3}{*}{7832} & Self-Diagnose Result Display \\
\cline { 2 - 4 } & \begin{tabular}{l} 
Execute to open the "Self-Diagnostics Result Display" to view details about \\
errors. Use the keys in the display on the touch-panel to scroll through all \\
the information. If no errors have occurred, you will see the "No Error" \\
message on the screen.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|r|l|}
\hline \multirow{2}{*}{7834} & Coverage Data Clear \\
\cline { 2 - 3 } & These SPs clear the counters for the following items. \\
\hline 1 & Last \& Average \\
\hline 2 & No. of Toner Bottles \\
\hline 3 & Page Count: Bottle \\
\hline 4 & Dot Coverage Clear \\
\hline 255 & All Coverage Data \\
\hline
\end{tabular}

System SP Tables-7
\begin{tabular}{|l|l|}
\hline \multirow{3}{*}{7836} & Total Memory Size \\
\cline { 2 - 3 } & Displays the memory capacity of the controller system. \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|}
\hline \multirow{2}{*}{\(7852^{*}\)} & \multicolumn{2}{|l|}{ ADF Exposure Glass } \\
\cline { 2 - 3 } & \begin{tabular}{l} 
Counts the number of occurrences (0 to 65,535) when dust was detected on \\
the scanning glass of the ADF.
\end{tabular} \\
\hline \(1^{*}\) & Dust Check Counter & \begin{tabular}{l} 
Counts the occurrences. Counting is done only \\
if SP4020 1 (ADF Scan Glass Dust Check) is \\
switched on.
\end{tabular} \\
\hline \(2^{*}\) & \begin{tabular}{l} 
Dust Check Counter \\
Clear
\end{tabular} & \begin{tabular}{l} 
Clears the count. Memory All Clear (SP5801) \\
resets this counter to zero.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{3}{*}{7856} & Zero Cross \\
\cline { 2 - 3 } & Stores and displays the detected zero cross frequency for main power ac. \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|}
\hline \multirow{2}{*}{ 7901* } & Assert Info. DFU \\
\cline { 3 - 4 } & \begin{tabular}{l} 
These SP numbers display the results of the occurrence of the most recent \\
SC code generated by the machine.
\end{tabular} \\
\hline \(1^{*}\) & File Name & Module name \\
\hline \(2^{\star}\) & Number of Lines & Number of the lines where error occurred. \\
\hline \(3^{*}\) & Location & Value \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|}
\hline \multirow{3}{*}{7906} & \multicolumn{2}{|l|}{ Last PM Count } \\
\cline { 2 - 3 } & \begin{tabular}{l} 
Displays the most recent PM count for 60K and 120K service parts ("60K" and \\
"120" refer to service life).
\end{tabular} \\
\hline 1 & Paper & \\
\hline 2 & Sheets 60K Part & \\
\hline 3 & Sheets 120K Part & \\
\hline 4 & Distance (m) 60 K & \\
\hline 5 & Distance (m) 120 & \\
\hline 6 & Distance 60K & \\
\hline 7 & Distance 120K & \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|}
\hline \multirow{2}{*}{7907} & \multicolumn{2}{|l|}{ Before 2 PM Count } \\
\cline { 2 - 3 } & \begin{tabular}{l} 
Displays the PM count before the most recent PM count for 60K and 120K \\
service parts ("60K" and "120" refer to service life).
\end{tabular} \\
\hline 1 & Paper & \\
\hline 2 & Sheets 60K Part & \\
\hline 3 & Sheets 120K Part & \\
\hline 4 & Distance (m) 60 K & \\
\hline 5 & Distance (m) 120 K & \\
\hline 6 & Distance 60K & \\
\hline 7 & Distance 120 K & \\
\hline
\end{tabular}

System SP Tables-7
\begin{tabular}{|r|l|l|}
\hline \multirow{3}{*}{7908} & \multicolumn{2}{|l|}{ Before 3 PM Count } \\
\cline { 2 - 3 } & \begin{tabular}{l} 
Displays the PM count two counts the most recent PM count for 60K and 120K \\
service parts ("60K" and "120" refer to service life).
\end{tabular} \\
\hline 1 & Paper & \\
\hline 2 & Sheets 60K Part & \\
\hline 3 & Sheets 120K Part & \\
\hline 4 & Distance (m) 60 K & \\
\hline 5 & Distance (m) 120 K & \\
\hline 6 & Distance 60K & Distance 120K
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{3}{*}{7909} & PCU Counter Display \\
\cline { 2 - 4 } & \begin{tabular}{l} 
Displays the value of the PCU counter (number of copies since the last \\
PCU change).
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|l|}
\hline \multirow{4}{|l|}{} & \multicolumn{3}{|l|}{ Engine Debug Log Switch } \\
\cline { 2 - 5 } & \multicolumn{3}{|l|}{ This SP switches the contents of the debug log. } \\
\cline { 2 - 5 } & 0 & RHM log (all) & 4 \\
Scanner log 2 \\
\cline { 2 - 5 } & 1 & Plotter log & 5 \\
Scanner log 3 \\
\cline { 2 - 5 } & 2 & Print log & 6 \\
\hline
\end{tabular}

\subsection*{4.8 SYSTEM SP TABLES-8}

\subsection*{4.8.1 SP8XXX: DATA LOG 2}

Many of these counters are provided for features that are currently not available, such as sending color faxes, and so on. However, here are some Group 8 codes that when used in combination with others, can provide useful information.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ SP Numbers } & \multicolumn{1}{c|}{ What They Do } \\
\hline SP8211 - SP8216 & The number of pages scanned to the document server. \\
\hline SP841 - SP8406 & The number of pages printed from the document server \\
\hline SP8691 - SP8696 & The number of pages sent from the document server \\
\hline
\end{tabular}

Specifically, the following questions can be answered:
- How is the document server actually being used?
- What application is using the document server most frequently?
- What data in the document server is being reused?

Most of the SPs in this group are prefixed with a letter that indicates the mode of operation (the mode of operation is referred to as an 'application'). Before reading the Group 8 Service Table, make sure that you understand what these prefixes mean.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Prefixes } & \multicolumn{2}{|c|}{ What It Means } \\
\hline T: & Total: (Grand Total). & \begin{tabular}{l} 
Grand total of the items counted for all \\
applications (C, F, P, etc.).
\end{tabular} \\
\hline C: & Copy application. & \\
\hline F: & Fax application. & \begin{tabular}{l} 
Totals (pages, jobs, etc.) executed for each \\
application when the job was not stored on the
\end{tabular} \\
\cline { 1 - 2 } P: & Print application. & \begin{tabular}{l} 
document server.
\end{tabular} \\
\hline S: & \begin{tabular}{l} 
Scan application. \\
server)
\end{tabular} & \begin{tabular}{l} 
Totals (jobs, pages, etc.) for the document \\
server. The L: counters work differently case by
\end{tabular} \\
\hline L: & &
\end{tabular}

System SP Tables-8
\begin{tabular}{|l|l|l|}
\hline Prefixes & \multicolumn{2}{|c|}{ What It Means } \\
\hline & & \begin{tabular}{l} 
case. Sometimes, they count jobs/pages stored \\
on the document server; this can be in \\
document server mode (from the document \\
server window), or from another mode, such as \\
from a printer driver or by pressing the Store \\
File button in the Copy mode window. \\
Sometimes, they include occasions when the \\
user uses a file that is already on the document \\
server. Each counter will be discussed case by \\
case.
\end{tabular} \\
\hline O: & \begin{tabular}{l} 
Other applications \\
(external network \\
applications, for example)
\end{tabular} & \begin{tabular}{l} 
Refers to network applications such as Web \\
Image Monitor. Utilities developed with the SDK \\
(Software Development Kit) will also be counted \\
with this group in the future.
\end{tabular} \\
\hline
\end{tabular}

The Group 8 SP codes are limited to 17 characters, forced by the necessity of displaying them on the small LCDs of printers and faxes that also use these SPs. Read over the list of abbreviations below and refer to it again if you see the name of an SP that you do not understand.

\section*{Key for Abbreviations}
\begin{tabular}{|l|l|}
\hline Abbreviation & What It Means \\
\hline I & "By", e.g. "T:Jobs/Apl" = Total Jobs "by" Application \\
\hline\(>\) & More (2> "2 or more", 4> "4 or more" \\
\hline AddBook & Address Book \\
\hline Apl & Application \\
\hline B/W & Black \& White \\
\hline Bk & Black \\
\hline C & Cyan \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Abbreviation & What It Means \\
\hline ColCr & Color Create \\
\hline ColMode & Color Mode \\
\hline Comb & Combine \\
\hline Comp & Compression \\
\hline Deliv & Delivery \\
\hline DesApl & Designated Application. The application (Copy, Fax, Scan, Print) used to store the job on the document server, for example. \\
\hline Dev Counter & Development Count, no. of pages developed. \\
\hline Dup, Duplex & Duplex, printing on both sides \\
\hline Emul & Emulation \\
\hline FC & Full Color \\
\hline FIN & Post-print processing, i.e. finishing (punching, stapling, etc.) \\
\hline Full Bleed & No Margins \\
\hline GenCopy & Generation Copy Mode \\
\hline GPC & Get Print Counter. For jobs 10 pages or less, this counter does not count up. For jobs larger than 10 pages, this counter counts up by the number that is in excess of 10 (e.g., for an 11-page job, the counter counts up 11-10 =1) \\
\hline IFax & Internet Fax \\
\hline ImgEdt & Image Edit performed on the original with the copier GUI, e.g. border removal, adding stamps, page numbers, etc. \\
\hline K & Black (YMCK) \\
\hline LS & Local Storage. Refers to the document server. \\
\hline LSize & Large (paper) Size \\
\hline
\end{tabular}

System SP Tables-8
\begin{tabular}{|c|c|}
\hline Abbreviation & What It Means \\
\hline Mag & Magnification \\
\hline MC & One color (monochrome) \\
\hline NRS & New Remote Service, which allows a service center to monitor machines remotely. "NRS" is used overseas, "CSS" is used in Japan. \\
\hline Org & Original for scanning \\
\hline OrgJam & Original Jam \\
\hline Palm 2 & Print Job Manager/Desk Top Editor: A pair of utilities that allows print jobs to be distributed evenly among the printers on the network, and allows files to moved around, combined, and converted to different formats. \\
\hline PC & Personal Computer \\
\hline PGS & Pages. A page is the total scanned surface of the original. Duplex pages count as two pages, and A3 simplex count as two pages if the A3/DLT counter SP is switched ON. \\
\hline PJob & Print Jobs \\
\hline Ppr & Paper \\
\hline PrtJam & Printer (plotter) Jam \\
\hline PrtPGS & Print Pages \\
\hline R & Red (Toner Remaining). Applies to the wide format model A2 only. This machine is under development and currently not available. \\
\hline Rez & Resolution \\
\hline SC & Service Code (Error SC code displayed) \\
\hline Scn & Scan \\
\hline Sim, Simplex & Simplex, printing on 1 side . \\
\hline S-to-Email & Scan-to-E-mail \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Abbreviation & What It Means \\
\hline SMC & \begin{tabular}{l} 
SMC report printed with SP5990. All of the Group 8 counters are \\
recorded in the SMC report.
\end{tabular} \\
\hline Svr & Server \\
\hline TonEnd & Toner End \\
\hline TonSave & Send, Transmission \\
\hline TXJob & Yellow, Magenta, Cyan \\
\hline YMC & Yellow, Magenta, Cyan, BlacK \\
\hline YMCK & \\
\hline
\end{tabular}
\(\downarrow\) Note
- All of the Group 8 SPs are reset with SP5 8011 Memory All Clear, or the Counter Reset SP7 808.
\begin{tabular}{|l|l|l|}
\hline 8001 & T:Total Jobs & \multirow{3}{*}{\begin{tabular}{l} 
These SPs count the number of times each \\
application is used to do a job. \\
[0 to \(9999999 / 0 / 1]\) \\
Note: The L: counter is the total number of times the \\
other applications are used to send a job to the \\
document server, plus the number of times a file \\
already on the document server is used.
\end{tabular}} \\
\hline 8003 & F:Total Jobs & P:Total Jobs \\
\hline 8004 & S:Total Jobs & \begin{tabular}{l} 
Lotal Jobs
\end{tabular} \\
\hline 8005 & &
\end{tabular}
- These SPs reveal the number of times an application is used, not the number of pages processed.
- When an application is opened for image input or output, this counts as one job.
- Interrupted jobs (paper jams, etc.) are counted, even though they do not finish.
- Only jobs executed by the customer are counted. Jobs executed by the customer engineer using the SP modes are not counted.
- When using secure printing (when a password is required to start the print job), the job is counted at the time when either "Delete Data" or "Specify Output" is specified.

\section*{System SP Tables-8}
- A job is counted as a fax job when the job is stored for sending.
- When a fax is received to fax memory, the F: counter increments but the L : counter does not (the document server is not used).
- A fax broadcast counts as one job for the F: counter (the fax destinations in the broadcast are not counted separately).
- A fax broadcast is counted only after all the faxes have been sent to their destinations. If one transmission generates an error, then the broadcast will not be counted until the transmission has been completed.
- A printed fax report counts as one job for the F: counter.
- The F: counter does not distinguish between fax sending or receiving.
- When a copy job on the document server is printed, SP8022 also increments, and when a print job stored on the document server is printed, SP8024 also increments.
- When an original is both copied and stored on the document server, the C : and L : counters both increment.
- When a print job is stored on the document server, only the L: counter increments.
- When the user presses the Document Server button to store the job on the document server, only the L: counter increments.
- When the user enters document server mode and prints data stored on the document server, only the L: counter increments.
- When an image received from Palm 2 is received and stored, the L : counter increments.
- When the customer prints a report (user code list, for example), the O: counter increments. However, for fax reports and reports executed from the fax application, the \(F\) : counter increments.
\begin{tabular}{|l|l|l|}
\hline 8011 & T:Jobs/LS & \\
\hline 8012 & C:Jobs/LS & \multirow{2}{*}{ These SPs count the number of jobs stored to the } \\
document server by each application, to reveal how \\
local storage is being used for input. \\
[0 to 9999999/ \(0 / 1\) ]
\end{tabular}\(]\)
- When a scan job is sent to the document server, the \(S\) : counter increments. When you enter document server mode and then scan an original, the L: counter increments.
- When a print job is sent to the document server, the P: counter increments.
- When a network application sends data to the document server, the O: counter increments.
- When an image from Palm 2 is stored on the document server, the O : counter increments.
- When a fax is sent to the document server, the F: counter increments.
\begin{tabular}{|l|l|l|}
\hline 8021 & T:Pjob/LS & \\
\hline 8022 & C:Pjob/LS & These SPs reveal how files printed from the \\
document server were stored on the document \\
server originally.
\end{tabular}
- When a copy job stored on the document server is printed with another application, the C: counter increments.
- When an application like DeskTopBinder merges a copy job that was stored on the document server with a print job that was stored on the document server, the C : and P : counters both increment.
- When a job already on the document server is printed with another application, the L: counter increments.
- When a scanner job stored on the document server is printed with another application, the S: counter increments. If the original was scanned from within document server mode, then the L: counter increments.
- When images stored on the document server by a network application (including Palm 2 ), are printed with another application, the \(O\) : counter increments.
- When a copy job stored on the document server is printed with a network application (Web Image Monitor, for example), the C : counter increments.

System SP Tables-8
- When a fax on the document server is printed, the F: counter increments.
\begin{tabular}{|c|c|c|}
\hline 8031 & T:Pjob/DesApl & \multirow{7}{*}{\begin{tabular}{l}
These SPs reveal what applications were used to output documents from the document server.
\[
\text { [0 to 9999999/ } 0 / 1 \text { ] }
\] \\
The L: counter counts the number of jobs printed from within the document server mode screen at the operation panel.
\end{tabular}} \\
\hline 8032 & C:Pjob/DesApl & \\
\hline 8033 & F:Pjob/DesApl & \\
\hline 8034 & P:Pjob/DesApl & \\
\hline 8035 & S:Pjob/DesApl & \\
\hline 8036 & L:Pjob/DesApl & \\
\hline 8037 & O:Pjob/DesApl & \\
\hline
\end{tabular}
- When documents already stored on the document server are printed, the count for the application that started the print job is incremented.
- When the print job is started from a network application (Desk Top Binder, Web Image Monitor, etc.) the \(L\) : counter increments.
\begin{tabular}{|c|c|c|}
\hline 8041 & T:TX Jobs/LS & \multirow[t]{7}{*}{\begin{tabular}{l}
These SPs count the applications that stored files on the document server that were later accessed for transmission over the telephone line or over a network (attached to an e-mail, or as a fax image by I-Fax).
\[
\text { [0 to 9999999/ } 0 \text { / 1] }
\] \\
Note: \\
- Jobs merged for sending are counted separately. \\
- The L: counter counts the number of jobs scanned from within the document server mode screen at the operation panel.
\end{tabular}} \\
\hline 8042 & C:TX Jobs/LS & \\
\hline 8043 & F:TX Jobs/LS & \\
\hline 8044 & P:TX Jobs/LS & \\
\hline 8045 & S:TX Jobs/LS & \\
\hline 8046 & L:TX Jobs/LS & \\
\hline 8047 & O:TX Jobs/LS & \\
\hline
\end{tabular}
- When a stored copy job is sent from the document server, the C: counter increments.
- When images stored on the document server by a network application or Palm2 are sent as an e-mail, the \(O\) : counter increments.
\begin{tabular}{|l|l|l|}
\hline 8051 & T:TX Jobs/DesApl & \multirow{2}{*}{\begin{tabular}{l} 
These SPs count the applications used to send \\
files from the document server over the
\end{tabular}} \\
\hline 8052 & C:TX Jobs/DesApl & \begin{tabular}{l} 
telephone line or over a network (attached to an \\
e-mail, or as a fax image by I-Fax). Jobs
\end{tabular} \\
\hline 8053 & F:TX Jobs/DesApl \\
merged for sending are counted separately. \\
[0 to \(9999999 / 0 / 1\) ] \\
The L: counter counts the number of jobs sent \\
from within the document server mode screen
\end{tabular}
- If the send is started from Desk Top Binder or Web Image Monitor, for example, then the O : counter increments.
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{8061} & T:FIN Jobs & [0 to 9999999/ 0 / 1] \\
\hline & \multicolumn{2}{|l|}{These SPs total the finishing methods. The finishing method is specified by the application.} \\
\hline \multirow[b]{2}{*}{8062} & C:FIN Jobs & [0 to 9999999/ 0 / 1] \\
\hline & \multicolumn{2}{|l|}{These SPs total finishing methods for copy jobs only. The finishing method is specified by the application.} \\
\hline & F:FIN Jobs & [0 to 9999999/ 0 / 1] \\
\hline 8063 & \multicolumn{2}{|l|}{\begin{tabular}{l}
These SPs total finishing methods for fax jobs only. The finishing method is specified by the application. \\
Note: Finishing features for fax jobs are not available at this time.
\end{tabular}} \\
\hline \multirow[b]{2}{*}{8064} & P:FIN Jobs & [0 to 9999999/ 0 / 1] \\
\hline & \multicolumn{2}{|l|}{These SPs total finishing methods for print jobs only. The finishing method is specified by the application.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{8065} & \multicolumn{2}{|l|}{S:FIN Jobs} & [0 to 9999999/0 / 1] \\
\hline & \multicolumn{3}{|l|}{\begin{tabular}{l}
These SPs total finishing methods for scan jobs only. The finishing method is specified by the application. \\
Note: Finishing features for scan jobs are not available at this time.
\end{tabular}} \\
\hline \multirow[b]{2}{*}{8066} & L:FIN J & & [0 to 9999999/ 0 / 1] \\
\hline & \multicolumn{3}{|l|}{These SPs total finishing methods for jobs output from within the document server mode screen at the operation panel. The finishing method is specified from the print window within document server mode.} \\
\hline & O:FIN & & [0 to 9999999/0 / 1] \\
\hline 8067 & \multicolumn{3}{|l|}{These SPs total finishing methods for jobs executed by an external application, over the network. The finishing method is specified by the application.} \\
\hline 806x 1 & Sort & \multicolumn{2}{|l|}{Number of jobs started in Sort mode. When a stored copy job is set for Sort and then stored on the document server, the L: counter increments. (See SP8066 1)} \\
\hline 806x 2 & Stack & \multicolumn{2}{|l|}{Number of jobs started out of Sort mode.} \\
\hline 806x 3 & Staple & \multicolumn{2}{|l|}{Number of jobs started in Staple mode.} \\
\hline 806x 4 & Bookle & \multicolumn{2}{|l|}{Number of jobs started in Booklet mode. If the machine is in staple mode, the Staple counter also increments.} \\
\hline 806x 5 & Z-Fold & \multicolumn{2}{|l|}{Number of jobs started In any mode other than the Booklet mode and set for folding (Z-fold).} \\
\hline 806x 6 & Punch & \multicolumn{2}{|l|}{Number of jobs started in Punch mode. When Punch is set for a print job, the P: counter increments. (See SP8064 6.)} \\
\hline 806x 7 & Other & \multicolumn{2}{|l|}{Reserved. Not used.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{8071} & & T:Jobs/PGS & \multicolumn{2}{|l|}{[0 to 9999999/0 / 1]} \\
\hline & & \multicolumn{3}{|l|}{These SPs count the number of jobs broken down by the number of pages in the job, regardless of which application was used.} \\
\hline \multirow[b]{2}{*}{8072} & & C:Jobs/PGS & [0 to 9999 & 9999/ 0 / 1] \\
\hline & & \multicolumn{3}{|l|}{These SPs count and calculate the number of copy jobs by size based on the number of pages in the job.} \\
\hline \multirow[b]{2}{*}{8073} & & F:Jobs/PGS & [0 to 9999 & 999/0 / 1] \\
\hline & & \multicolumn{3}{|l|}{These SPs count and calculate the number of fax jobs by size based on the number of pages in the job.} \\
\hline \multirow[b]{2}{*}{8074} & & P:Jobs/PGS & [0 to 9999 & 9999/ 0 / 1] \\
\hline & & \multicolumn{3}{|l|}{These SPs count and calculate the number of print jobs by size based on the number of pages in the job.} \\
\hline \multirow[b]{2}{*}{8075} & & S:Jobs/PGS & [0 to 9999 & 9999/0 / 1] \\
\hline & & \multicolumn{3}{|l|}{These SPs count and calculate the number of scan jobs by size based on the number of pages in the job.} \\
\hline \multirow[b]{2}{*}{8076} & & L:Jobs/PGS & [0 to 9999 & 9999/ 0 / 1] \\
\hline & & \multicolumn{3}{|l|}{These SPs count and calculate the number of jobs printed from within the document server mode window at the operation panel, by the number of pages in the job.} \\
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{8077}} & O:Jobs/PGS & [0 to 9999 & 9999/ 0 / 1] \\
\hline & & \multicolumn{3}{|l|}{These SPs count and calculate the number of "Other" application jobs (Web Image Monitor, Palm 2, etc.) by size based on the number of pages in the job.} \\
\hline & 807x 1 & 1 Page & 807x 8 & 21 to 50 Pages \\
\hline & 807x 2 & 2 Pages & 807x 9 & 51 to 100 Pages \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|l|}
\hline \(807 \times 3\) & 3 Pages & \(807 \times 10\) & 101 to 300 Pages \\
\hline \(807 \times 4\) & 4 Pages & \(807 \times 11\) & 301 to 500 Pages \\
\hline \(807 \times 5\) & 5 Pages & \(807 \times 12\) & 501 to 700 Pages \\
\hline \(807 \times 6\) & 6 to10 Pages & \(807 \times 13\) & 701 to 1000 Pages \\
\hline \(807 \times 7\) & 11 to 20 Pages & \(807 \times 14\) & More than 1001 Pages \\
\hline
\end{tabular}
- For example: When a copy job stored on the document server is printed in document server mode, the appropriate L: counter (SP8076 0xx) increments.
- Printing a fax report counts as a job and increments the F: counter (SP 8073).
- Interrupted jobs (paper jam, etc.) are counted, even though they do not finish.
- If a job is paused and re-started, it counts as one job.
- If the finisher runs out of staples during a print and staple job, then the job is counted at the time the error occurs.
- For copy jobs (SP 8072) and scan jobs (SP 8075), the total is calculated by multiplying the number of sets of copies by the number of pages scanned. (One duplex page counts as 2.)
- The first test print and subsequent test prints to adjust settings are added to the number of pages of the copy job (SP 8072).
- When printing the first page of a job from within the document server screen, the page is counted.
\begin{tabular}{|l|l|l|}
\hline \multirow{3}{*}{8111} & \multicolumn{1}{|l|}{ T:FAX TX Jobs } & [0 to 9999999/ \(0 / 1]\) \\
\cline { 2 - 5 } & \begin{tabular}{l} 
These SPs count the total number of jobs (color or black-and-white) \\
sent by fax, either directly or using a file stored on the document server, \\
on a telephone line.
\end{tabular} \\
\hline \multirow{3}{*}{8113} & F:FAX TX Jobs & [0 to 9999999/0 / 1] \\
\cline { 2 - 4 } & \begin{tabular}{l} 
These SPs count the total number of jobs (color or black-and-white) \\
sent by fax directly on a telephone line.
\end{tabular} \\
\hline
\end{tabular}
- These counters count jobs, not pages.
- This SP counts fax jobs sent over a telephone line with a fax application, including documents stored on the document server.
- If the mode is changed during the job, the job will count with the mode set when the job started.
- If the same document is faxed to both a public fax line and an I-Fax at a destination where both are available, then this counter increments, and the I-Fax counter (812x) also increments.
- The fax job is counted when the job is scanned for sending, not when the job is sent.
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{8121} & T:IFAX TX Jobs & [0 to 9999999/0 / 1] \\
\hline & \multicolumn{2}{|l|}{These SPs count the total number of jobs (color or black-and-white) sent, either directly or using a file stored on the document server, as fax images using I-Fax.} \\
\hline & F:IFAX TX Jobs & [0 to 9999999/0 / 1] \\
\hline 8123 & \multicolumn{2}{|l|}{These SPs count the number of jobs (color or black-and-white) sent (not stored on the document server), as fax images using I-Fax.} \\
\hline
\end{tabular}
- These counters count jobs, not pages.
- The counters for color are provided for future use; the color fax feature is not available at this time.
- The fax job is counted when the job is scanned for sending, not when the job is sent.
\begin{tabular}{|l|l|l|}
\hline \multirow{3}{*}{8131} & \multicolumn{2}{|l|}{ T:S-to-Email Jobs } \\
\cline { 3 - 4 } & \multicolumn{3}{|l|}{\begin{tabular}{l} 
These SPs count the total number of jobs scanned and attached to an \\
e-mail, regardless of whether the document server was used or not.
\end{tabular}} \\
\hline \multirow{3}{*}{8135} & S:S-to-Email Jobs \\
\cline { 2 - 3 } & \begin{tabular}{l} 
These SPs count the number of jobs scanned and attached to an \\
e-mail, without storing the original on the document server.
\end{tabular} \\
\hline \(813 \times 1\) & B/W & Monochrome \\
\hline \(813 \times 2\) & Color & Color \\
\hline \(813 \times 3\) & ACS & Automatic Color Selection \\
\hline
\end{tabular}
- These counters count jobs, not pages.
- If the job is stored on the document server, after the job is stored it is determined to be color or black-and-white then counted.
- If the job is cancelled during scanning, or if the job is cancelled while the document is waiting to be sent, the job is not counted.
- If the job is cancelled during sending, it may or may not be counted, depending on what stage of the process had been reached when the job was cancelled.
- If several jobs are combined for sending to the Scan Router, Scan-to-Email, or Scan-to-PC, or if one job is sent to more than one destination. each send is counted separately. For example, if the same document is sent by Scan-to-Email as well as Scan-to-PC, then it is counted twice (once for Scan-to-Email and once for Scan-to-PC).
\begin{tabular}{|l|l|l|}
\hline \multirow{3}{*}{8141} & T:Deliv Jobs/Svr & [0 to 9999999/ \(0 / 1]\) \\
\cline { 3 - 4 } & \begin{tabular}{l} 
These SPs count the total number of jobs scanned and sent to a Scan \\
Router server.
\end{tabular} \\
\hline \multirow{3}{*}{8145} & S:Deliv Jobs/Svr \\
\cline { 2 - 3 } & \begin{tabular}{l} 
These SPs count the number of jobs scanned in scanner mode and \\
sent to a Scan Router server.
\end{tabular} \\
\hline \(814 \times 1\) & B/W & Monochrome \\
\hline \(814 \times 2\) & Color & Color \\
\hline \(814 \times 3\) & ACS & Automatic Color Selection \\
\hline
\end{tabular}
- The jobs are counted even though the arrival and reception of the jobs at the Scan Router server cannot be confirmed.
- If even one color image is mixed with black-and-white images, then the job is counted as a "Color" job.
- If the job is cancelled during scanning, or if the job is cancelled while the document is waiting to be delivered, the job is not counted.
- If the job is cancelled during sending, it may or may not be counted, depending on what stage of the process had been reached when the job was cancelled.
- Even if several files are combined for sending, the transmission counts as one job.
\begin{tabular}{|l|l|l|}
\hline \multirow{3}{*}{8151} & \multicolumn{1}{|l|}{ T:Deliv Jobs/PC } & [0 to 9999999/ \(0 / 1]\) \\
\cline { 3 - 4 } & \begin{tabular}{l} 
These SPs count the total number of jobs scanned and sent to a folder \\
on a PC (Scan-to-PC).
\end{tabular} \\
\hline \multirow{3}{*}{8155} & S:Deliv Jobs/PC \\
\cline { 2 - 3 } & \begin{tabular}{l} 
These SPs count the total number of jobs scanned and sent with \\
Scan-to-PC.
\end{tabular} \\
\hline \(815 \times 1\) & B/W & Monochrome \\
\hline \(815 \times 2\) & Color & Color \\
\hline \(815 \times 3\) & ACS & Automatic Color Selection \\
\hline
\end{tabular}
- These counters count jobs, not pages.
- If the job is cancelled during scanning, it is not counted.
- If the job is cancelled while it is waiting to be sent, the job is not counted.
- If the job is cancelled during sending, it may or may not be counted, depending on what stage of the process had been reached when the job was cancelled.
- Even if several files are combined for sending, the transmission counts as one job.
\begin{tabular}{|l|l|l|}
\hline 8161 & T:PCFAX TX Jobs & \begin{tabular}{l} 
These SPs count the number of PC Fax \\
transmission jobs. A job is counted from when it
\end{tabular} \\
\hline 8163 & F:PCFAX TX Jobs & \begin{tabular}{l} 
is registered for sending, not when it is sent. \\
{\([0\) to \(9999999 / 0 / 1]\)}
\end{tabular} \\
\hline
\end{tabular}
- This counts fax jobs started from a PC using a PC fax application, and sending the data out to the destination from the PC through the copier.
\begin{tabular}{|l|l|l|}
\hline 8191 & T:Total Scan PGS & \\
\hline 8192 & C:Total Scan PGS & \\
\hline 80 & These SPs count the pages scanned by each \\
application that uses the scanner to scan \\
images.
\end{tabular}
- SP 8191 to 8196 count the number of scanned sides of pages, not the number of physical pages.
- These counters do not count reading user stamp data, or reading color charts to adjust color.
- Previews done with a scanner driver are not counted.
- A count is done only after all images of a job have been scanned.
- Scans made in SP mode are not counted.

\section*{Examples:}
- If 3 B5 pages and 1 A3 page are scanned with the scanner application but not stored, the S : count is 4 .
- If both sides of 3 A4 sheets are copied and stored to the document server using the Store File button in the Copy mode window, the C: count is 6 and the L : count is 6 .
- If both sides of 3 A4 sheets are copied but not stored, the C: count is 6 .
- If you enter document server mode then scan 6 pages, the L: count is 6 .
\begin{tabular}{|l|l|l|}
\hline \multirow{3}{*}{8201} & \multicolumn{1}{|l|}{\begin{tabular}{l} 
T:LSize Scan PGS
\end{tabular}} & [0 to 9999999/ 0 / 1] \\
\cline { 2 - 4 } & \begin{tabular}{l} 
These SPs count the total number of large pages input with the scanner \\
for scan and copy jobs. Large size paper (A3/DLT) scanned for fax \\
transmission are not counted. \\
Note: These counters are displayed in the SMC Report, and in the User \\
Tools display.
\end{tabular} \\
\hline 8203 & F:L Size Scan PGS & [0 to 9999999/ 0 / 1]
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline 8211 & T:Scan PGS/LS & \begin{tabular}{l} 
These SPs count the number of pages scanned \\
into the document server . \\
[0 to 9999999/0 / 1]
\end{tabular} \\
\hline 8212 & C:Scan PGS/LS & \begin{tabular}{l} 
The L: counter counts the number of pages \\
stored from within the document server mode
\end{tabular} \\
\hline 8213 & F:Scan PGS/LS \\
screen at the operation panel, and with the
\end{tabular}
- Reading user stamp data is not counted.
- If a job is cancelled, the pages output as far as the cancellation are counted.
- If the scanner application scans and stores 3 B5 sheets and 1 A4 sheet, the S : count is 4.
- If pages are copied but not stored on the document server, these counters do not change.
- If both sides of 3 A4 sheets are copied and stored to the document server, the C : count is 6 and the L : count is 6 .
- If you enter document server mode then scan 6 pages, the \(L\) : count is 6 .
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{8221} & \multicolumn{2}{|l|}{ADF Org Feeds} & [0 to 9999999/ 0 / 1] \\
\hline & \multicolumn{3}{|l|}{These SPs count the number of pages fed through the ADF for front and back side scanning.} \\
\hline 82211 & Front & \begin{tabular}{l}
Numb \\
With \\
Front either \\
With an \\
Front \\
duplex \\
which
\end{tabular} & \begin{tabular}{l}
ed for scanning: can both sides simultaneously, the same as the number of pages fed for x scanning. \\
ot scan both sides simultaneously, the same as the number of pages fed for ing. (The front side is determined by ds face up.)
\end{tabular} \\
\hline 82212 & Back & \begin{tabular}{l}
Numb \\
With \\
Back \\
duplex \\
With \\
Back \\
duplex
\end{tabular} & \begin{tabular}{l}
ed for scanning: can both sides simultaneously, the as the number of pages fed for \\
ot scan both sides simultaneously, the as the number of pages fed for ing.
\end{tabular} \\
\hline
\end{tabular}
- When 1 sheet is fed for duplex scanning the Front count is 1 and the Back count is 1 .
- If a jam occurs during the job, recovery processing is not counted to avoid double counting. Also, the pages are not counted if the jam occurs before the first sheet is output.
\begin{tabular}{|r|l|l|l|}
\hline \multirow{2}{*}{8231} & \multicolumn{2}{|l|}{ Scan PGS/Mode } & [0 to 9999999/ 0 / 1] \\
\cline { 2 - 4 } & \begin{tabular}{rl} 
These SPs count the number of pages scanned by each ADF mode to \\
determine the work load on the ADF.
\end{tabular} \\
\hline 2 & Large Volume & \begin{tabular}{l} 
Selectable. Large copy jobs that cannot be loaded \\
in the ADF at one time.
\end{tabular} \\
\hline 3 & SADF & \begin{tabular}{l} 
Selectable. Feeding pages one by one through the \\
ADF.
\end{tabular} \\
\hline 4 & Custom Size & \begin{tabular}{l} 
Selectable. Select "Mixed Sizes" on the operation \\
panel.
\end{tabular} \\
\hline 5 & Platen & \begin{tabular}{l} 
Selectable. Originals of non-standard size.
\end{tabular} \\
\hline 6 & Simplex/Duplex & original directly on the platen.
\end{tabular}
- If the scan mode is changed during the job, for example, if the user switches from ADF to Platen mode, the count is done for the last selected mode.
- The user cannot select mixed sizes or non-standard sizes with the fax application so if the original's page sizes are mixed or non-standard, these are not counted.
- If the user selects "Mixed Sizes" for copying in the platen mode, the Mixed Size count is enabled.
- In the SADF mode if the user copies 1 page in platen mode and then copies 2 pages with SADF, the Platen count is 1 and the SADF count is 3 .
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{8241} & \multicolumn{4}{|l|}{T:Scan PGS/Org} & \multicolumn{2}{|l|}{[0 to 9999999/0 / 1]} \\
\hline & \multicolumn{6}{|l|}{These SPs count the total number of scanned pages by original type for all jobs, regardless of which application was used.} \\
\hline \multirow[b]{2}{*}{8242} & \multicolumn{3}{|l|}{C:Scan PGS/Org} & \multicolumn{3}{|c|}{[0 to 9999999/ 0 / 1]} \\
\hline & \multicolumn{6}{|l|}{These SPs count the number of pages scanned by original type for Copy jobs.} \\
\hline \multirow[b]{2}{*}{8243} & \multicolumn{3}{|l|}{F:Scan PGS/Org} & \multicolumn{3}{|c|}{[0 to 9999999/ 0 / 1]} \\
\hline & \multicolumn{6}{|l|}{These SPs count the number of pages scanned by original type for Fax jobs.} \\
\hline \multirow[b]{2}{*}{8245} & \multicolumn{3}{|l|}{S:Scan PGS/Org} & \multicolumn{3}{|c|}{[0 to 9999999/0/1]} \\
\hline & \multicolumn{6}{|l|}{These SPs count the number of pages scanned by original type for Scan jobs.} \\
\hline \multirow[b]{2}{*}{8246} & \multicolumn{3}{|l|}{L:Scan PGS/Org} & \multicolumn{3}{|c|}{[0 to 9999999/ 0 / 1]} \\
\hline & \multicolumn{6}{|l|}{These SPs count the number of pages scanned and stored from within the document server mode screen at the operation panel, and with the Store File button from within the Copy mode screen} \\
\hline & 8241 & 8242 & & 8243 & 8245 & 8246 \\
\hline \multicolumn{2}{|l|}{824x 1: Text} & Yes & Yes & Yes & Yes & Yes \\
\hline \multicolumn{2}{|l|}{824x 2: Text/Photo} & Yes & Yes & Yes & Yes & Yes \\
\hline \multicolumn{2}{|l|}{824x 3: Photo} & Yes & Yes & Yes & Yes & Yes \\
\hline \multicolumn{2}{|l|}{824x 4: GenCopy, Pale} & Yes & Yes & No & Yes & Yes \\
\hline \multicolumn{2}{|l|}{824x 5: Map} & Yes & Yes & No & Yes & Yes \\
\hline \multicolumn{2}{|l|}{824x 11: Other} & Yes & Yes & Yes & Yes & Yes \\
\hline
\end{tabular}
- If the scan mode is changed during the job, for example, if the user switches from ADF to Platen mode, the count is done for the last selected mode.
\begin{tabular}{|l|l|l|}
\hline 8251 & T:Scan PGS/ImgEdt & \begin{tabular}{l} 
These SPs show how many times Image Edit \\
features have been selected at the operation \\
panel for each application. Some examples of
\end{tabular} \\
\hline 8252 & C:Scan PGS/ImgEdt & S:Scan PGS/ImgEdt
\end{tabular} \begin{tabular}{l} 
these editing features are: \\
\hline 8255 \\
\hline 8256 \\
\hline 8257 \\
\hline
\end{tabular}
- The L: counter counts the number of pages stored from within the document server mode screen at the operation panel, and with the Store File button from within the Copy mode screen.
\begin{tabular}{|l|l|l|}
\hline 8281 & T:Scan PGS/TWAIN & \begin{tabular}{l} 
These SPs count the number of pages scanned \\
using a TWAIN driver. These counters reveal \\
how the TWAIN driver is used for delivery \\
8285
\end{tabular} \\
\hline S:Scan PGS/TWAIN & \begin{tabular}{l} 
functions. \\
{\([0\) to \(9999999 / 0 / 1]\)}
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline 8291 & T:Scan PGS/Stamp & \begin{tabular}{l} 
These SPs count the number of pages stamped \\
with the stamp in the ADF unit. \\
[0 to 9999999/0/1]
\end{tabular} \\
\hline 8293 & F:Scan PGS/Stamp \\
\hline 8295 & S:Scan PGS/Stamp & \begin{tabular}{l} 
The L: counter counts the number of pages \\
stored from within the document server mode \\
screen at the operation panel, and with the \\
Store File button from within the Copy mode \\
screen
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{8301} & T:Scan PGS/Size & [0 to 9999999/ 0 / 1] \\
\hline & \multicolumn{2}{|l|}{These SPs count by size the total number of pages scanned by all applications. Use these totals to compare original page size (scanning) and output (printing) page size [SP 8-441].} \\
\hline \multirow[b]{2}{*}{8302} & C:Scan PGS/Size & [0 to 9999999/0/1] \\
\hline & \multicolumn{2}{|l|}{These SPs count by size the total number of pages scanned by the Copy application. Use these totals to compare original page size (scanning) and output (printing) page size [SP 8-442].} \\
\hline & F:Scan PGS/Size & [0 to 9999999/0/1] \\
\hline 8303 & \multicolumn{2}{|l|}{These SPs count by size the total number of pages scanned by the Fax application. Use these totals to compare original page size (scanning) and output page size [SP 8-443].} \\
\hline & S:Scan PGS/Size & [0 to 9999999/ 0 / 1] \\
\hline 8305 & \multicolumn{2}{|l|}{These SPs count by size the total number of pages scanned by the Scan application. Use these totals to compare original page size (scanning) and output page size [SP 8-445].} \\
\hline & L:Scan PGS/Size & [0 to 9999999/ 0 / 1] \\
\hline 8306 & \multicolumn{2}{|l|}{These SPs count by size the total number of pages scanned and stored from within the document server mode screen at the operation panel, and with the Store File button from within the Copy mode screen. Use these totals to compare original page size (scanning) and output page size [SP 8-446].} \\
\hline \(830 \times 1\) & A3 & \\
\hline 830x 2 & A4 & \\
\hline 830x 3 & A5 & \\
\hline 830x 4 & B4 & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \(830 \times 5\) & B5 & & \\
\hline \(830 \times 6\) & DLT & & \\
\hline \(830 \times 7\) & LG & & \\
\hline \(830 \times 8\) & LT & & \\
\hline \(830 \times 9\) & HLT & & \\
\hline \(830 \times 10\) & Oull Bleed & \\
\hline \(830 \times 254\) & Other (Standard) & & \\
\hline \(830 \times 255\) & Other (Custom) & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{8311} & T:Scan PGS/Rez & [0 to 9999999/ 0 / 1] \\
\hline & \multicolumn{2}{|l|}{These SPs count by resolution setting the total number of pages scanned by applications that can specify resolution settings.} \\
\hline & S:Scan PGS/Rez & [0 to 9999999/ 0 / 1] \\
\hline 8315 & \multicolumn{2}{|l|}{\begin{tabular}{l}
These SPs count by resolution setting the total number of pages scanned by applications that can specify resolution settings. \\
Note: At the present time, 8311 and 8315 perform identical counts
\end{tabular}} \\
\hline 831x 1 & 1200dpi to & \\
\hline 831x 2 & 600dpito1199dpi & \\
\hline 831x 3 & 400dpito599dpi & \\
\hline 831x 4 & 200dpito399dpi & \\
\hline \(831 \times 5\) & to199dpi & \\
\hline
\end{tabular}
- Copy resolution settings are fixed so they are not counted.
- The Fax application does not allow finely-adjusted resolution settings so no count is done for the Fax application.
\begin{tabular}{|l|l|l|}
\hline 8381 & T:Total PrtPGS & \multirow{2}{*}{\begin{tabular}{l} 
These SPs count the number of pages printed \\
by the customer. The counter for the application \\
used for storing the pages increments.
\end{tabular}} \\
\hline 8382 & C:Total PrtPGS & [0 to 9999999/0 \(/ 1\) ]
\end{tabular}
- When the A3/DLT double count function is switched on with SP5104, 1 A3/DLT page is counted as 2.
- When several documents are merged for a print job, the number of pages stored are counted for the application that stored them.
- These counters are used primarily to calculate charges on use of the machine, so the following pages are not counted as printed pages:
- Blank pages in a duplex printing job.
- Blank pages inserted as document covers, chapter title sheets, and slip sheets.
- Reports printed to confirm counts.
- All reports done in the service mode (service summaries, engine maintenance reports, etc.)
- Test prints for machine image adjustment.
- Error notification reports.
- Partially printed pages as the result of a copier jam.
\begin{tabular}{|l|l|l|}
\hline \multirow{3}{*}{8391} & LSize PrtPGS & [0 to 9999999/0 / 1] \\
\cline { 2 - 4 } & \begin{tabular}{l} 
These SPs count pages printed on paper sizes A3/DLT and larger. \\
Note: In addition to being displayed in the SMC Report, These counters \\
appear in the SMC report as well as on the machine display.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline 8401 & T:PrtPGS/LS & \begin{tabular}{l} 
These SPs count the number of pages printed \\
from the document server. The counter for the \\
application used to print the pages is \\
incremented.
\end{tabular} \\
\hline 8402 & C:PrtPGS/LS & F:PrtPGS/LS \\
\hline 8403 & P:PrtPGS/LS & \begin{tabular}{l} 
The L: counter counts the number of jobs stored \\
from within the document server mode screen \\
at the operation panel. \\
[0 to \(9999999 / 0 / 1]\)
\end{tabular} \\
\hline 8404 & L:PrtPGS/LS & \\
\hline 8406 & &
\end{tabular}
- Print jobs done with Web Image Monitor and Desk Top Binder are added to the L: count.
- Fax jobs done with Web Image Monitor and Desk Top Binder are added to the F: count.
\begin{tabular}{|l|l|}
\hline 8411 & Prints/Duplex \\
\hline & \begin{tabular}{l} 
This SP counts the amount of paper (front/back counted as 1 page) \\
used for duplex printing. Last pages printed only on one side are not \\
counted. \\
{\([0\) to 9999999/0 / 1] }
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multirow{3}{*}{8421} & \multicolumn{1}{|l|}{\begin{tabular}{l} 
T:PrtPGS/Dup Comb
\end{tabular}} & {\([0\) to \(9999999 / 0 / 1]\)} \\
\cline { 2 - 4 } & \multicolumn{2}{|l|}{\begin{tabular}{l} 
These SPs count by binding and combine, and n-Up settings the \\
number of pages processed for printing. This is the total for all \\
applications.
\end{tabular}} \\
\hline \multirow{3}{*}{\begin{tabular}{ll} 
C:PrtPGS/Dup Comb & {\([0\) to 9999999/ \(0 / 1]\)} \\
\cline { 2 - 3 } & \begin{tabular}{l} 
These SPs count by binding and combine, and n-Up settings the \\
number of pages processed for printing by the copier application.
\end{tabular} \\
\hline
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{8423} & & \multicolumn{2}{|l|}{F:PrtPGS/Dup Comb} & [0 to 9999999/ 0 / 1] \\
\hline & & \multicolumn{3}{|l|}{These SPs count by binding and combine, and \(n\)-Up settings the number of pages processed for printing by the fax application.} \\
\hline \multirow[b]{2}{*}{8424} & & \multicolumn{2}{|l|}{P:PrtPGS/Dup Comb} & [0 to 9999999/ 0 / 1] \\
\hline & & \multicolumn{3}{|l|}{These SPs count by binding and combine, and n-Up settings the number of pages processed for printing by the printer application.} \\
\hline \multirow[b]{2}{*}{8425} & & \multicolumn{2}{|l|}{S:PrtPGS/Dup Comb} & [0 to 9999999/0 / 1] \\
\hline & & \multicolumn{3}{|l|}{These SPs count by binding and combine, and \(n\)-Up settings the number of pages processed for printing by the scanner application.} \\
\hline \multirow[b]{2}{*}{8426} & & \multicolumn{2}{|l|}{L:PrtPGS/Dup Comb} & [0 to 9999999/ 0 / 1] \\
\hline & & \multicolumn{3}{|l|}{These SPs count by binding and combine, and \(n-U p\) settings the number of pages processed for printing from within the document server mode window at the operation panel.} \\
\hline \multirow[b]{2}{*}{8427} & & \multicolumn{2}{|l|}{O:PrtPGS/Dup Comb} & [0 to 9999999/ 0 / 1] \\
\hline & & \multicolumn{3}{|l|}{These SPs count by binding and combine, and n-Up settings the number of pages processed for printing by Other applications} \\
\hline & 842x 1 & Simplex> Duplex & & \\
\hline & \(842 \times 2\) & Duplex> Duplex & & \\
\hline & 842x 3 & Book> Duplex & & \\
\hline & 842x 4 & Simplex Combine & & \\
\hline & 842x 5 & Duplex Combine & & \\
\hline & 842x 6 & 2> & \multicolumn{2}{|l|}{2 pages on 1 side (2-Up)} \\
\hline & \(842 \times 7\) & 4> & \multicolumn{2}{|l|}{4 pages on 1 side (4-Up)} \\
\hline & 842x 8 & 6> & \multicolumn{2}{|l|}{6 pages on 1 side (6-Up)} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|}
\hline \(842 \times 9\) & \(8>\) & 8 pages on 1 side (8-Up) \\
\hline \(842 \times 10\) & \(9>\) & 9 pages on 1 side (9-Up) \\
\hline \(842 \times 11\) & \(16>\) & 16 pages on 1 side (16-Up) \\
\hline \(842 \times 12\) & Booklet & \\
\hline \(842 \times 13\) & Magazine & \\
\hline
\end{tabular}
- These counts (SP8421 to SP8427) are especially useful for customers who need to improve their compliance with ISO standards for the reduction of paper consumption.
- Pages that are only partially printed with the n-Up functions are counted as 1 page.

Here is a summary of how the counters work for Booklet and Magazine modes:
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ Booklet } & \multicolumn{2}{|c|}{ Magazine } \\
\hline \begin{tabular}{c} 
Original \\
Pages
\end{tabular} & Count & \begin{tabular}{c} 
Original \\
Pages
\end{tabular} & Count \\
\hline 1 & 1 & 1 & 1 \\
\hline 2 & 2 & 2 & 2 \\
\hline 3 & 2 & 3 & 2 \\
\hline 4 & 3 & 4 & 4 & 4 \\
\hline 6 & 4 & 6 & 4 & 4 \\
\hline 7 & 4 & 8 & 4 \\
\hline 8 & 4 & 2 & 4 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{8441} & T:PrtPGS/Ppr Size & [0 to 9999999/ 0 / 1] \\
\hline & \multicolumn{2}{|l|}{These SPs count by print paper size the number of pages printed by all applications.} \\
\hline \multirow[b]{2}{*}{8442} & C:PrtPGS/Ppr Size & [0 to 9999999/0 / 1] \\
\hline & \multicolumn{2}{|l|}{These SPs count by print paper size the number of pages printed by the copy application.} \\
\hline \multirow[b]{2}{*}{8443} & F:PrtPGS/Ppr Size & [0 to 9999999/0 / 1] \\
\hline & \multicolumn{2}{|l|}{These SPs count by print paper size the number of pages printed by the fax application.} \\
\hline \multirow[b]{2}{*}{8444} & P:PrtPGS/Ppr Size & [0 to 9999999/ 0 / 1] \\
\hline & \multicolumn{2}{|l|}{These SPs count by print paper size the number of pages printed by the printer application.} \\
\hline \multirow[b]{2}{*}{8445} & S:PrtPGS/Ppr Size & [0 to 9999999/0 / 1] \\
\hline & \multicolumn{2}{|l|}{These SPs count by print paper size the number of pages printed by the scanner application.} \\
\hline \multirow[b]{2}{*}{8446} & L:PrtPGS/Ppr Size & [0 to 9999999/0 / 1] \\
\hline & \multicolumn{2}{|l|}{These SPs count by print paper size the number of pages printed from within the document server mode window at the operation panel.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{8447} & O:PrtPGS/Ppr Size & [0 to 9999999/ 0 / 1] \\
\hline & \multicolumn{2}{|l|}{These SPs count by print paper size the number of pages printed by Other applications.} \\
\hline 844x 1 & A3 & \\
\hline 844x 2 & A4 & \\
\hline 844x 3 & A5 & \\
\hline 844x 4 & B4 & \\
\hline \(844 \times 5\) & B5 & \\
\hline 844x 6 & DLT & \\
\hline 844x 7 & LG & \\
\hline 844x 8 & LT & \\
\hline 844x 9 & HLT & \\
\hline 844x 10 & Full Bleed & \\
\hline 844x 254 & Other (Standard) & \\
\hline 844x 255 & Other (Custom) & \\
\hline
\end{tabular}
- These counters do not distinguish between LEF and SEF.
\begin{tabular}{|r|l|l|l|}
\hline \multirow{2}{*}{8451} & \multicolumn{2}{|l|}{ PrtPGS/Ppr Tray } \\
\cline { 2 - 3 } & \multicolumn{1}{|l|}{\begin{tabular}{l} 
These SPs count the number of sheets fed from each paper feed \\
station.
\end{tabular}} \\
\hline 1 & Bypass & Bypass Tray \\
\hline 2 & Tray 1 & Copier \\
\hline 3 & Tray 2 & Copier \\
\hline 4 & Tray 3 & Paper Tray Unit (Option) \\
\hline 5 & Tray 4 & Paper Tray Unit (Option) \\
\hline 6 & Tray 5 & LCT (Option) \\
\hline 7 & Tray 6 & 500-Sheet Finisher \\
\hline 8 & Tray 7 & Currently not used. \\
\hline 9 & Tray 8 & Currently not used. \\
\hline 10 & Tray 9 & Currently not used. \\
\hline 11 & Tray 10 & Currently not used. \\
\hline 12 & Tray 11 & Currently not used. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{8461} & T:PrtPGS/Ppr Type & [0 to 9999999/ 0 / 1] \\
\hline & \multicolumn{2}{|l|}{\begin{tabular}{l}
These SPs count by paper type the number pages printed by all applications. \\
- These counters are not the same as the PM counter. The PM counter is based on feed timing to accurately measure the service life of the feed rollers. However, these counts are based on output timing. \\
- Blank sheets (covers, chapter covers, slip sheets) are also counted. \\
- During duplex printing, pages printed on both sides count as 1 , and a page printed on one side counts as 1 .
\end{tabular}} \\
\hline & C:PrtPGS/Ppr Type & [0 to 9999999/0 / 1] \\
\hline 8462 & \multicolumn{2}{|l|}{These SPs count by paper type the number pages printed by the copy application.} \\
\hline \multirow[b]{2}{*}{8463} & F:PrtPGS/Ppr Type & [0 to 9999999/0 / 1] \\
\hline & \multicolumn{2}{|l|}{These SPs count by paper type the number pages printed by the fax application.} \\
\hline \multirow[b]{2}{*}{8464} & P:PrtPGS/Ppr Type & [0 to 9999999/0 / 1] \\
\hline & \multicolumn{2}{|l|}{These SPs count by paper type the number pages printed by the printer application.} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multirow{3}{*}{8466} & L:PrtPGS/Ppr Type & {\([0\) to 9999999/0 / 1] } \\
\cline { 2 - 3 } & \begin{tabular}{l} 
These SPs count by paper type the number pages printed from within \\
the document server mode window at the operation panel.
\end{tabular} \\
\hline \(846 \times 1\) & Normal \\
\hline \(846 \times 2\) & Recycled \\
\hline \(846 \times 3\) & Special \\
\hline \(846 \times 4\) & Thick \\
\hline \(846 \times 5\) & Normal (Back) \\
\hline \(846 \times 6\) & OHP & \\
\hline \(846 \times 7\) & Other \\
\hline \(846 \times 8\) & \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|}
\hline \multirow{2}{*}{8471} & PrtPGS/Mag & {\([0\) to 9999999/ 0 / 1] } \\
\cline { 2 - 3 } & These SPs count by magnification rate the number of pages printed. \\
\hline 1 & to49\% \\
\hline 2 & \(50 \%\) to99\% \\
\hline 3 & \(100 \%\) \\
\hline 4 & \(101 \%\) to200\% \\
\hline 5 & \(201 \%\) to \\
\hline
\end{tabular}
- Counts are done for magnification adjusted for pages, not only on the operation panel but performed remotely with an external network application capable of performing magnification adjustment as well.
- Magnification adjustments done with printer drivers with PC applications such as Excel are also counted.
- Magnification adjustments done for adjustments after they have been stored on the

System SP Tables-8 document server are not counted.
- Magnification adjustments performed automatically during Auto Reduce/Enlarge copying are counted.
- The magnification rates of blank cover sheets, slip sheets, etc. are automatically assigned a rate of \(100 \%\).
\begin{tabular}{|l|l|}
\hline 8481 & T:PrtPGS/TonSave \\
\hline 8484 & \begin{tabular}{l} 
P:PrtPGS/TonSave \\
\cline { 2 - 4 } \\
These SPs count the number of pages printed with the Toner Save \\
feature switched on. \\
Note: These SPs return the same results because this SP is limited to \\
the Print application. \\
{\([0\) to 9999999/ \(0 / 1]\)}
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{8511} & \multicolumn{2}{|l|}{T:PrtPGS/Emul} & [0 to 9999999/ 0 / 1] \\
\hline & \multicolumn{3}{|l|}{These SPs count by printer emulation mode the total number of pages printed.} \\
\hline \multirow[b]{2}{*}{8514} & P:PrtPGS & & [0 to 9999999/ 0 / 1] \\
\hline & \multicolumn{3}{|l|}{These SPs count by printer emulation mode the total number of pages printed.} \\
\hline 85141 & RPCS & & \\
\hline 85142 & RPDL & & \\
\hline 85143 & PS3 & & \\
\hline 85144 & R98 & & \\
\hline 85145 & R16 & & \\
\hline 85146 & GL/GL2 & & \\
\hline 85147 & R55 & & \\
\hline 85148 & RTIFF & & \\
\hline 85149 & PDF & & \\
\hline 851410 & PCL5e/5c & & \\
\hline 851411 & PCL XL & & \\
\hline 851412 & IPDL-C & & \\
\hline 851413 & BM-Links & \multicolumn{2}{|l|}{Japan Only} \\
\hline 851414 & Other & & \\
\hline
\end{tabular}
- SP8511 and SP8514 return the same results because they are both limited to the Print application.
- Print jobs output to the document server are not counted.
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{8521} & T:PrtPGS/FIN & [0 to 9999999/ 0 / 1 ] \\
\hline & \multicolumn{2}{|l|}{These SPs count by finishing mode the total number of pages printed by all applications.} \\
\hline \multirow[b]{2}{*}{8522} & C:PrtPGS/FIN & [0 to 9999999/ 0 / 1] \\
\hline & \multicolumn{2}{|l|}{These SPs count by finishing mode the total number of pages printed by the Copy application.} \\
\hline \multirow[b]{2}{*}{8523} & F:PrtPGS/FIN & [0 to 9999999/ 0 / 1] \\
\hline & \multicolumn{2}{|l|}{These SPs count by finishing mode the total number of pages printed by the Fax application.} \\
\hline \multirow[b]{2}{*}{8524} & P:PrtPGS/FIN & [0 to 9999999/0 / 1] \\
\hline & \multicolumn{2}{|l|}{These SPs count by finishing mode the total number of pages printed by the Print application.} \\
\hline \multirow[b]{2}{*}{8525} & S:PrtPGS/FIN & [0 to 9999999/0 / 1] \\
\hline & \multicolumn{2}{|l|}{These SPs count by finishing mode the total number of pages printed by the Scanner application.} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline & L:PrtPGS/FIN & [0 to 9999999/0 / 1] \\
\cline { 2 - 4 } & \begin{tabular}{l} 
These SPs count by finishing mode the total number of pages printed \\
from within the document server mode window at the operation panel. \\
Note: \\
If stapling is selected for finishing and the stack is too large for \\
stapling, the unstapled pages are still counted. \\
The counts for staple finishing are based on output to the staple \\
tray, so jam recoveries are counted.
\end{tabular} \\
\hline \(852 \times 1\) & Sort \\
\hline \(852 \times 2\) & Stack \\
\hline \(852 \times 3\) & Staple \\
\hline \(852 \times 4\) & Booklet \\
\hline \(852 \times 5\) & Z-Fold \\
\hline \(852 \times 6\) & Punch \\
\hline \(852 \times 7\) & Other \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline 8531 & Staples & \begin{tabular}{l} 
This SP counts the amount of staples used by \\
the machine. \\
{\([0\) to \(9999999 / 0 / 1]\)}
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multirow{3}{*}{8581} & T:Counter & [0 to 9999999/0 / 1] \\
\cline { 2 - 4 } & \begin{tabular}{l} 
These SPs count the total output broken down by color output, \\
regardless of the application used. In addition to being displayed in the \\
SMC Report, these counters are also displayed in the User Tools \\
display on the copy machine.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multirow{3}{*}{8591} & \multicolumn{1}{|l|}{ O:Counter } & [0 to 9999999/0 / 1] \\
\cline { 2 - 4 } & \begin{tabular}{l} 
These SPs count the totals for A3/DLT paper use, number of duplex \\
pages printed, and the number of staples used. These totals are for \\
Other (O:) applications only.
\end{tabular} \\
\hline 1 & A3/DLT & \\
\hline 2 & Duplex & \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|l|}
\hline \multirow{2}{*}{8601} & \multicolumn{2}{|l|}{ Coverage Counter } & \\
\hline & & & \\
\hline 1 & B/W & & \\
\hline 2 & B/W Printing Pages & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multirow{3}{*}{8631} & \multicolumn{1}{|l|}{ T:FAX TX PGS } & [0 to 9999999/0 / 1] \\
\cline { 2 - 5 } & \begin{tabular}{l} 
These SPs count by color mode the number of pages sent by fax to a \\
telephone number.
\end{tabular} \\
\hline \multirow{3}{*}{8633} & F:FAX TX PGS & [0 to 9999999/0 / 1] \\
\cline { 2 - 4 } & \begin{tabular}{l} 
These SPs count by color mode the number of pages sent by fax to a \\
telephone number.
\end{tabular} \\
\hline
\end{tabular}
- If a document has color and black-and-white pages mixed, the pages are counted separately as B/W or Color.
- At the present time, this feature is provided for the Fax application only so SP8631 and SP8633 are the same.
- The counts include error pages.
- If a document is sent to more than one destination with a Group transmission, the count is done for each destination.
- Polling transmissions are counted but polling RX are not.
- Relay, memory, and confidential mailbox transmissions and are counted for each destination.
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{8641} & T:FAX TX PGS & [0 to 9999999/0 / 1] \\
\hline & \multicolumn{2}{|l|}{These SPs count by color mode the number of pages sent by fax to as fax images using I-Fax.} \\
\hline & F:FAX TX PGS & [0 to 9999999/0 / 1] \\
\hline 8643 & \multicolumn{2}{|l|}{These SPs count by color mode the number of pages sent by Fax as fax images using I-Fax.} \\
\hline
\end{tabular}
- If a document has color and black-and-white pages mixed, the pages are counted separately as B/W or Color.
- At the present time, this feature is provided for the Fax application only so SP8641 and SP8643 are the same.
- The counts include error pages.
- If a document is sent to more than one destination with a Group transmission, the count is done for each destination.
- Polling transmissions are counted but polling RX are not.
- Relay, memory, and confidential mailbox transmissions and are counted for each destination.
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{8651} & T:S-to & [0 to 9999999/0 / 1] \\
\hline & \multicolumn{2}{|l|}{These SPs count by color mode the total number of pages attached to an e-mail for both the Scan and document server applications.} \\
\hline & S:S-to & [0 to 9999999/0/1] \\
\hline 8655 & \multicolumn{2}{|l|}{These SPs count by color mode the total number of pages attached to an e-mail for the Scan application only.} \\
\hline 1 & B/W & \\
\hline 2 & Color & \\
\hline
\end{tabular}

\section*{Note}
- The count for B/W and Color pages is done after the document is stored on the HDD. If the job is cancelled before it is stored, the pages are not counted.
- If Scan-to-Email is used to send a 10-page document to 5 addresses, the count is 10 (the pages are sent to the same SMTP server together).
- If Scan-to-PC is used to send a 10-page document to 5 folders, the count is 50 (the document is sent to each destination of the SMB/FTP server).
- Due to restrictions on some devices, if Scan-to-Email is used to send a 10-page document to a large number of destinations, the count may be divided and counted separately. For example, if a 10-page document is sent to 200 addresses, the count is 10 for the first 100 destinations and the count is also 10 for the second 100 destinations, for a total of 20 .
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{8661} & T:Deliv & [0 to 9999999/0 / 1] \\
\hline & \multicolumn{2}{|l|}{These SPs count by color mode the total number of pages sent to a Scan Router server by both Scan and LS applications.} \\
\hline \multirow[b]{2}{*}{8665} & S:Deliv & [0 to 9999999/0 / 1] \\
\hline & \multicolumn{2}{|l|}{These SPs count by color mode the total number of pages sent to a Scan Router server by the Scan application.} \\
\hline 1 & B/W & \\
\hline 2 & Color & \\
\hline
\end{tabular}

\section*{Note}
- The \(B / W\) and Color counts are done after the document is stored on the HDD of the Scan Router server.
- If the job is canceled before storage on the Scan Router server finishes, the counts are not done.
- The count is executed even if regardless of confirmation of the arrival at the Scan Router server.
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{8671} & T:Deliv & [0 to 9999999/ 0 / 1] \\
\hline & \multicolumn{2}{|l|}{These SPs count by color mode the total number of pages sent to a folder on a PC (Scan-to-PC) with the Scan and LS applications.} \\
\hline & S:Deliv & [0 to 9999999/0 / 1] \\
\hline 8675 & \multicolumn{2}{|l|}{These SPs count by color mode the total number of pages sent with Scan-to-PC with the Scan application.} \\
\hline 1 & B/W & \\
\hline 2 & Color & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline 8681 & T:PCFAX TXPGS & \begin{tabular}{l} 
These SPs count the number of pages sent by \\
PC Fax. These SPs are provided for the Fax
\end{tabular} \\
\hline 8683 & F:PCFAX TXPGS & \begin{tabular}{l} 
application only, so the counts for SP8681 and \\
SP8683 are the same. \\
[0 to \(9999999 / 0 / 1]\)
\end{tabular} \\
\hline
\end{tabular}
- This counts pages sent from a PC using a PC fax application, from the PC through the copier to the destination.
- When sending the same message to more than one place using broadcasting, the pages are only counted once. (For example, a 10-page fax is sent to location A and location B. The counter goes up by 10, not 20.)
\begin{tabular}{|l|l|l|}
\hline 8691 & T:TX PGS/LS & \begin{tabular}{l} 
These SPs count the number of pages sent from the \\
document server. The counter for the application \\
that was used to store the pages is incremented.
\end{tabular} \\
\hline 8692 & C:TX PGS/LS & F:TX PGS/LS \\
[0 to 9999999/0 / 1] \\
The L: counter counts the number of pages stored \\
from within the document server mode screen at the
\end{tabular}

System SP Tables-8

\section*{Note}
- Print jobs done with Web Image Monitor and Desk Top Binder are added to the count.
- If several documents are merged for sending, the number of pages stored are counted for the application that stored them.
- When several documents are sent by a Fax broadcast, the F: count is done for the number of pages sent to each destination.
\begin{tabular}{|l|l|l|l|}
\hline \multirow{3}{*}{8701} & \multicolumn{2}{|l|}{ TX PGS/Port } & [0 to 9999999/0 / 1] \\
\cline { 2 - 4 } & \multicolumn{2}{|l|}{\begin{tabular}{l} 
These SPs count the number of pages sent by the physical port used to \\
send them. For example, if a 3-page original is sent to 4 destinations via \\
ISDN G4, the count for ISDN (G3, G4) is 12.
\end{tabular}} \\
\hline 87011 & PSTN-1 & & \\
\hline 87012 & PSTN-2 & & \\
\hline 87013 & PSTN-3 & & \\
\hline 87014 & ISDN (G3,G4) & & \\
\hline 87015 & Network & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multirow{3}{*}{8711} & \multicolumn{2}{|l|}{ T:Scan PGS/Comp } & [0 to 9999999/ 1] \\
\cline { 2 - 4 } & \begin{tabular}{l} 
These SPs count the number of compressed pages scanned into the \\
document server, counted by the formats listed below.
\end{tabular} \\
\hline 87111 & JPEG/JPEG2000 & & \\
\hline 87112 & TIFF (Multi/Single) & & \\
\hline 87113 & PDF & & \\
\hline 87114 & Other & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multirow{3}{*}{8715} & \multicolumn{2}{|l|}{ S:Scan PGS/Comp } & {\([0\) to 9999999/ 1] } \\
\cline { 2 - 4 } & \multicolumn{2}{|l|}{\begin{tabular}{l} 
These SPs count the number of compressed pages scanned by the \\
scan application, counted by the formats listed below.
\end{tabular}} \\
\hline 87151 & JPEG/JPEG2000 & & \\
\hline 87152 & TIFF (Multi/Single) & & \\
\hline 87153 & PDF & & \\
\hline 87154 & Other & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multirow{2}{*}{8741} & \multicolumn{2}{|l|}{ RX PGS/Port } & {\([0\) to \(9999999 / 0 / 1]\)} \\
\cline { 2 - 4 } & \multicolumn{2}{|l|}{\begin{tabular}{l} 
These SPs count the number of pages received by the physical port \\
used to receive them.
\end{tabular}} \\
\hline 87411 & PSTN-1 & & \\
\hline 87412 & PSTN-2 & & \\
\hline 87413 & PSTN-3 & & \\
\hline 87414 & ISDN (G3,G4) & & \\
\hline 87415 & Network & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multirow{3}{*}{8771} & Dev Counter & {\([0\) to 9999999/0 / 1] } \\
\cline { 2 - 3 } & \begin{tabular}{l} 
These SPs count the frequency of use (number of rotations of the \\
development rollers) for black and other color toners.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{3}{*}{8781} & Pixel Coverage Ratio \\
\cline { 2 - 3 } & \begin{tabular}{l} 
This SP displays the number of toner bottles used. The count is done \\
based on the equivalent of 1,000 pages per bottle.
\end{tabular} \\
\hline
\end{tabular}

System SP Tables-8
\begin{tabular}{|l|l|l|}
\hline 8791 & LS Memory Remain & \begin{tabular}{l} 
This SP displays the percent of space \\
available on the document server for storing \\
documents. \\
{\([0\) to \(100 / 0 / 1]\)}
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{8801} & Toner Remain & [0 to 100/0 / 1] \\
\hline & \multicolumn{2}{|l|}{\begin{tabular}{l}
This SP displays the percent of toner remaining for each color. This SP allows the user to check the toner supply at any time. \\
Note \\
- This precise method of measuring remaining toner supply ( \(1 \%\) steps) is better than other machines in the market that can only measure in increments of 10 ( \(10 \%\) steps). \\
- This SP is expanded for color MFP and color LP machines. For this machine, the count is done for black only.
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multirow{3}{*}{8851} & \multicolumn{2}{|l|}{\begin{tabular}{l} 
Cover Cnt: 0-10\%
\end{tabular}} & {\([0\) to 9999999] } \\
\cline { 2 - 3 } & \begin{tabular}{l} 
These SPs count the percentage of dot coverage for black other color \\
toners.
\end{tabular} \\
\hline 1 & K & Black toner & \\
\hline 2 & M & Magenta toner & \multicolumn{2}{c}{} \\
\hline 3 & C & Cyan toner & Do not display for this machine. \\
\hline 4 & Y & Yellow toner & \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|l|}
\hline \multirow{3}{*}{8861} & \multicolumn{2}{|l|}{ Cover Cnt: 11-20\% } & [0 to 9999999] \\
\cline { 2 - 3 } & \begin{tabular}{l} 
These SPs count the percentage of dot coverage for black other color \\
toners.
\end{tabular} \\
\hline 1 & K & Black toner & \\
\hline 2 & M & Magenta toner & \\
\hline 3 & C & Cyan toner & \multirow{2}{*}{ Do not display for this machine. } \\
\hline 4 & Y & Yellow toner & \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|l|}
\hline \multirow{3}{*}{8871} & \multicolumn{2}{|l|}{ Cover Cnt: 21-30\% } & [0 to 9999999] \\
\cline { 2 - 3 } & \begin{tabular}{l} 
These SPs count the percentage of dot coverage for black other color \\
toners.
\end{tabular} \\
\hline 1 & K & Black toner & \\
\hline 2 & M & Magenta toner & \\
\hline 3 & C & Cyan toner & \multirow{2}{*}{ Do not display for this machine. } \\
\hline 4 & Y & Yellow toner & \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|l|}
\hline \multirow{3}{*}{8881} & \multicolumn{2}{|l|}{ Cover Cnt: 31-\% } & [0 to 9999999] \\
\cline { 2 - 3 } & \begin{tabular}{l} 
These SPs count the percentage of dot coverage for black other color \\
toners.
\end{tabular} \\
\hline 1 & K & Black toner & \\
\hline 2 & M & Magenta toner & \\
\hline 3 & C & Cyan toner & \multirow{2}{*}{ Do not display for this machine. } \\
\hline 4 & Y & Yellow toner & \\
\hline
\end{tabular}

System SP Tables-8
\begin{tabular}{|l|l|}
\hline 8891 & Page/Toner Bottle DFU \\
\hline 8901 & Page/Toner_Prev1 DFU \\
\hline 8911 & Page/Toner_Prev2 DFU \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|l|}
\hline \multirow{2}{*}{8921} & \multicolumn{2}{|l|}{ Cvr Cnt/Total } & \\
\cline { 2 - 4 } & & & \\
\hline 1 & Coverage (\%) BK & & \\
\hline 11 & Cover/Page (\%): BK & & \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|l|}
\hline \multirow{2}{*}{} & \multicolumn{1}{|l|}{ Machine Status } & [0 to 9999999/ 0 / 1] \\
\cline { 2 - 4 } & \begin{tabular}{l} 
These SPs count the amount of time the machine spends in each operation \\
mode. These SPs are useful for customers who need to investigate machine \\
operation for improvement in their compliance with ISO Standards.
\end{tabular} \\
\hline 2 & Operation Time & \begin{tabular}{l} 
Engine operation time. Does not include time while \\
controller is saving data to HDD (while engine is not \\
operating).
\end{tabular} \\
\hline 3 & Energy Save Time & \begin{tabular}{l} 
Engine not operating. Includes time while controller \\
saves data to HDD. Does not include time spent in \\
Energy Save, Low Power, or Off modes.
\end{tabular} \\
\hline 4 & Low Power Time & \begin{tabular}{l} 
Includes time while the machine is performing \\
background printing.
\end{tabular} \\
\hline & \begin{tabular}{l} 
Includes time in Energy Save mode with Engine on. \\
Includes time while machine is performing \\
background printing.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|}
\hline 5 & Off Mode Time & \begin{tabular}{l} 
Includes time while machine is performing \\
background printing. Does not include time machine \\
remains powered off with the power switches.
\end{tabular} \\
\hline 6 & SC & Total down time due to SC errors. \\
\hline 7 & PrtJam & Total down time due to paper jams during printing. \\
\hline 9 & OrgJam & \begin{tabular}{l} 
Total down time due to original jams during \\
scanning.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{8951} & \multicolumn{3}{|l|}{AddBook Register} \\
\hline & \multicolumn{3}{|l|}{These SPs count the number of events when the machine manages data registration.} \\
\hline 1 & User Code & User code registrations. & \multirow{6}{*}{[0 to 9999999/0 / 1]} \\
\hline 2 & Mail Address & Mail address registrations. & \\
\hline 3 & Fax Destination & Fax destination registrations. & \\
\hline 4 & Group & Group destination registrations. & \\
\hline 5 & \begin{tabular}{l}
Transfer \\
Request
\end{tabular} & Fax relay destination registrations for relay TX. & \\
\hline 6 & F-Code & F-Code box registrations. & \\
\hline 7 & Copy Program & Copy application registrations with the Program (job settings) feature. & [0 to 255 / 0 / 255] \\
\hline 8 & Fax Program & Fax application registrations with the Program (job settings) feature. & \\
\hline 9 & \begin{tabular}{l}
Printer \\
Program
\end{tabular} & Printer application registrations with the Program (job settings) feature. & \\
\hline 10 & \begin{tabular}{l}
Scanner \\
Program
\end{tabular} & Scanner application registrations with the Program (job settings) feature. & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{8999} & \multicolumn{2}{|l|}{ Admin. Counter List } \\
\cline { 2 - 3 } & \multicolumn{1}{|l|}{ Displays the total coverage and total printout number for each color. } \\
\hline 1 & Total & \\
\hline 3 & Copy: BW & \\
\hline 7 & Printer BW & \\
\hline 10 & Fax Print: BW & \\
\hline 12 & Coplex & \\
\hline 13 & Transmission Total: Color & \\
\hline 101 & Transmission Total: BW & \\
\hline 102 & FAX Transmission & \\
\hline 103 & Scanner Transmission: Color & \\
\hline 104 & & \\
\hline 105 & & \\
\hline
\end{tabular}

\subsection*{4.9 PRINTER SERVICE TABLES}

\subsection*{4.9.1 PRINTER SP TABLES}
\begin{tabular}{|c|c|c|c|c|}
\hline 1001 & \multicolumn{4}{|l|}{Bit Switch} \\
\hline \multirow[t]{12}{*}{001} & \multicolumn{2}{|l|}{Bit Switch 1} & 0 & 1 \\
\hline & bit 0 & DFU & - & - \\
\hline & bit 1 & DFU & - & - \\
\hline & bit 2 & DFU & - & - \\
\hline & bit 3 & No I/O Timeout & 0: Disable & 1: Enable \\
\hline & & \multicolumn{3}{|l|}{Enable: The MFP I/O Timeout setting will have no effect. I/O Timeouts will never occur.} \\
\hline & bit 4 & SD Card Save Mode & 0: Disable & 1: Enable \\
\hline & & \multicolumn{3}{|l|}{Enable: Print jobs will be saved to an SD Card in the GW SD slot.} \\
\hline & bit 5 & DFU & - & - \\
\hline & bit 6 & DFU & - & - \\
\hline & bit 7 & [RPCS, PCL]: Printable area frame border & 0: Disable & 1: Enable \\
\hline & & \multicolumn{3}{|l|}{Enable: The machine prints all RPCS and PCL jobs with a border on the edges of the printable area.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 1001 & \multicolumn{4}{|l|}{Bit Switch} \\
\hline \multirow[t]{11}{*}{002} & \multicolumn{2}{|l|}{Bit Switch 2} & 0 & 1 \\
\hline & bit 0 & DFU & - & - \\
\hline & bit 1 & DFU & - & - \\
\hline & \multirow[t]{2}{*}{bit 2} & Applying a collation Type & Shift Collate & Normal Collate \\
\hline & & \multicolumn{3}{|l|}{\begin{tabular}{l}
A collation type (shift or normal) will be applied to all jobs that do not already have a "Collate Type" configured. \\
Note \\
- If \#5-0 is enabled, this Bit Switch has no effect.
\end{tabular}} \\
\hline & \multirow[t]{2}{*}{bit 3} & [PCL5e/c,PS]: PDL Auto Switching & 0: Enable & 1: Disable \\
\hline & & \multicolumn{3}{|l|}{Disable: The MFPs ability to change the PDL processor mid-job. Some host systems submit jobs that contain both PS and PCL5e/c. If Auto PDL switching is disabled, these jobs will not be printed properly.} \\
\hline & bit 4 & DFU & - & - \\
\hline & bit 5 & DFU & - & - \\
\hline & bit 6 & DFU & - & - \\
\hline & bit 7 & DFU & - & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 1001 & \multicolumn{4}{|l|}{Bit Switch} \\
\hline \multirow[t]{10}{*}{003} & \multicolumn{2}{|l|}{Bit Switch 3} & 0 & 1 \\
\hline & bit 0 & DFU & - & - \\
\hline & bit 1 & DFU & - & - \\
\hline & \multirow[t]{2}{*}{bit 2} & [PCL5e/c]: Legacy HP compatibility & 0: Disable & 1: Enable \\
\hline & & \multicolumn{3}{|l|}{\begin{tabular}{l}
Enable: Uses the same left margin as older HP models such as HP4000/HP8000. \\
In other words, the left margin defined in the job (usually "<ESC>*rOA") will be changed to "<ESC>*r1A"
\end{tabular}} \\
\hline & bit 3 & DFU & - & - \\
\hline & bit 4 & DFU & - & - \\
\hline & bit 5 & DFU & - & - \\
\hline & bit 6 & DFU & - & - \\
\hline & bit 7 & DFU & - & - \\
\hline
\end{tabular}
\begin{tabular}{|r|l|c|c|}
\hline 1001 & Bit Switch \\
\hline 004 & Bit Switch 4 DFU & - & - \\
\hline
\end{tabular}

\begin{tabular}{|l|l|l|l|l|}
\hline \multirow{4}{*}{\begin{tabular}{ll} 
bit 6 & \begin{tabular}{l} 
Method for determining the image \\
rotation for the edge to bind on.
\end{tabular} \\
& \begin{tabular}{ll} 
Enable: the image rotation will be performed as they were in the \\
specifications of older models for the binding of pages of mixed orientation \\
jobs. \\
The old models are below: \\
- PCL: Pre-04A models \\
- PS/PDF/RPCS: Pre-05S models
\end{tabular} \\
\hline bit 7 & \begin{tabular}{l} 
Letterhead mode printing
\end{tabular} \\
\hline & \begin{tabular}{l} 
Routes all pages through the duplex unit. \\
Disable: Simplex pages or the last page of an odd-paged duplex job, are \\
not routed through the duplex unit. This could result in problems with \\
letterhead/pre-printed pages. \\
Only affects pages specified as Letterhead paper.
\end{tabular} \\
\hline
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 1001 & \multicolumn{4}{|l|}{Bit Switch} \\
\hline \multirow[t]{2}{*}{006} & \multicolumn{2}{|l|}{bit Switch 6} & 0 & 1 \\
\hline & \[
\begin{aligned}
& \text { bit } 0 \\
& \text { to } 5
\end{aligned}
\] & DFU & - & - \\
\hline & \multirow[b]{2}{*}{bit 6} & PDL Auto Detection timeout of jobs submitted via USB or Parallel Port (IEEE 1284) & \[
\begin{gathered}
\text { 0:Disable } \\
\text { (Immediately) }
\end{gathered}
\] & \[
\begin{aligned}
& \text { 1:Enable } \\
& \text { (10 seconds) }
\end{aligned}
\] \\
\hline & & \multicolumn{3}{|l|}{To be used if PDL auto- detection fails. A failure of PDL auto-detection doesn't necessarily mean that the job can't be printed. This bit switch tells the device whether to time-out immediately (default) upon failure or to wait 10 seconds.} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline & \begin{tabular}{l} 
This bitsw determines the timing of the PJL USTATUS JOB END sent \\
when multiple collated copies are being printed. \\
0 (default): JOB END is sent by the device to the client after the first copy \\
has completed printing. This causes the page counter to be incremented \\
after the first copy and then again at the end of the job. \\
\(1:\) JOB END is sent by the device to the client after the last copy has \\
finished printing. This causes the page counter to be incremented at the \\
end of each job.
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline 1001 & \multicolumn{4}{|l|}{Bit Switch} \\
\hline \multirow[t]{10}{*}{008} & \multicolumn{2}{|l|}{Bit Switch 8} & 0 & 1 \\
\hline & bit 0 & DFU & - & - \\
\hline & bit 1 & DFU & - & - \\
\hline & bit 2 & DFU & - & - \\
\hline & bit 3 & [PCL,PS]: Allow BW jobs to print without requiring User Code & Disable & Enable \\
\hline & & \begin{tabular}{l}
Enable: BW jobs submitted without a user co usercode authentication is enabled. \\
Note \\
- Color jobs will not be printed withou
\end{tabular} & \begin{tabular}{l}
will be \\
valid use
\end{tabular} & even if \\
\hline & bit 4 & DFU & - & - \\
\hline & bit 5 & DFU & - & - \\
\hline & bit 6 & DFU & - & - \\
\hline & bit 7 & DFU & - & - \\
\hline
\end{tabular}
\begin{tabular}{|r|l|}
\hline 1003 & Clear setting \\
\hline 001 & \begin{tabular}{l} 
Initialize Printer System \\
Initializes the settings in the printer feature settings of UP mode.
\end{tabular} \\
\hline 003 & Delete Program DFU \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{2}{*}{1004} & Print Summary \\
\cline { 2 - 3 } & Touch [Execute] to print the printer summary sheets. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline 1005 & Display Version. \\
\hline & Printer Application Version \\
\hline \begin{tabular}{l} 
Displays \\
the \\
version \\
of the \\
controller \\
firmware.
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multirow{3}{*}{1006} & Sample/Locked Print \\
\cline { 2 - 3 } & This SP disables/enables use of the document server. \\
[0 or 1/0 /1] \\
& \begin{tabular}{l} 
0: Enabled. Document server can be used. \\
1: Disabled. Document server cannot be used.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{4.10 SCANNER SERVICE TABLES}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ SP } & \multicolumn{1}{|c|}{ Number/Name } & \multicolumn{1}{c|}{ Function/[Setting] } \\
\hline 1004 & Compression Type & \begin{tabular}{l} 
Selects the compression type for binary \\
picture processing. \\
{\([1-3 / 1 / 1]\)} \\
\(1: \mathrm{MH}, 2: \mathrm{MR}, 3:\) MMR
\end{tabular} \\
\hline 1005 & Erase Margin & \begin{tabular}{l} 
Creates an erase margin for all edges of \\
the scanned image. \\
If the machine has scanned the edge of \\
the original, create a margin. \\
[0 - 5/0/1mm]
\end{tabular} \\
\hline 1009 & Forbid Using TWAIN & \begin{tabular}{l} 
Sets the system not to use the network \\
TWAIN scanner driver. \\
0: Not forbidden (can use TWAIN) \\
1: Forbid using TWAIN driver.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|}
\hline \multicolumn{1}{|c|}{ SP } & \multicolumn{1}{|c|}{ Number/Name } & \multicolumn{1}{|c|}{ Function/[Setting] } \\
\hline \multirow{3}{*}{2021} & \multicolumn{1}{|c|}{ Compression level (grayscale) } \\
\cline { 2 - 3 } & \begin{tabular}{l} 
These SP codes set the compression ratio for the grayscale processing mode \\
that can be selected with the notch settings on the operation panel. \\
Range: 5 (lowest ratio) to 95 (highest ratio)
\end{tabular} \\
\hline 20211 & Level 3 (Middle I-Qual) & {\([5 \sim 95 / 40 / 1 /\) step] } \\
\hline 20212 & Level 2 (High I-Qual) & {\([5 \sim 95 / 50 / 1 /\) step] } \\
\hline 20213 & Level 4 (Low I-Qual) & {\([5 \sim 95 / 30 / 1 /\) step] } \\
\hline 20214 & Level 1 (Highest I-Qual) & {\([5 \sim 95 / 60 / 1 /\) step] } \\
\hline 20215 & Level 5 (Lowest I-Qual) & {\([5 \sim 95 / 20 / 1 /\) step] } \\
\hline
\end{tabular}

Compression Notch Assignment

b767i910

\section*{LARGE CAPACITY TRAY PS500 B391}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{4}{|l|}{ LARGE CAPACITY TRAY PS500 REVISION HISTORY } \\
\hline Page & Date & \\
\hline & & None \\
\hline
\end{tabular}

\section*{LARGE CAPACITY TRAY PS500 B391 TABLE OF CONTENTS}
1. OVERALL MACHINE INFORMATION ..... 1
1.1 SPECIFICATIONS ..... 1
1.2 MECHANICAL COMPONENT LAYOUT ..... 2
1.3 ELECTRICAL COMPONENT LAYOUT ..... 3
1.4 ELECTRICAL COMPONENT DESCRIPTIONS ..... 4
2. DETAILED SECTION DESCRIPTIONS ..... 5
2.1 PAPER FEED ..... 5
2.2 REVERSE ROLLER AND PICK-UP ROLLER RELEASE ..... 6
2.3 TRAY LIFT ..... 7
2.4 NEAR END/END DETECTION ..... 8
2.5 RIGHT TRAY SIDE FENCE ..... 9
2.6 LEFT TRAY REAR FENCE ..... 9
2.7 RIGHT TRAY PAPER END DETECTION ..... 10
3. REPLACEMENT AND ADJUSTMENT ..... 11
3.1 DETACHING THE TRAY FROM THE MAINFRAME ..... 11
3.2 REAR FENCE HP SENSOR ..... 11
3.3 CHANGING THE TRAY PAPER SIZE ..... 12
3.4 LEFT TRAY PAPER END SENSOR12
3.5 TRAY LIFT MOTOR ..... 13
3.6 TRAY MOTOR ..... 14
3.7 PAPER FEED CLUTCH AND RELAY CLUTCH ..... 15
3.8 PAPER FEED UNIT ..... 16
3.9 UPPER LIMIT, RIGHT TRAY PAPER END, AND RELAY SENSORS ..... 17
3.10 REAR FENCE MOTOR ..... 18
3.11 PICK-UP/PAPER FEED/REVERSE ROLLERS ..... 19
1. OVERALL MACHINE INFORMATION
1.1 SPECIFICATIONS

Paper Size:
Paper Weight:
Tray Capacity:
Remaining Paper Detection:
Power Source:
Power Consumption:
Weight:
Size (W x D x H):

A4 sideways/LT sideways
\(60 \mathrm{~g} / \mathrm{m}^{2} \sim 105 \mathrm{~g} / \mathrm{m}^{2}, 16 \mathrm{lb} \sim 28 \mathrm{lb}\)
2,000 sheets ( \(80 \mathrm{~g} / \mathrm{m}^{2}, 20 \mathrm{lb}\) )
5 steps (100\%, 75\%, 50\%, 25\%, Near end)
\(24 \mathrm{Vdc}, 5 \mathrm{Vdc}\) (from copier/printer)
26 W (Max.)/14 W (Ave.)
25 kg ( 55 lbs )
\(550 \mathrm{~mm} \times 520 \mathrm{~mm} \times 271 \mathrm{~mm}\)

\subsection*{1.2 MECHANICAL COMPONENT LAYOUT}

1. Pick-up Roller
2. Upper Limit Sensor
3. Paper Feed Roller
4. Relay Sensor
5. Relay Roller
6. Reverse Roller
7. Paper Height Sensors 1, 2, 3
8. Lower Limit Sensor
9. Left Paper End Sensor
10. Paper Height Sensors 4,5

\subsection*{1.3 ELECTRICAL COMPONENT LAYOUT}

1. Main Board
2. Tray Sensor (Switch)
3. Relay Clutch
4. Paper Feed Clutch
5. Tray Motor
6. Tray Lift Motor
7. Tray Heater (option)
8. Right Tray Paper End Sensor
9. Upper Limit Sensor
10. Relay Sensor
12. Paper Height Sensors 1, 2, 3
13. Lower Limit Sensor
14. Side Fence Solenoid
15. Rear Fence Return Sensor
16. Rear Fence Motor
17. Rear Fence Home Position Sensor
18. Left Tray Paper End Sensor
19. Paper Height Sensors 4, 5
20. Right Cover Switch
11. Side Fence Open/Closed Sensors

\subsection*{1.4 ELECTRICAL COMPONENT DESCRIPTIONS}
\begin{tabular}{|c|c|c|c|}
\hline Symbol & Name & Function & Index No. \\
\hline \multicolumn{4}{|l|}{Motors} \\
\hline M1 & Tray Motor & Drives all rollers. & 5 \\
\hline M2 & Tray Lift Motor & Drives the paper tray up or down. & 6 \\
\hline M3 & \begin{tabular}{l}
Rear Fence \\
Motor
\end{tabular} & Moves the rear fence to transfer the paper stack from the paper storage (left) side of the tray to the paper feed (right) side. & 16 \\
\hline \multicolumn{4}{|l|}{Sensors} \\
\hline S1 & Right Tray Paper End & Informs the copier/printer when the paper in the right side (paper feed side) of the tray has been used up. If there is a paper stack in the left side (paper storage side), this is moved into the right tray. If there is no paper stack in the left side, paper end is indicated. & 8 \\
\hline S2 & Relay & Detects the copy paper coming to the relay roller and checks for misfeeds. & 10 \\
\hline S3 & Upper Limit & Detects when the paper is at the correct paper feed height. & 9 \\
\hline S4 & Lower Limit & Detects when the tray is completely lowered, to stop the LCT motor. & 13 \\
\hline S5 & Paper Height
\[
1,2,3
\] & Detects the amount of paper remaining in the right side of the tray. & 12 \\
\hline S6 & Paper Height
\[
4,5
\] & Detects the amount of paper remaining in the left side of the tray. & 19 \\
\hline S7 & Rear Fence Home Position & Detects when the rear fence is at H.P. & 17 \\
\hline S8 & Tray (Switch) & Detects whether the tray is correctly set. & 2 \\
\hline S9 & Side Fence Open/Closed & Detects whether the side fence is opened on closed. & 11 \\
\hline S10 & Rear Fence Return & Detects when the rear fence has moved the paper stack from the left side to the right side. & 15 \\
\hline S11 & Left Tray Paper End & Informs the copier/printer when there is no paper in the left side (paper storage side) of the tray. & 18 \\
\hline \multicolumn{4}{|l|}{Solenoids} \\
\hline SOL1 & Side Fence & Controls open-close movement of the side fence. & 14 \\
\hline \multicolumn{4}{|l|}{Magnetic Clutches} \\
\hline MC1 & Paper Feed & Drives the paper feed roller. & 4 \\
\hline MC2 & Relay & Drives the relay roller. & 3 \\
\hline \multicolumn{4}{|l|}{PCBs} \\
\hline PCB1 & Main & Controls the LCT and communicates with the copier/printer. & 1 \\
\hline \multicolumn{4}{|l|}{Switches} \\
\hline SW1 & Right Cover & Detects whether the right cover is open. & 20 \\
\hline
\end{tabular}

\section*{2. DETAILED SECTION DESCRIPTIONS}

\subsection*{2.1 PAPER FEED}


This products uses an FRR type paper feed mechanism.
The paper feed unit consists of the pickup roller [A], paper feed roller [B], reverse roller [C], and grip and transport rollers.
There is a torque limiter in the back of the reverse roller (ferrite powder type).

\subsection*{2.2 REVERSE ROLLER AND PICK-UP ROLLER RELEASE}


To prevent the paper from being torn when pulling out the paper feed tray, the reverse and pickup rollers are set so that they release automatically.

When the paper tray [A] is not inside the machine, the reverse roller [B] is away from the paper feed roller [C] and the pick-up roller [D] stays in the upper position.
When the paper tray is set into the machine, it pushes the release lever [E]. This causes the pick-up roller [D] to go down into contact with the top sheet of paper and the reverse roller \([B]\) to move up and contact the paper feed roller.

\subsection*{2.3 TRAY LIFT}


When the paper feed tray is put in the machine, the tray switch [A] on the back face turns on and the tray lift motor \([B]\) starts up. The base plate lift shaft [C] is coupled to the lift motor at shaft [D], so the base plate of the tray is lifted. After a short while, the top of the paper stack contacts the pick-up roller and lifts it up.
When this occurs, the actuator enters the upper limit sensor, the sensor turns off and the lift motor stops. When paper in the tray is used up, the pick-up roller is gradually lowered, and the actuator leaves the upper limit sensor (turning the sensor on). When this happens, the lift motor begins turning again. The tray will then be lifted until the actuator enters the upper limit sensor (turning the sensor off again).

When the tray is removed from the copier, the coupling between the lift motor [B] and base plate lift shaft [C] is broken and the base plate goes into a controlled free fall (using a damper [ E ] to slow the fall and prevent damage).

\subsection*{2.4 NEAR END/END DETECTION}

This tray can hold two stacks of paper, so the machine needs to monitor the status of both these stacks. There are seven sensors to do this.
In the right tray (paper feed side), three height sensors measure the height of the stack, and an end sensor detects when all the paper is used up. As the amount of paper remaining in the tray decreases, the base plate rises and the actuator activates the paper height sensors. When paper runs out in the right tray, the stack in the left tray is moved across to the right tray.
There are also two height sensors ([F] in the diagram on the previous page) and an end sensor in the left tray (paper storage side) ([G] in the diagram on the previous page). When there is no paper in both trays, paper end is detected.

The machine determines the amount of remaining paper based on the sensor outputs, as shown in the following table.
\[
\begin{aligned}
& \text { Paper end sensor 1: } O=\text { Low (no paper), }=\text { High (paper present) } \\
& \text { Other sensors: } O=\text { Low (paper present), }=\text { High (no paper) }
\end{aligned}
\]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{9}{|c|}{Amount of paper} \\
\hline & 100\% & & & & & & & & \\
\hline Paper Height Sensor 1 & \(\bigcirc\) & O & O & O & O & O & - & O & O \\
\hline Paper Height Sensor 2 & \(\bigcirc\) & O & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & O & \(\bigcirc\) \\
\hline Paper Height Sensor 3 & O & O & - & O & O & - & - & - & - \\
\hline Paper End Sensor 1 & - & \(\bullet\) & - & - & - & - & \(\bigcirc\) & - & - \\
\hline Paper Height Sensor 4 & \(\bigcirc\) & \(\bullet\) & O & - & - & 0 & O & - & - \\
\hline Paper Height Sensor 5 & \(\bigcirc\) & O & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline Paper End Sensor 2 & \(\bigcirc\) & O & O & \(\bigcirc\) & - & \(\bigcirc\) & O & \(\bigcirc\) & O \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{8}{|c|}{Amount of paper} \\
\hline & & & 25\% & & & & & d \\
\hline Paper Height Sensor 1 & \(\bigcirc\) & O & O & O & O & - & - & - \\
\hline Paper Height Sensor 2 & - & - & - & O & - & - & - & - \\
\hline Paper Height Sensor 3 & - & - & - & \(\bullet\) & - & - & - & - \\
\hline Paper End Sensor 1 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bullet\) & O \\
\hline Paper Height Sensor 4 & O & - & - & - & - & - & - & - \\
\hline Paper Height Sensor 5 & - & \(\bigcirc\) & - & - & - & - & - & - \\
\hline Paper End Sensor 2 & O & O & O & \(\bullet\) & - & O & - & - \\
\hline
\end{tabular}

The following diagram is the sensor layout, as viewed from the front.
\begin{tabular}{|l|l|l}
\multicolumn{1}{c|}{ Paper Storage Side } & \multicolumn{1}{c}{ Paper Feed Side } \\
\begin{tabular}{|l|l}
\hline & \begin{tabular}{l} 
Paper Height End \\
Sensor 1
\end{tabular} \\
\begin{tabular}{l} 
Paper Height \\
Sensor 5
\end{tabular} & \begin{tabular}{l} 
Pensor 1 \\
Saper Height \\
Sensor 2
\end{tabular} \\
\begin{tabular}{l} 
Paper Height \\
Sensor 4
\end{tabular} & \begin{tabular}{l} 
Paper Height \\
Sensor 3
\end{tabular} \\
Paper End \\
Sensor 2
\end{tabular} & \\
\hline
\end{tabular}

\subsection*{2.5 RIGHT TRAY SIDE FENCE}


When the paper in the right tray is used up, the side fence solenoid [F] activates and stays on until the side fence open/closed sensor [E] detects that the fence is open. The rear fence [A] then moves the stack of paper from the left tray into the right tray, as described in the following section. When the stack has been transferred to the right tray, the rear fence return sensor [G] detects the rear fence and then the cpu turns off the side fence open solenoid (closing the side fence).
The side fence open/closed sensor [D] detects when the side fence is closed. When it is not closed, the user is prompted at the operation panel to free the mechanism.

\subsection*{2.6 LEFT TRAY REAR FENCE}

If the right tray paper end sensor detects that there is no paper in the tray (while the left tray sensor detects that there is still paper in the left tray), the right side fence [C] opens and the rear fence motor \([\mathrm{H}]\) turns on. The rear fence of the left tray moves and the paper stack is then transferred from the left tray to the right tray.
When the left tray rear fence activates the rear fence return sensor, the machine detects that the paper stack has been transferred to the right tray and the rear fence motor rotates in the opposite direction. When the rear fence HP sensor [B] comes on, the motor stops.

\subsection*{2.7 RIGHT TRAY PAPER END DETECTION}


The paper end sensor [A] detects when copy paper in the right tray runs out. When there is paper in the tray, the paper pushes up the paper end feeler [B] and causes the actuator to come between the LED and photo diode of the sensor. When paper runs out, the feeler drops and the actuator leaves the photointerruptor, and the machine detects that there is no paper in the tray.
When the tray is being pulled out, the lever [E] lifts the pick-up roller and this also lifts up the feeler.

\section*{3. REPLACEMENT AND ADJUSTMENT}

\subsection*{3.1 DETACHING THE TRAY FROM THE MAINFRAME}

While pressing the stopper attached to the guide rail, pull out the large capacity tray.
NOTE: When reinstalling the tray, set the tray on the guide rail and carefully push the tray in, making sure to keep the tray level.


\subsection*{3.2 REAR FENCE HP SENSOR}

1. Pull out the large capacity tray.
2. Remove the left tray rear side fence [A] (2 screws).
3. Remove the rear fence bracket \([B]\) (1 screw).
4. Remove the connector of the rear fence HP sensor.
5. Replace the rear fence HP sensor [C] (1 screw).

NOTE: When securing the sensor in place, be sure to fasten the screw in the proper position.

\subsection*{3.3 CHANGING THE TRAY PAPER SIZE}

1. Remove the screws of all side fences \([A],[B]\).
2. The position of the rear fence HP sensor can then be changed (see Rear Fence HP Sensor Removal).
3. The paper size display can then be changed with an SP mode.

NOTE: When securing the right tray side fence, fasten the screw after setting the paper in the right tray and adjusting the fence to the width of the paper.

\subsection*{3.4 LEFT TRAY PAPER END SENSOR}

1. Pull out the large capacity tray.
2. Remove the left tray side fence [A] (2 screws).
3. Remove the rear fence bracket [B] (1 screws).
4. Replace the left tray paper end sensor [C] (1 connector).

\subsection*{3.5 TRAY LIFT MOTOR}

[B]
1. Remove the brackets ( 1 screw for each).
2. Remove the rear cover [A] (2 screws).
3. Remove the tray lift motor \([B]\) (3 screws, 1 connector).

\subsection*{3.6 TRAY MOTOR}

1. Remove the rear cover.
2. Remove bracket \#1 [A] (2 screws).
3. Remove bracket \#2 [B] (2 screws).
4. Remove the tray motor [C] (6 screws, 1 connector).

\subsection*{3.7 PAPER FEED CLUTCH AND RELAY CLUTCH}

1. Remove the rear cover.
2. Remove bracket \#1 [A] (2 screws).
3. Remove bracket \#2 [B] (2 screws).
4. Remove all bushings.
5. Remove the paper feed clutch [C] and relay clutch [D].
6. Replace the required clutch.

NOTE: Make sure to properly secure both clutches before completing installation.

\subsection*{3.8 PAPER FEED UNIT}

1. Remove the paper feed clutch and relay clutch (see Paper Feed Clutch and Relay Clutch Replacement).
2. Remove pulleys \(A[A], B[B]\), and \(C[C]\).
3. Remove the paper feed harness from the main board.
4. Open the vertical transport guide plate [D].
5. Remove the paper feed unit [E] (2 screws).

\subsection*{3.9 UPPER LIMIT, RIGHT TRAY PAPER END, AND RELAY SENSORS}

1. Remove the paper feed unit (see Paper Feed Unit Replacement).
2. Replace the required sensor.
- Upper limit [A]
- Relay [B]
- Right tray paper end [C]

NOTE: When replacing the upper limit [A] and paper end sensor [C], please be sure to do so while pushing the release lever [D].

\subsection*{3.10 REAR FENCE MOTOR}

1. Pull out the paper feed tray unit.
2. Remove the paper feed tray front cover [A] (2 screws).
3. Remove the left side fence [B].
4. Remove the rear fence drive gear [C] (1 screw). This is in order to free the end fence [D].
5. Move the end fence to the right (toward the center).
6. Remove the end fence ( 1 screw).
7. Remove the end fence bracket [E] (2 screws).
8. Remove the bracket [F] (1 screw).
9. Remove the bracket [G] of the rear fence motor assembly (2 screws).
10. Remove the rear fence motor assembly ( 2 screws).
11. Replace the motor [H] (1 connector).

\subsection*{3.11 PICK-UP/PAPER FEED/REVERSE ROLLERS}

1. Remove the paper tray unit (see Paper Tray Unit Replacement).
2. Remove the snap ring (1 each for the paper feed and reverse rollers).
3. Remove the pick up roller [A].
4. Replace each roller \([B],[C]\).

NOTE: Install the paper feed rollers the correct way round, as shown in the illustration. If the rollers are installed incorrectly, this will cause the one-way clutch to lock.

\title{
1000-SHEET FINISHER B408
}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{4}{|c|}{1000 SHEET FINISHER SR790 REVISION HISTORY } \\
\hline Page & Date & \multicolumn{1}{c|}{ Added/Updated/New } \\
\hline & & None \\
\hline
\end{tabular}

\section*{1000-SHEET FINISHER SR790 B408 TABLE OF CONTENTS}
1. REPLACEMENT AND ADJUSTMENT ..... 1
1.1 MAIN PCB ..... 1
1.2 STAPLER UNIT ..... 2
1.3 MOTORS ..... 3
1.3.1 SHIFT MOTOR ..... 3
1.3.2 STAPLER MOTOR .....  3
1.3.3 UPPER TRANSPORT MOTOR AND EXIT MOTOR ..... 4
1.3.4 LOWER TRANSPORT MOTOR ..... 4
1.4 MOTORS AND SENSORS ..... 5
1.4.1 PREPARATION ..... 5
1.4.2 STACK HEIGHT SENSOR ..... 6
1.4.3 STAPLER TRAY PAPER SENSOR ..... 6
1.4.4 LOWER TRAY LIFT MOTOR ..... 7
1.4.5 STACK FEED-OUT MOTOR ..... 7
2. TROUBLESHOOTING ..... 8
2.1 JAM DETECTION ..... 8
3. SERVICE TABLES ..... 9
3.1 DIP SWITCH SETTINGS ..... 9
4. DETAILED DESCRIPTIONS ..... 10
4.1 GENERAL LAYOUT ..... 10
4.2 ELECTRICAL COMPONENT LAYOUT ..... 11
4.3 ELECTRICAL COMPONENT DESCRIPTION ..... 13
4.4 DRIVE LAYOUT ..... 15
4.5 JUNCTION GATES ..... 16
Upper Tray Mode ..... 16
Sort/Stack Mode ..... 16
Staple Mode ..... 16
4.6 UPPER TRAY ..... 17
4.7 LOWER TRAY UP/DOWN MECHANISMS ..... 18
4.8 PAPER SHIFT MECHANISM ..... 19
4.9 JOGGER UNIT PAPER POSITIONING MECHANISM ..... 20
4.10 EXIT GUIDE PLATE ..... 21
4.11 STAPLER MECHANISM ..... 22
4.12 STAPLER UNIT MOVEMENT MECHANISM ..... 23
4.13 PAPER FEED-OUT MECHANISM ..... 24

\section*{1. REPLACEMENT AND ADJUSTMENT}
\begin{tabular}{|l|}
\hline\(\triangle\) CAUTION \\
\hline \begin{tabular}{l} 
Turn off the main power switch and unplug the machine before beginning \\
any of the procedures in this section.
\end{tabular} \\
\hline
\end{tabular}

NOTE: This manual uses the following symbols.
- : See or Refer to
刍: Screws
§川ll : Connector
(3) : Clip ring G: E-ring

\subsection*{1.1 MAIN PCB}

1. Rear cover \([A](\hat{\xi} \times 2)\)


\subsection*{1.2 STAPLER UNIT}
1. Side cover \([A]\left(\mathcal{S}^{3} \times 2\right)\)
2. Open exit guide plate \([B]\)
3. Upper side cover [C] ( \(\mathcal{Z}^{2} \times 2\) )

4. Front cover support plate \([\mathrm{D}]\left(\begin{array}{c}\hat{\beta}\end{array} \times 1\right)\)
5. Front cover [E]
6. Front inner cover \([F]\left(\mathcal{E}^{2} \times 2\right)\)

7. Harness [G]
8. Unhook the spring \([\mathrm{H}]\)
9. Turn the stapler unit [I] and take it out.
10. Bracket [J] (


\subsection*{1.3 MOTORS}

\subsection*{1.3.1 SHIFT MOTOR}
1. Rear cover (-1.1)



\subsection*{1.3.2 STAPLER MOTOR}
1. Rear cover (-1.1)
2. Stapler motor \([A]\left({ }^{(1)} \times 2, \mathrm{E}_{\boldsymbol{\|}} \times 1\right)\)


\subsection*{1.3.3 UPPER TRANSPORT MOTOR AND EXIT MOTOR}
1. Rear cover (-1.1)

3. Upper transport motor \([B](\hat{\xi} \times 4)\)
4. Exit motor \([C](\hat{\xi} \times 4)\)


\subsection*{1.3.4 LOWER TRANSPORT MOTOR}
1. Main PCB (-1.1)
2. Lower transport motor \([A](\hat{\xi} \times 2\), 気 \(\mathbb{C l}\) 1)


\subsection*{1.4 MOTORS AND SENSORS}

\subsection*{1.4.1 PREPARATION}
1. Front cover and inner cover ( -1.2 )
[B]

4. Lower side cover [C] (
5. Loosen the 2 screws [D].
6. Lower the lower tray guide plate [E].
[E]

7. Guide plate \([F]\left(\mathcal{S}^{3} \times 4\right)\)
[F]


MOTORS AND SENSORS

\subsection*{1.4.2 STACK HEIGHT SENSOR}
1. Stack height sensor assembly \([\mathrm{A}]\left(\hat{\mathcal{F}^{\prime}} \mathrm{x}\right.\)

\section*{1)}
2. Stack height sensor \([B]\left(E^{\mathbb{E}} \times 1\right)\)
[B]
[A]

\subsection*{1.4.3 STAPLER TRAY PAPER SENSOR}
1. Stapler tray paper sensor \([A]\left({ }_{\xi} \| \mathrm{l} \times 1\right)\)


\subsection*{1.4.4 LOWER TRAY LIFT MOTOR}
1. Lower tray lift motor \([\mathrm{A}](\hat{8} \times 2\), 気 \(\mathrm{Cl} \times 1)\)


\subsection*{1.4.5 STACK FEED-OUT MOTOR}



\section*{2. TROUBLESHOOTING}

\subsection*{2.1 JAM DETECTION}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|c|}{Mode} & \multirow[t]{2}{*}{Jam} & \multirow[t]{2}{*}{Content} \\
\hline Shift & Staple & & \\
\hline \(\checkmark\) & \(\checkmark\) & Entrance sensor: On check & The entrance sensor does not turn on within the normal time after the main machine exit sensor turns on \\
\hline \(\checkmark\) & \(\checkmark\) & Entrance sensor: Off check & The entrance sensor does not turn off within the normal time after it turns on. \\
\hline \(\checkmark\) & & Lower tray exit sensor: On check & The lower tray exit sensor does not turn on within the normal time after the entrance sensor turns off. \\
\hline \(\checkmark\) & & Tray exit sensor: Off check & The tray exit sensor does not turn off within the normal time after it turns on. \\
\hline & \(\checkmark\) & Stapler tray entrance sensor: On check & The stapler tray entrance sensor does not switch on within the normal time after the entrance sensor switched on. \\
\hline & \(\checkmark\) & Stapler tray entrance sensor: Off check & The staple tray entrance sensor does not turn off within the normal time after it turns on \\
\hline & \(\checkmark\) & Lower tray exit sensor: On check & The lower exit sensor does not turn on after the feed-out pawl feeds out the outputs. \\
\hline & \(\checkmark\) & Lower tray exit sensor: Off check & The lower exit sensor turns on when the feed-out pawl returns to its home position after feeding out the outputs. \\
\hline
\end{tabular}

\section*{3. SERVICE TABLES}

\subsection*{3.1 DIP SWITCH SETTINGS}

The DIP switches should not be set to any combination other than those listed in the table below.
\begin{tabular}{||l|l|l||}
\hline \multicolumn{2}{|c|}{ SW100 } & \multicolumn{2}{c|}{ Description } \\
\hline \(\mathbf{1}\) & \(\mathbf{2}\) & \\
\hline 0 & 0 & Normal operation mode (Default) \\
\hline 1 & 0 & Packing mode. \\
\hline \hline
\end{tabular}
- Before packing the machine, do the following: Set switch 1 to 1 then back to zero. The lower tray moves to the lowest position. Then turn off the main switch.
- After unpacking the machine, do the following: After turning the main switch back on, the lower tray returns to home position automatically.

\section*{4. DETAILED DESCRIPTIONS}

\subsection*{4.1 GENERAL LAYOUT}

1. Upper Tray
2. Upper Tray Exit Roller
3. Entrance Roller
4. Tray Junction Gate
5. Upper Transport Roller
6. Stapler Junction Gate
7. Lower Transport Rollers
8. Stapler
9. Stack Feed-out Belt
10. Positioning Roller
11. Shift Roller
12. Lower Tray
13. Lower Tray Exit Roller

\subsection*{4.2 ELECTRICAL COMPONENT LAYOUT}

1. Upper Cover Switch
2. Paper Limit Sensor
3. Entrance Sensor
4. Exit Guide Plate Motor
5. Exit Guide Plate HP Sensor
6. Front Door Safety Switch
7. Stack Height Sensor
8. Lower Tray Exit Sensor
9. Lower Tray Upper Limit Switch
10. Shift HP Sensor
11. Shift Motor
12. Jogger Fence HP Sensor
13. Positioning Roller Solenoid
14. Stapler HP Sensor
15. Stapler Tray Entrance Sensor
16. Stapler Tray Paper Sensor
17. Stapler Hammer Motor
18. Staple Sheet Sensor
19. Stack Feed-out Belt HP Sensor
20. Stapler Rotation HP Sensor
21. Staple Sensor

22. Tray Junction Gate Solenoid
23. Lower Tray Lift Motor
24. Lower Tray Lower Limit Sensor
25. Stapler Motor
26. Jogger Fence Motor
27. Stack Feed-out Motor
28. Main Board
29. Lower Transport Motor
30. Stapler Junction Gate Solenoid
31. Exit Motor
32. Upper Transport Motor

\subsection*{4.3 ELECTRICAL COMPONENT DESCRIPTION}
\begin{tabular}{|c|c|c|c|}
\hline Symbol & Name & Function & Index No. \\
\hline \multicolumn{4}{|l|}{Motors} \\
\hline M1 & Upper Transport & Drives the entrance roller and upper transport rollers. & 32 \\
\hline M2 & \begin{tabular}{l}
Lower \\
Transport
\end{tabular} & Drives the lower transport rollers and the positioning roller. & 29 \\
\hline M3 & Jogger Fence & Drives the jogger fences. & 26 \\
\hline M4 & Staple Hammer & Drives the staple hammer. & 17 \\
\hline M5 & Stack Feed-out & Drives the stack feed-out belt. & 27 \\
\hline M6 & Exit Guide Plate & Opens and closes the exit guide plate. & 4 \\
\hline M7 & Exit & Drives the exit roller. & 31 \\
\hline M8 & Lower Tray Lift & Moves the lower tray up or down. & 23 \\
\hline M9 & Shift & Moves the shift roller from side to side. & 11 \\
\hline M10 & Stapler & Moves the stapler unit from side to side. & 25 \\
\hline \multicolumn{4}{|l|}{Sensors} \\
\hline S1 & Entrance & Detects copy paper entering the finisher and checks for misfeeds. & 3 \\
\hline S2 & Paper Limit & Detects when the paper stack height in the upper tray is at its limit. & 2 \\
\hline S3 & Jogger Fence HP & Detects when the jogger fence is at home position. & 12 \\
\hline S4 & Shift HP & Detects when the shift roller is at home position. & 10 \\
\hline S5 & Stack Feed-out Belt HP & Detects when the stack feed-out belt is at home position. & 19 \\
\hline S6 & Stapler HP & Detects when the stapler is at home position. & 14 \\
\hline S7 & Exit Guide Plate HP & Detects when the exit guide plate is at home position. & 5 \\
\hline S8 & Stapler Tray Entrance & Detects copy paper entering the stapler tray and checks for misfeeds. & 15 \\
\hline S9 & Lower Tray Exit & Checks for misfeeds. & 8 \\
\hline S10 & Stack Height & Detects the top of the copy paper stack. & 7 \\
\hline S11 & Lower Tray Lower Limit & Detects when the lower tray is at its lower limit position. & 24 \\
\hline S12 & Stapler Tray
Paper & Detects when there is copy paper in the stapler tray. & 16 \\
\hline S13 & Staple Sheet & Detects the leading edge of the staple sheet. & 18 \\
\hline S14 & Stapler Rotation HP & Detects when the staple hammer is at home position. & 20 \\
\hline S15 & Staple & Detects whether there are staples in the staple cartridge. & 21 \\
\hline \multicolumn{4}{|l|}{Solenoids} \\
\hline SOL1 & Tray Junction Gate & Drives the tray junction gate. & 22 \\
\hline SOL2 & Stapler Junction Gate & Drives the stapler junction gate. & 30 \\
\hline
\end{tabular}

\section*{ELECTRICAL COMPONENT DESCRIPTION}
\begin{tabular}{||c|l|l|c||}
\hline Symbol & \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Function } & Index No. \\
\hline SOL3 & \begin{tabular}{l} 
Positioning \\
Roller
\end{tabular} & Moves the positioning roller. & 13 \\
\hline Switches & & \\
\hline SW1 & \begin{tabular}{l} 
Lower Tray \\
Upper Limit
\end{tabular} & \begin{tabular}{l} 
Detects when the lower tray is at its upper limit \\
position.
\end{tabular} & 9 \\
\hline SW2 & \begin{tabular}{l} 
Front Door \\
Safety
\end{tabular} & \begin{tabular}{l} 
Cuts the dc power when the front door is \\
opened.
\end{tabular} & 6 \\
\hline SW3 & Upper Cover & \begin{tabular}{l} 
Cuts the dc power when the upper cover is \\
opened.
\end{tabular} & 1 \\
\hline PCBs & & \begin{tabular}{l} 
Controls the finisher and communicates with the \\
copier/printer.
\end{tabular} & 28 \\
\hline PCB1 & Main & \\
\hline \multicolumn{4}{|l|}{} \\
\hline
\end{tabular}

\subsection*{4.4 DRIVE LAYOUT}

1. Exit Motor
2. Upper Transport Motor
3. Lower Transport Motor
4. Shift Motor
5. Exit Guide Plate Motor
6. Lower Tray Lift Motor
7. Stack Feed-out Motor
8. Jogger Motor
9. Stapler Motor

\subsection*{4.5 JUNCTION GATES}


Depending on the finishing mode, the copies are directed up, straight through, or down by the combination of the tray junction gate [A] and stapler junction gate [B]. These gates are controlled by the tray junction gate solenoid [C] and stapler junction gate solenoid [D].

\section*{Upper Tray Mode}

The tray junction gate solenoid remains off. The copies go up to the upper tray.

\section*{Sort/Stack Mode}

The tray junction gate solenoid turns on and the stapler junction gate solenoid remains off. The copies are sent to the lower tray directly.

\section*{Staple Mode}

The tray junction gate solenoid and the stapler junction gate solenoid both turn on.
The copies go down to the jogger unit.

\subsection*{4.6 UPPER TRAY}


When the paper limit sensor [A] switches on during feed-out for each of three consecutive sheets of paper, paper overflow is detected.

\subsection*{4.7 LOWER TRAY UPIDOWN MECHANISMS}


The vertical position of the lower tray [A] depends on the height of the copied paper stack on the lower tray. The stack height sensor feeler [B] contacts the top of the stack, and the lower tray lift motor [C] controls the tray height.

When the lower tray reaches its lowest possible position, the actuator [D] turns on the lower tray lower limit sensor [E], and copying stops.

\section*{Tray Up}

When the copy paper on the tray is removed, the stack height sensor [F] turns off and the tray lifts up. Then, the tray stops when the sensor turns on again (the tray pushes up the feeler).
If the stack height sensor fails, the lower tray upper limit switch [G] detects the tray and stops the motor. This is a safety measure against stack height sensor failure.

\section*{Sort/Stack Mode (Tray Down)}

Every five sheets of paper, the tray goes down until the sensor turns off again. Then, it goes up until the sensor is on again.

\section*{Staple Mode (Tray Down)}

After a stapled copy is fed out, the tray goes up for 220 ms and stops for 300 ms . Then, it goes down for 1 second, waits for 500 ms , then goes up until the sensor turns on.

\subsection*{4.8 PAPER SHIFT MECHANISM}


In the sort/stack mode, the shift roller [A] moves from side to side to separate the sets of copies.
The horizontal position of the shift roller is controlled by the shift motor [ B ] and the shift gear disk [C]. After the trailing edge of the copy passes the upper transport roller, the shift motor turns on, driving the shift gear disk and the link [D].

After the paper is delivered to the lower tray [ \(E\) ], the shift roller moves to its home position, which is detected by the shift HP sensor [F]. Then, when the trailing edge of the next copy passes the upper transport roller, the shift roller shifts again. This operation is done every sheet.
When the trailing edge of each page in the next set of copies passes the upper transport roller, the shift roller shifts in the opposite direction.

\subsection*{4.9 JOGGER UNIT PAPER POSITIONING MECHANISM}


In staple mode, each sheet of copy paper is vertically and horizontally aligned when it arrives in the jogger unit.

For the vertical paper alignment, the positioning roller solenoid [A] turns on shortly after the stapler tray entrance sensor [B] turns off, and the positioning roller [C] pushes the copy against the bottom of the stack stopper [D].

For the horizontal paper alignment, the jogger front fence \([\mathrm{E}]\) and the rear fence [F] move to the waiting position, which is 18 mm away from the side of the paper. When aligning the paper vertically, the jogger fence moves in 14 mm from the waiting position. After the vertical position has been aligned, the jogger fence pushes the paper 4 mm against the rear fence to align the paper horizontally. Then the jogger fence moves back to the previous position.

\subsection*{4.10 EXIT GUIDE PLATE}


When stacking a large size of paper (such as A3, DLT) in the jogger unit, the leading edge of the paper reaches the exit rollers. To prevent the paper from running into the exit rollers and not being aligned correctly, the exit guide plate [A] is moved up to make a gap between the exit rollers. This operation is done for all paper sizes, but is only needed for the larger sizes.

The exit guide plate motor \([\mathrm{B}]\) and exit roller release cam [C] control the exit guide plate movement. When the exit guide plate motor starts, the cam turns and the exit guide plate moves up. When stapling is finished, the exit guide plate motor turns on again to close the exit guide plate. When the exit guide plate HP sensor [D] turns on, the motor stops.

\subsection*{4.11 STAPLER MECHANISM}


The staple hammer motor [A] drives the staple hammer.
The staple sheet sensor \([B]\) detects the leading edge of the staple sheet at the stapling position to prevent the hammer from operating if there are no staples at the stapling position.
If there is no staple cartridge in the stapler unit or no staples in the staple cartridge, staple end is indicated on the operation panel. The stapler sensor [C] detects this.
The stapler rotation HP sensor [D] checks whether the staple hammer mechanism returns to home position after each stack has been stapled.
When excessive load is applied to the staple hammer motor, the copier detects a staple jam. When a staple jam has occurred, the jammed staple is inside the staple cartridge [E]. Therefore, the jammed staple can be removed easily after pulling out the staple cartridge.

\subsection*{4.12 STAPLER UNIT MOVEMENT MECHANISM}


The stapler motor moves the stapler [A] from side to side. After the start key is pressed, the stapler moves from its home position to the stapling position.
If two-staple-position mode is selected, the stapler moves to the front stapling position first, then moves to the rear stapling position. However, for the next copy set, it staples in the reverse order (at the rear side first, then at the front side).
After the job is completed, the stapler moves back to its home position. The stapler HP sensor [B] detects this.

\subsection*{4.13 PAPER FEED-OUT MECHANISM}


After the copies have been stapled, the stack feed-out motor [A] starts. The pawl [B] on the stack feed-out belt [C] transports the set of stapled copies up and feeds it to the shift roller. The shift roller takes over stack feed-out after the leading edge reaches this roller.

Just before the stapled stack passes through the lower tray exit sensor, the stack-feed-out motor turns off until the shift rollers have completely fed the stack out to the lower tray. Then, the stack-feed-out motor turns on again until the pawl [B] actuates the stack feed-out belt home position sensor [D].

\section*{BOOKLET FINISHER B793}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|c|}{ BOOKLET FINISHER SR3000 REVISION HISTORY } \\
\hline Page & Date & \multicolumn{1}{c|}{ Added/Updated/New } \\
\hline & & None \\
\hline
\end{tabular}

\section*{BOOKLET FINISHER SR3000 B793 TABLE OF CONTENTS}
1. REPLACEMENT AND ADJUSTMENT ..... 1
1.1 COVERS ..... 1
1.1.1 FRONT/INNER/REAR COVERS ..... 1
1.1.2 UPPER COVERS ..... 2
1.2 MAIN BODY ..... 4
1.2.1 POSITIONING ROLLER ..... 4
1.2.2 SHIFT TRAY POSITION SENSOR, UPPER LIMIT SWITCH ..... 4
1.2.3 PROOF TRAY EXIT / FULL SENSOR ..... 5
1.2.4 FINISHER ENTRANCE SENSOR ..... 6
1.2.5 SHIFT TRAY EXIT SENSOR ..... 7
1.2.6 STAPLE TRAY PAPER SENSOR ..... 8
1.2.7 SHIFT TRAY MOTOR. ..... 8
1.2.8 ENTRANCE MOTOR ..... 9
1.2.9 UPPER TRANSPORT MOTOR ..... 9
1.2.10 LOWER TRANSPORT MOTOR ..... 10
1.2.11 SHIFT MOTOR ..... 11
1.3 FOLDER ..... 12
1.3.1 STAPLE FOLDER UNIT ..... 12
1.3.2 FOLDER UNIT ..... 13
1.3.3 FOLDER UNIT EXIT SENSOR ..... 14
1.3.4 FOLDER UNIT ENTRANCE SENSOR ..... 15
1.3.5 STAPLER UNIT ..... 15
1.4 OTHERS ..... 26
1.4.1 MAIN BOARD ..... 26
1.5 DIP SWITCHES ..... 27
2. DETAILED SECTION DESCRIPTIONS ..... 28
2.1 COMPONENT LAYOUT ..... 28
2.1.1 MECHANICAL COMPONENT LAYOUT ..... 28
2.1.2 ELECTRICAL COMPONENT LAYOUT ..... 30
2.2 JUNCTION GATES ..... 39
2.3 PROOF TRAY ..... 40
2.4 SHIFT TRAY ..... 41
2.4.1 UP/DOWN MOTION ..... 41
2.4.2 SIDE-TO-SIDE MOTION ..... 42
2.5 BOOKLET TRAY ..... 43
2.6 JOGGER UNIT. ..... 46
2.7 EXIT GUIDE PLATE, PAPER FEED OUT ..... 47
2.8 STAPLER UNIT MOVEMENT ..... 48
2.9 STACKING FOR BOOKLET STAPLING ..... 49
2.9.1 OVERVIEW ..... 49
2.9.2 8.5 X 14 (LEGAL) OR SHORTER ..... 49
2.9.3 LONGER THAN \(8.5 \times 14\) INCHES ..... 50
2.10 MOVING THE STACK TO THE FOLDING POSITION ..... 52
2.11 FOLDER ..... 53
2.11.1 OVERVIEW ..... 53
2.11.2 FOLD PLATE ..... 53
2.11.3 FOLD ROLLERS ..... 54
2.12 PUNCH UNIT ..... 55
2.12.1 OVERVIEW OF OPERATION ..... 55
2.12.2 PAPER POSITION DETECTION ..... 57
2.12.3 PUNCH UNIT MOVEMENT ..... 58
2.12.4 PUNCH SELECTION AND FIRING ..... 58
2.12.5 PUNCH HOPPER MECHANISM ..... 59

\section*{Read This First}

\section*{Safety and Symbols}

Replacement Procedure Safety

\section*{©CAUTION}
- Turn off the main power switch and unplug the machine before beginning any of the replacement procedures in this manual.
When taking apart the bridge unit, first take the unit out of the copier.

\section*{Symbols Used in this Manual}

This manual uses the following symbols.
© See or Refer to
解: Screws
E: Connector
(3): Clip ring
©: E-ring

\section*{1. REPLACEMENT AND ADJUSTMENT}

\subsection*{1.1 COVERS}

\subsection*{1.1.1 FRONT/INNER/REAR COVERS}

1. Remove the front cover \([A]\left(\hat{\sigma}^{\top} \times 1\right)\).
2. Remove the inner cover \([B]\left(\begin{array}{l}(1)\end{array}\right)\).

\section*{Covers}

3. Remove the rear cover [C] \(\left(\hat{G}^{7} \times 2\right)\).

\subsection*{1.1.2 UPPER COVERS}

1. Remove the upper cover \([A](3) \times 1)\).
2. Remove the proof tray \([B]\left(\theta^{2} \times 4\right)\).

3. Remove the upper left cover [C].

\subsection*{1.2 MAIN BODY}

\subsection*{1.2.1 POSITIONING ROLLER}

1. Open the front cover.
2. Remove the positioning roller \([\mathrm{A}](3) \times 1)\).

\subsection*{1.2.2 SHIFT TRAY POSITION SENSOR, UPPER LIMIT SWITCH}
1. Remove the following items.
- Front Cover
- Inner Cover
- Rear Cover
- Proof Tray
- Upper Left Cover

2. Remove the lower guide unit \([A]\left(\hat{\theta}^{(1)} \times 4, ~ C=2\right)\).
3. Remove the shift tray position sensor \(\left.[B]\left(\mathrm{C}^{2}\right) \times 1\right)\).
4. Remove the upper limit switch [C] ( \(\sum^{\|}=2\) ). (Pull it out from the assembly.)

\subsection*{1.2.3 PROOF TRAY EXIT / FULL SENSOR}
1. Remove the front cover, rear cover and proof tray.
2. Open the upper cover.

3. Remove the vertical transport guide \([A]\left(\hat{\theta}^{2} \times 4\right)\).
4. Remove the exit sensor \([B](\square \times 1)\).

5. Remove the tray full sensor [C] ( \(5 \times 1\) ).

\subsection*{1.2.4 FINISHER ENTRANCE SENSOR}

1. Remove the finisher entrance sensor with bracket \([A]\left(\theta^{\prime} \times 1\right)\).
2. Remove the finisher entrance sensor \(\left.[B]\left(\mathrm{C}^{-}\right) \times 1\right)\).

\subsection*{1.2.5 SHIFT TRAY EXIT SENSOR}

1. Remove the front cover and upper left cover.
2. Remove the link \([A](3) \times 1)\).

3. Remove the exit guide unit \([B]\).
4. Remove the sensor [C] ( \(C^{=1)} \times 1\).

\subsection*{1.2.6 STAPLE TRAY PAPER SENSOR}

1. Open the front cover.
2. Pull out the staple/fold unit.
3. Remove the staple tray paper sensor \([A](\square) 1)\).

\subsection*{1.2.7 SHIFT TRAY MOTOR}

1. Remove the rear cover.
2. Open the front cover, and then pull out the staple/fold unit.
3. Remove the two gears \([A],[B]\).


\subsection*{1.2.8 ENTRANCE MOTOR}

1. Remove the rear cover.
2. Release the belt tension [A].


\subsection*{1.2.9 UPPER TRANSPORT MOTOR}

1. Remove the rear cover.

Main Body
2. Release the belt tension \([A]\).
3. Remove the upper transport motor \([B]\left(\hat{C}^{2} \times 2\right.\), 成 \(\times 1\) ).

\subsection*{1.2.10 LOWER TRANSPORT MOTOR}

1. Remove the rear cover.
2. Release the belt tension [A].
3. Remove the lower transport motor \([B]\left(\theta^{2} \times 2, ~=1\right)\).

\subsection*{1.2.11 SHIFT MOTOR}

1. Remove the rear cover.
2. Remove the shift motor with bracket \(\left.[A]\left(\mathrm{C}^{1}\right) \times 1, \mathrm{~g}^{2} \times 4\right)\)
3. Remove the shift motor \([B](\square) \times 1)\).

\subsection*{1.3 FOLDER}

\subsection*{1.3.1 STAPLE FOLDER UNIT}

1. Remove the rear cover.
2. Disconnect all connectors and release the harness \([A]\) for the staple folder unit ( \(\times 1\),完 x 3 ).
3. Open the front cover.

4. Pull out and remove the staple folder unit \([B]\left(\mathbb{E}^{( } \times 2\right)\).

\subsection*{1.3.2 FOLDER UNIT}
1. Remove the staple folder unit.

2. Remove the knobs \([A]\) ( \(\times 1\) each).
3. Disconnect the connectors.
4. Remove the folder unit \([B]\left(\begin{array}{l}(\hat{G} \times 4) \text {. }\end{array}\right.\)

Folder

\subsection*{1.3.3 FOLDER UNIT EXIT SENSOR}

1. Remove the folder unit.
2. Remove the folder unit upper cover \([A]\left(\hat{\theta}^{2} \times 1\right)\).
3. Remove the lower clamp roller unit \([B]\) (
4. Remove the folder unit exit sensor \([C]\left(\hat{\theta}^{2} \times 1, ~=1\right)\).

\subsection*{1.3.4 FOLDER UNIT ENTRANCE SENSOR}

1. Open the front cover.
2. Pull out the staple folder unit.
3. Remove the exit cover \([A]\left(\theta^{-1} \times 2\right)\).
4. Remove the entrance sensor \([B]\binom{(1)}{=1)}\).

\subsection*{1.3.5 STAPLER UNIT}
1. Remove the rear cover.

2. Disconnect the connector [1] and release the harness (氡 \(x 2\) [2]).
3. Remove two screws [3].

\section*{Folder}

4. Open the front cover and pull out the staple folder unit [4].

5. Disconnect the connectors and release the harness. (4 connectors [5], 1 clamp [6])

6. Remove a connector [7].

7. Remove 2 screws [8].

\section*{Folder}

8. Remove the staple tray [9].

9. Remove the guide [10]. (2 screws)

10. Move the stapler unit until its screw come to the hole [11] on the stay.

11. Remove the screw [12] that holds the front of the guide plate [13].

\section*{Folder}

12. Remove the screw [14] that holds the rear of the guide plate.


Nole
- Remove the rear side screw through the hole in the stay.

13. Remove the guide plate [13].

14. Remove the staple folding unit [15] (3 screws, 2 connectors).

\section*{Folder}

15. Remove the staple cartridge [16].
16. Remove the stapler unit cover [17].

17. Remove the stapler drive unit [18].

\section*{Reassembly}

1. Mount the stapler drive unit [1].

2. Mount the staple folder unit [2]. Do not tighten the screws [3] at this time.

\section*{Folder}

3. Set the special tool in the long hole [4] on both units.

4. Secure the special tool [5] with the knob [6].

5. Tighten the screws [7] for the stapler folder unit.
6. Reassemble the machine.

Others

\subsection*{1.4 OTHERS}

\subsection*{1.4.1 MAIN BOARD}

1. Remove the rear cover.
2. Remove the main board \([A]\left({ }_{\theta} \times 5\right)\).

\subsection*{1.5 DIP SWITCHES}

SW100: Adjust the staple position for booklet mode
\begin{tabular}{|c|l|}
\hline No. & \multicolumn{1}{|c|}{ Function } \\
\hline 1 & ON: 0.3 mm \\
\hline 2 & ON: 0.6 mm \\
\hline 3 & ON: 1.2 mm \\
\hline 4 & \begin{tabular}{l} 
Direction \\
OFF: Towards the trailing edge, ON: Towards the leading edge
\end{tabular} \\
\hline
\end{tabular}

SW101: Adjust the fold position
\begin{tabular}{|c|l|}
\hline No. & \multicolumn{1}{|c|}{ Function } \\
\hline 1 & ON: 0.2 mm \\
\hline 2 & ON: 0.4 mm \\
\hline 3 & ON: 0.8 mm \\
\hline 4 & \begin{tabular}{l} 
Direction \\
OFF: Towards the trailing edge, ON: Towards the leading edge
\end{tabular} \\
\hline
\end{tabular}

SW102: Move the tray position
\begin{tabular}{|c|l|}
\hline No. & \multicolumn{1}{c|}{ Function } \\
\hline 1 & \begin{tabular}{l} 
OFF \(\rightarrow\) ON \(\rightarrow\) OFF \\
Turn the switch from off to on, then turn it to off again. Then, the tray moves down to \\
the shipping position
\end{tabular} \\
\hline 2 & Not used \\
\hline
\end{tabular}
- After you change any of these dip switch settings, open and close the finisher cover to activate the new setting. It is not necessary to turn the main power off/on.

\section*{2. DETAILED SECTION DESCRIPTIONS}

\subsection*{2.1 COMPONENT LAYOUT}

\subsection*{2.1.1 MECHANICAL COMPONENT LAYOUT}

1. Proof Tray
4. Stack Feed Out Belt
7. Proof Tray Exit Roller
10. Staple Tray Junction Gate
13. 2nd Clamp Roller
2. Shift Tray
5. Staple Unit
8. Proof Tray Junction Gate
11. Positioning Roller
14. Folder Plate
6. Booklet Tray
3. Exit Guide Plate
9. Punch Unit
12. 1st Clamp Roller
15. Folder Roller

\section*{Drive Layout}

1. Upper Transport Motor
2. Entrance Motor
3. Lower Transport Motor
4. Fold Plate Motor
5. Fold Roller Motor
6. Stack Feed-out Motor

\subsection*{2.1.2 ELECTRICAL COMPONENT LAYOUT}

1. Proof Tray Exit Sensor
2. Exit Guide Plate Motor
3. Shift Tray Exit Sensor
4. Upper Limit Switch
5. Shift Tray Position Sensor
6. Rear Booklet Tray Full Sensor
7. Front Booklet Tray Full Sensor
8. Proof Tray Full Sensor
9. Exit Guide Plate HP Sensor
10. Entrance Sensor
11. Front Door Safety Switch
12. Staple Tray Exit Sensor

13. Proof Tray Gate Solenoid
14. Lower Transport Motor
15. Entrance Motor
16. Positioning Roller Solenoid
17. Main Board
18. Shift Tray Motor
19. Lower Limit Sensor
20. Upper Cover Sensor
21. Staple Tray Gate Solenoid
22. Upper Transport Motor
23. Shift Motor
24. Shift Motor HP Sensor

38. Fold Unit Exit Sensor
39. Lower Clamp Roller HP Sensor
40. Lower Retraction Motor
41. Fold Unit Entrance Sensor
42. Bottom Fence HP Sensor
43. Fold Cam HP Sensor
44. Fold Roller Motor
45. Fold Plate HP Sensor
46. Fold Plate Motor
47. Bottom Fence Lift Motor

48. Punch Motor
49. Punch Encoder Sensor
50. Punch HP Sensor
51. Punch Board
52. Paper Position Sensor Slide Motor
53. Paper Position Slide HP Sensor
54. Paper Position Sensor
55. Punch Movement HP Sensor
56. Punch Hopper Full Sensor
57. Punch Movement Motor

\section*{Component Layout}

\section*{Electrical Component Descriptions}

\section*{Boards}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Item } & No. & \multicolumn{1}{c|}{ Purpose } \\
\hline Main Board & 17 & Controls the finisher. \\
\hline Punch Board & 51 & Controls the punch unit. \\
\hline
\end{tabular}

\section*{Sensors}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Item } & No. & \\
\hline \begin{tabular}{l} 
Proof Tray \\
Exit Sensor
\end{tabular} & 1 & Detects paper when it is fed out to the proof tray. \\
\hline \begin{tabular}{l} 
Shift Tray \\
Exit Sensor
\end{tabular} & 3 & Detects paper when it is fed out to the shift tray. \\
\hline \begin{tabular}{l} 
Shift Tray \\
Position \\
Sensor
\end{tabular} & 5 & Detects when the shift tray is at the correct height to receive paper. \\
\hline \begin{tabular}{l} 
Rear \\
Booklet \\
Tray Full \\
Sensor
\end{tabular} & 6 & \begin{tabular}{l} 
One of two sensors that the machine uses to determine when the \\
booklet tray is full.
\end{tabular} \\
\hline \begin{tabular}{l} 
Front \\
Booklet \\
Tray Full \\
Sensor
\end{tabular} & 7 & \begin{tabular}{l} 
One of two sensors that the machine uses to determine when the \\
booklet tray is full.
\end{tabular} \\
\hline \begin{tabular}{l} 
Proof Tray \\
Full Sensor
\end{tabular} & 8 & Detects when the proof tray is full. \\
\hline \begin{tabular}{l} 
Exit Guide \\
Plate HP \\
Sensor
\end{tabular} & 9 & Detects when the exit guide plate is at home position \\
\hline \begin{tabular}{l} 
Entrance \\
Sensor
\end{tabular} & 10 & Detects when paper comes into the finisher \\
\hline \begin{tabular}{l} 
Staple Tray \\
Exit Sensor
\end{tabular} & 12 & Detects paper leaving the bottom of the stapler \\
\hline \begin{tabular}{l} 
Lower Limit \\
Sensor
\end{tabular} & 19 & \begin{tabular}{l} 
Detects when the shift tray has moved to its lowest possible position \\
(the shift tray is full).
\end{tabular} \\
\hline \begin{tabular}{l} 
Upper \\
Cover \\
Sensor
\end{tabular} & 20 & Detects when the upper cover is open \\
\hline \begin{tabular}{l} 
Shift Motor \\
HP Sensor
\end{tabular} & 24 & \begin{tabular}{l} 
Detects when the side-to-side motion of the shift roller is at home \\
position
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Item & No. & Purpose \\
\hline Stopper S HP Sensor & 28 & Detects when the 'stopper S' mechanism is at home position. \\
\hline Stack Feed Out HP Sensor & 29 & Detects when the stack feed-out belt is at home position \\
\hline Staple Unit HP Sensor & 30 & Detects when the side-to-side motion of the stapler unit is at home position \\
\hline \begin{tabular}{l}
Jogger HP \\
Sensor
\end{tabular} & 34 & Detects when the jogger unit is at home position \\
\hline \begin{tabular}{l}
Staple Tray \\
Paper \\
Sensor
\end{tabular} & 35 & Detects when paper is fed into the stapler tray \\
\hline Stapler Safety Sensor & 37 & Stops side-to-side movement of the stapler until stopper \(S\) and the stack feed-out pawl mechanisms are at home position, to prevent damage to the machine. \\
\hline Fold Unit Exit Sensor & 38 & 1) Detects the folded edge of the stack as it feeds out from the nip of the fold rollers so the fold feeds back into the nip, 2) when the folded booklet finally emerges from the nip of the fold rollers, detects the leading and trailing edge of the booklet to make sure that it feeds out correctly. \\
\hline \begin{tabular}{l}
Lower \\
Clamp \\
Roller HP \\
Sensor
\end{tabular} & 39 & Detects when the lower clamp roller is at home position \\
\hline Fold Unit Entrance Sensor & 41 & Detects 1) the leading edge of the stack during booklet stapling, and 2) also used to signal an alarm if a paper is detected at the entrance of the fold unit when the copier is turned on. \\
\hline \begin{tabular}{l}
Bottom \\
Fence HP \\
Sensor
\end{tabular} & 42 & Detects when the bottom fence of the booklet folding mechanism is at home position \\
\hline Fold Cam HP Sensor & 43 & Along with the fold plate HP sensor, this sensor controls the movement of the fold plate. The actuator mounted on the end of the roller that drives the folder plate forward and back makes three full rotations, i.e. the actuator passes the sensor gap twice and stops on the 3rd rotation and reverses. This accounts for the left and right movement of the fold plate. \\
\hline Fold Plate HP Sensor & 45 & Along with the fold plate HP sensor this sensor controls the movement of the fold plate. The fold plate has arrived at the home position when the edge of the plate enters the gap of this sensor. \\
\hline Punch Encoder Sensor & 49 & Controls the timing for activating the punches, to punch holes in the paper at the correct position. \\
\hline
\end{tabular}

Component Layout
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Item } & No. & \multicolumn{1}{c|}{ Purpose } \\
\hline \begin{tabular}{l} 
Punch HP \\
Sensor
\end{tabular} & 50 & Detects when the hole-punch firing mechanism is at home position \\
\hline \begin{tabular}{l} 
Paper \\
Position \\
Slide HP \\
Sensor
\end{tabular} & 53 & \begin{tabular}{l} 
Detects when the mechanism that measures the paper position in the \\
punch unit is at home position
\end{tabular} \\
\hline \begin{tabular}{l} 
Paper \\
Position \\
Sensor
\end{tabular} & 54 & \begin{tabular}{l} 
Detects the side edge of the paper, to tell the machine where to put \\
the punch holes.
\end{tabular} \\
\hline \begin{tabular}{l} 
Punch \\
Movement \\
HP Sensor
\end{tabular} & 55 & \begin{tabular}{l} 
Detects when the side-to-side motion of the punch unit is at home \\
position.
\end{tabular} \\
\hline \begin{tabular}{l} 
Punch \\
Hopper Full \\
Sensor
\end{tabular} & 56 & \begin{tabular}{l} 
Detects when the punch hopper is full. Also checks if the hopper is \\
installed correctly.
\end{tabular} \\
\hline
\end{tabular}

Motors
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Item } & No. & \\
\hline \begin{tabular}{l} 
Exit Guide \\
Plate Motor
\end{tabular} & 2 & Controls the exit guide plate mechanism. \\
\hline \begin{tabular}{l} 
Lower \\
Transport \\
Motor
\end{tabular} & 14 & \begin{tabular}{l} 
Controls the positioning roller, and other rollers in the finisher (see \\
'Drive Layout' for details).
\end{tabular} \\
\hline \begin{tabular}{l} 
Entrance \\
Motor
\end{tabular} & 15 & Controls the rollers at the entrance of the finisher. \\
\hline \begin{tabular}{l} 
Shift Tray \\
Motor
\end{tabular} & 18 & Moves the shift tray up and down. \\
\hline \begin{tabular}{l} 
Upper \\
Transport \\
Motor
\end{tabular} & 22 & \begin{tabular}{l} 
Controls the rollers that feed paper from the junction gate to the proof \\
tray and to the shift tray (see 'Drive Layout' for details).
\end{tabular} \\
\hline Shift Motor & 23 & Moves the shift tray from side to side. \\
\hline \begin{tabular}{l} 
Stack Feed \\
Out Motor
\end{tabular} & 25 & Controls the stack feed-out belt \\
\hline \begin{tabular}{l} 
Jogger \\
Motor
\end{tabular} & 26 & Controls the jogger in the stapler tray \\
\hline \begin{tabular}{l} 
Upper \\
Retraction \\
Motor
\end{tabular} & 27 & \begin{tabular}{l} 
Controls the 'stopper S' mechanism. Also moves the upper clamp \\
roller into contact and away from the stack of paper in the stapler tray.
\end{tabular} \\
\hline Upper & 33 & Rotates the upper clamp roller. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Item } & No. & \multicolumn{1}{|c|}{ Purpose } \\
\hline \begin{tabular}{l} 
Clamp \\
Roller Motor
\end{tabular} & & \\
\hline \begin{tabular}{l} 
Stapler Unit \\
Motor
\end{tabular} & 36 & Moves the stapler from side to side. \\
\hline \begin{tabular}{l} 
Lower \\
Retraction \\
Motor
\end{tabular} & 40 & \begin{tabular}{l} 
Drives a large cam that alternately clamps and unclamps the lower \\
clamp roller, which is the idle roller of the clamp roller pair. \\
When these rollers are clamped, they are part of the paper feed path \\
and feed the stack toward the bottom fence of the fold unit. When the \\
idle roller is retracted, the stacks falls a very short distance (3 mm) \\
onto the fold unit bottom fence below. These rollers remain \\
unclamped while the bottom fence positions the stack for folding and \\
while the stack is folded by the fold rollers.
\end{tabular} \\
\hline \begin{tabular}{l} 
Fold Roller \\
Motor
\end{tabular} & 44 & Controls the rollers that fold the paper. \\
\hline \begin{tabular}{l} 
Fold Plate \\
Motor
\end{tabular} & 46 & Controls the plate that makes the fold in the paper. \\
\hline \begin{tabular}{l} 
Bottom \\
Fence Lift \\
Motor
\end{tabular} & 47 & \begin{tabular}{l} 
Raises the bottom fence and stapled stack to the correct fold position \\
for the paper size.
\end{tabular} \\
\hline \begin{tabular}{l} 
Punch \\
Motor
\end{tabular} & 48 & Punches the holes in the paper. \\
\hline \begin{tabular}{l} 
Paper \\
Position \\
Sensor \\
Slide Motor
\end{tabular} & 52 & \begin{tabular}{l} 
Controls side-to-side movement of the paper position sensor in the \\
punch unit.
\end{tabular} \\
\hline \begin{tabular}{l} 
Punch \\
Movement \\
Motor
\end{tabular} & 57 & Moves the punch from side to side. \\
\hline
\end{tabular}

\section*{Solenoids}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Item } & No. & \multicolumn{1}{|c|}{ Purpose } \\
\hline Proof Tray Gate Solenoid & 13 & Controls the proof tray junction gate \\
\hline Positioning Roller Solenoid & 16 & Controls the positioning roller. \\
\hline Staple Tray Gate Solenoid & 21 & Controls the staple tray junction gate \\
\hline
\end{tabular}

\section*{Switches}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Item } & No. & \multicolumn{1}{c|}{ Purpose } \\
\hline \begin{tabular}{l} 
Upper Limit \\
Switch
\end{tabular} & 4 & \begin{tabular}{l} 
Detects when the shift tray is at the highest possible position, \\
and cuts power to the shift tray motor.
\end{tabular} \\
\hline
\end{tabular}

Component Layout
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Item } & No. & Purpose \\
\hline \begin{tabular}{l} 
Front Door \\
Safety Switch
\end{tabular} & 11 & Cuts dc power when the front door is opened. \\
\hline
\end{tabular}

Others
\begin{tabular}{|c|l|l|}
\hline Item & No. & \multicolumn{1}{|c|}{ Purpose } \\
\hline Staple Driver Unit & 31 & Pushes the staples into the paper. \\
\hline Staple Folder Unit & 32 & Folds the ends of the staples after stapling \\
\hline
\end{tabular}

\subsection*{2.2 JUNCTION GATES}

Two junction gates control the path of paper.
Each junction gate is controlled by a solenoid.
Junction gate operation is summarized in the following table.
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Mode } & Proof & Shift & Staple \\
\hline Paper Path & & & \\
\hline \begin{tabular}{l} 
Proof Tray \\
Gate Solenoid
\end{tabular} & ON & OFF & OFF \\
\hline \begin{tabular}{l} 
Staple Tray \\
Gate Solenoid
\end{tabular} & OFF & OFF & ON \\
\hline
\end{tabular}

\subsection*{2.3 PROOF TRAY}


Proof Tray Junction Gate Control [A]: Proof Tray Gate Solenoid Roller Drive:
- Proof Tray Exit Roller [B], Proof Tray Transport Roller [C]: Controlled by the Upper Transport Motor
- Entrance Roller [D], Transport Roller [E]: Controlled by the Entrance Motor Jam Detection: Proof Tray Exit Sensor [F]

Tray Full Detection: Proof Tray Full Sensor [G]

\subsection*{2.4 SHIFT TRAY}

\subsection*{2.4.1 UPIDOWN MOTION}


The shift tray motor [A] moves the tray up and down.
The upper limit switch [B] detects when the tray moves up too far, and cuts power to the shift tray motor.
The shift tray position sensor [C] checks when the tray (or the top of the stack) is at the correct height to receive paper.
- \(\quad\) Shift Mode: This is checked every 5 sheets
- Staple Mode: This is checked every stack

The lower limit sensor [D] detects when the tray is full. At this point, the tray cannot move down any more.

Shift Tray

\subsection*{2.4.2 SIDE-TO-SIDE MOTION}


The shift motor [A] moves the shift roller [B] from side to side.
The shift motor HP sensor [C] detects when the mechanism is at home position.
The upper transport motor rotates the shift roller.
When shift mode is used, the shift motor turns on after each page is fed out. Then, for the next set, the shift motor turns the other way. In this way, the user can easily divide the sets.

\subsection*{2.5 BOOKLET TRAY}

\section*{(4) Full 3}


The sensor actuator arm [A] rests on the top of the stack of stapled booklets as they are output to the lower tray. A flap depressor \([B]\) keeps the open ends of the booklets down. The front booklet tray full sensor [C] and rear booklet tray full sensor [D] detect when the tray is full of booklets.

\section*{\(\downarrow\) Note}
- The front booklet tray full sensor is mounted higher than the rear booklet tray full sensor.
- The booklet tray is stationary. When it becomes full, the stapling and folding job stops until booklets are removed from the tray.
- If the booklet tray is not installed (this is detected if the front and rear sensors remain OFF), the machine will not operate in the booklet staple and fold mode. When booklet mode is selected, the tray full message appears on the operation panel.

The combinations of the two actuators and two sensors when the actuator arm rises determines the number of booklets that the tray can hold before the job stops.

Tray full detection depends on the size of the paper and the number of sheets in one stapled and folded booklet.

The condition detected by the machine (1) Ready 2 Full 1, 3 Full 2, 4 Full 3; see the illustration above) depends on the states of the sensors, as shown in the table below.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Condition } & \multicolumn{1}{|c|}{ Front Sensor } & \multicolumn{1}{|c|}{ Rear Sensor } \\
\hline Ready & ON & OFF \\
\hline Full 1 & ON & ON \\
\hline Full 2 & OFF & ON \\
\hline \begin{tabular}{l} 
Full 3 (or booklet tray not \\
installed)
\end{tabular} & OFF & OFF \\
\hline
\end{tabular}

In the tables below:
- "Sht" denotes "sheets in a stack".
- "Cnt" denotes "Count" (see below for an explanation).

After a booklet is feed out, the fold roller motor stops the exit roller. The machine then monitors the tray full sensors every feed-out of a paper stack. The machine checks a certain condition, based on the size of the paper and the number of sheets in the booklet. Two examples are shown below the table. Tell the operators that the number of sheets that the lower tray can hold will vary greatly.
- Lower Tray Full Condition Tables -

A3 (DLT)
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|c|}
\hline Sheet & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) & \(\mathbf{5}\) & \(\mathbf{6}\) & \(\mathbf{7}\) & \(\mathbf{8}\) & 9 & 10 \\
\hline Full 1 & \begin{tabular}{c}
15 \\
Cnt
\end{tabular} & - & - & - & - & - & - & - & - & - \\
\hline Full 2 & - & 3 Cnt & \begin{tabular}{c}
11 \\
Cnt
\end{tabular} & - & - & - & - & - & - & - \\
\hline Full 3 & - & - & - & \begin{tabular}{c}
16 \\
Cnt
\end{tabular} & \begin{tabular}{c}
12 \\
Cnt
\end{tabular} & 2 Cnt & 3 Cnt & 5 Cnt & 6 Cnt & 7 Cnt \\
\hline
\end{tabular}

\section*{A4 (LT)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Sheet & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) & \(\mathbf{5}\) & \(\mathbf{6}\) & \(\mathbf{7}\) & \(\mathbf{8}\) & 9 & 10 \\
\hline Full 1 & \begin{tabular}{c}
15 \\
Cnt
\end{tabular} & - & - & - & - & - & - & - & - & - \\
\hline Full 2 & - & 8 Cnt & \begin{tabular}{c}
16 \\
Cnt
\end{tabular} & \begin{tabular}{c}
19 \\
Cnt
\end{tabular} & 5 Cnt & 2 Cnt & 2 Cnt & 2 Cnt & 3 Cnt & 4 Cnt \\
\hline Full 3 & - & - & - & - & - & - & - & - & - & - \\
\hline
\end{tabular}

\section*{- Examples -}

After the copier makes a booklet with 1 sheet of \(11 \times 17\) inch paper, the machine checks every feed-out of a paper stack for the 'Full 1' condition. If the Full 1 condition occurs 15 times (' 15 Cnt' in the table above), the machine detects that the tray is full.
After the copier makes a booklet with 5 sheets of A4/LT paper, the machine checks every feed-out of a paper stack for the 'Full 2 ' condition. If the Full 3 condition occurs 5 times (' 5 Cnt' in the table above), the machine detects that the tray is full.

\subsection*{2.6 JOGGER UNIT}


The jogger is used in corner-staple mode and in booklet mode.
For each sheet of paper when it arrives in the staple tray, the following is done.
- The jogger motor [A] drives the jogger fences [B].
- The positioning roller solenoid moves the positioning roller [C] onto the top of the sheet. Then the lower transport motor turns on and the positioning roller rotates to push the sheet of paper against the stopper (there are two stoppers: stopper \(L\) or stopper \(S\) the one that is used depends on the paper size, as we shall see later.)

The jogger HP sensor [D] detects when the jogger fences are at home position (away from the stack).
The staple tray exit sensor [E] detects if a jam occurs when the machine feeds the stack out at the bottom of the jogger tray.

\subsection*{2.7 EXIT GUIDE PLATE, PAPER FEED OUT}


The exit guide plate [A] opens when a stapled stack is fed out.
Also it opens every time a sheet is fed to the staple tray, to prevent the paper running into the exit roller during stacking.

The exit guide plate motor [B] drives the exit guide plate. The exit guide plate HP sensor [C] detects when the guide plate is at home position.
The stack feed-out belt feeds out stapled stacks. The pawl [D] on the belt moves the stack out to the exit.

The stack feed-out motor [E] drives the belt. The stack feed-out HP sensor [F] detects when the belt is at home position.

\subsection*{2.8 STAPLER UNIT MOVEMENT}


The machine has only one stapler [A]. It does stapling for booklets and for corner stapling. The stapler unit motor [B] moves the stapler from side to side. The stapler unit HP sensor [C] detects when the stapler unit is at home position.

In corner staple mode, at the start of the job, the stapler moves to the position where the stapler will be inserted.

In booklet mode, at the start of a job, the stapler moves to a starting position that depends on the paper size, as follows:
- \(8.5 \times 14\) inches or shorter: Rear side staple position
- Longer than \(8.5 \times 14\) inches: Center position. When the stapler is at the center position, bracket [E] releases 'stopper L', which catches the bottom edge of the paper for booklet stapling with longer paper sizes. This will be described in a later section.

If the stapler safety sensor [D] detects the stapler unit at its initialization, the stapler unit stops moving until the stack feed out belt pawl and stopper \(S\) are at home position. If the stapler unit does not stop, it could collide with the pawl and/or the stopper.

\subsection*{2.9 STACKING FOR BOOKLET STAPLING}

\subsection*{2.9.1 OVERVIEW}

There are two stoppers near the stapler unit. These stoppers hold the stack of paper in the correct position during stacking.

The stoppers are called 'stopper S' and 'stopper L'. Stopper S is used for legal size paper, or shorter than \(8.5 \times 14\) inches. Stopper \(L\) is used for paper that is longer than \(8.5 \times 14\) inches.
\(\downarrow\) Wote
- In corner stapling mode, the pawl on the stack feed-out belt holds the stack of paper. For booklet stapling, this pawl stays at home position, which is on the rear side, so it does not interfere with booklet stapling.

\subsection*{2.9.2 8.5 X 14 (LEGAL) OR SHORTER}


At the start of the set, the upper retraction motor [A] turns on, and stopper \(\mathrm{S}[\mathrm{B}]\) moves down into position to catch the paper (1). The upper retraction motor also moves the upper clamp roller [C] into contact with the stack (2).


When the stack is complete, stopper S moves away [D], and the machine feeds the stack to the correct position for stapling. To do this, the upper clamp roller motor [E] rotates the upper clamp roller.

\subsection*{2.9.3 LONGER THAN 8.5 X 14 INCHES}


At the start of the set, the stapler moves to the center position. At this position, a bracket [A] on the stapler unit pushes stopper \(L[B]\). The pawl \([C]\) on the stopper \(L\) assembly then moves into position to catch the paper. The upper clamp roller holds the stack (see the
previous section).
When the stack is complete, the stapler moves to the rear-side position, and stopper \(L\) moves away. The machine feeds the stack to the correct position for stapling.

\subsection*{2.10 MOVING THE STACK TO THE FOLDING POSITION}


First, the upper clamp roller feeds the stack down after the stack has been stapled. When the lower clamp roller [A] catches the stack, the upper clamp roller stops, and the lower clamp roller feeds the stack down.
The lower clamp roller is released just before the leading edge of the stack reaches the bottom fence \([B]\) (this fence consists of two pawls that catch the paper). The bottom fence moves the stack to the folding position
The fold roller motor [C] turns the lower clamp roller.
The lower retracting motor [D] moves the lower clamp roller against and away from the stack. The lower clamp roller HP sensor [E] detects when the lower clamp roller is moved to the home position.
The bottom fence lift motor [F] moves the bottom fence up and down. The bottom fence HP sensor [G] detects when the bottom fence is at home position.

\subsection*{2.11 FOLDER}

\subsection*{2.11.1 OVERVIEW}

The fold plate pushes the stack into the nip between the fold rollers. The fold rollers feed out the stack, then reverse to feed it back in again. Then, the fold rollers feed the stack out of the folder, to the booklet tray.

\subsection*{2.11.2 FOLD PLATE}

[A]: Bottom Fence Stack Stoppers. Catches the stack after it is released by the clamp rollers.
[B]: Fold Plate Motor. Drives the timing belt and gears that move the fold plate.
[C]: Fold Plate Cam. Controls the movement of the fold plate to the left (into the nip of the fold rollers) and right (toward the fold plate home position).
[D]: Fold Plate HP Sensor. Controls operation of the fold plate motor.
[E]: Fold Plate. Moves left and pushes the stack into the nip of the fold rollers and then moves right to retract.

\section*{Folder}

\subsection*{2.11.3 FOLD ROLLERS}

[F]: Fold Roller Motor. Drives forward to feed out the stack at the fold, and then drives forward again to feed out the folded stack.

\section*{\(\downarrow\) Note}
- This cycle can be repeated by changing the setting of SP6136.
[G]: Fold Rollers. Driven by the fold roller motor, this roller pair feeds out the stack at its fold, reverses to feed in the stack to, and then feeds forward again (assisted by the fold unit exit rollers - not shown) to feed out the stack to the lower tray.

\subsection*{2.12 PUNCH UNIT}

\subsection*{2.12.1 OVERVIEW OF OPERATION}

\section*{Skew Correction Before Punching}


The finisher entrance roller corrects for paper skew and then the punch unit moves across to punch the holes at the correct position. Each sheet is punched one at a time.
Paper feeds out of the copier. The finisher entrance sensor [A] detects the leading edge of the sheet.

The finisher entrance roller [B] stops rotating briefly while the copier exit rollers continue to rotate. This buckles the paper against the finisher entrance roller to correct skew. The finisher entrance roller starts to rotate again and feeds the sheet into the finisher.
These SP codes adjust the skew operation in the punch unit:
- SP6130. This SP corrects the punch hole alignment. To do this, it corrects the skew of each sheet by adjusting the amount of time the finisher entrance roller remains off while the exit roller of the machine remains on. For more, see Section "5. Service Tables".
- SP6131. This SP determines whether the finisher entrance roller stops to correct skew when paper enters the finisher. You can use this SP to disable the skew correction. For more, see Section " 5 . Service Tables".

\section*{Punch Unit Position Correction}


These operations (skew correction before punching, and punch unit position correction) increase the accuracy of the punch alignment.
(1)

The trailing edge of the sheet passes the finisher entrance sensor [A].
The paper position slide unit moves the paper position sensor \([\mathrm{B}]\) forward to the edge of the paper.
The paper position sensor detects the position of the paper edge and sends this information to the punch unit board. The machine uses the detected position of the paper edge to calculate the correct position for punching.
The upper transport motor switches on and rotates the feed rollers [C] the prescribed distance to put the paper under the punch unit [D].

\section*{(2)}

Using the result of the position calculation, the punch unit control board moves the punch unit [D] to the adjusted punch position.
The paper position slide unit and its paper sensor, move back to the paper position slide home position sensor [E], and the punch unit fires the punches to make the holes.
3
The feed rollers feed the punched paper out of the punch unit and into the paper path. The punch unit moves back to home position (detected by the home position sensor [F].


These SP codes adjust the punch hole alignment:
- SP6128 Adjusts the punch positions in the direction of paper feed.
- SP6129 Adjusts the punch position perpendicular to the direction of feed.

For more, see Section "5. Service Tables".

\subsection*{2.12.2 PAPER POSITION DETECTION}


The paper position sensor slide motor [A] extends and retracts the paper position slide that holds the paper position sensor [B].
The paper position sensor detects the position of the paper edge. The detected position of the paper is used to move the punch unit across to the correct position for punching.
When the paper position slide is retracted, the paper position slide HP sensor [C] detects when the slider is at home position and stops paper position slide motor.

\subsection*{2.12.3 PUNCH UNIT MOVEMENT}


The punch movement motor [A] extends and retracts the punch unit to put it at the correct position for punching.
The punch movement HP sensor \([B]\) detects the position when it retracts, switches off the punch movement motor, and stops the punch unit at its home position.
The punch drive motor [C] fires the punches that punch holes in the paper below.

\subsection*{2.12.4 PUNCH SELECTION AND FIRING}


The punch drive motor \([\mathrm{A}]\) turns the small, notched encoder wheel \([\mathrm{B}]\) through the gap in the punch encoder sensor [C]. The sensor output is used to control the punch timing.


The timing for 2-hole punching \([\mathrm{E}]\) is different from 3 -hole punching \([\mathrm{F}]\).
When the punch unit is at the punching position, the punch motor turns until the encoder detects the starting position for 2-hole or 3 -hole punching.
- This is the ' 1 ' position in the diagrams (the first diagram is for 2-hole punching, and the second diagram is for 3 -hole punching).
Then, the punch drive motor turns counter-clockwise to the ' 2 ' position. This movement punches the holes in the paper.

Then, the punch drive motor turns clockwise to the ' 1 ' position, to be ready for the next sheet of paper.

\subsection*{2.12.5 PUNCH HOPPER MECHANISM}


The punchouts fall from the punch unit into the punch hopper \([A]\).

Punch Unit
The punch hopper full sensor [B] does the following:
- Signals that the hopper is full when it detects the top of the stack of punchouts that have collected in the hopper.
- Detects when the punch hopper is set properly.

\title{
PAPER TRAY UNIT PB3030 D331
}
\begin{tabular}{|c|c|l|}
\hline \multicolumn{3}{|l|}{ PAPER TRAY UNIT PB3030 REVISION HISTORY } \\
\hline Page & Date & \multicolumn{1}{c|}{ Added/Updated/New } \\
\hline & & None \\
\hline
\end{tabular}

\section*{PAPER TRAY UNIT PB3030 D331 TABLE OF CONTENTS}
1. REPLACEMENT AND ADJUSTMENT ..... 1
1.1 COVERS AND ROLLER ..... 1
1.1.1 COVERS ..... 1
1.1.2 FEED ROLLER ..... 2
1.2 DRIVE COMPONENTS ..... 3
1.2.1 UPPER FEED CLUTCH. ..... 3
1.2.2 LOWER FEED CLUTCH ..... 3
1.2.3 RELAY CLUTCH ..... 4
1.2.4 PAPER FEED MOTOR ..... 4
1.2.5 LIFT MOTORS ..... 5
1.3 ELECTRICAL COMPONENTS ..... 6
1.3.1 VERTICAL TRANSPORT SENSOR ..... 6
1.3.2 PAPER END SENSOR ..... 7
1.3.3 PAPER SIZE SENSORS ..... 7
1.3.4 TRAY MAIN BOARD ..... 8
2. DETAILED SECTION DESCRIPTIONS ..... 9
2.1 COMPONENT LAYOUT ..... 9
2.1.1 MECHANICAL COMPONENT LAYOUT ..... 9
2.1.2 ELECTRICAL COMPONENT LAYOUT ..... 10
2.1.3 ELECTRICAL COMPONENT DESCRIPTION ..... 10
2.1.4 DRIVE LAYOUT. ..... 13
2.2 PAPER FEED AND SEPARATION MECHANISM ..... 14
2.3 PAPER LIFT MECHANISM ..... 15
2.4 PAPER END DETECTION ..... 17
2.5 PAPER HEIGHT DETECTION ..... 18
2.6 PAPER SIZE DETECTION ..... 19
2.7 SIDE AND END FENCES ..... 21
2.7.1 SIDE FENCES ..... 21
2.7.2 END FENCE ..... 21

\section*{Read This First}

\section*{Safety and Symbols}

\section*{Replacement Procedure Safety}

\section*{\(\triangle\) CAUTION}
- Turn off the main power switch and unplug the machine before beginning any of the replacement procedures in this manual.

\section*{Symbols Used in this Manual}

This manual uses the following symbols.
- : See or Refer to

令: Screws
Eyll Connector
(3): Clip ring
(8: E-ring

\section*{1. REPLACEMENT AND ADJUSTMENT}

\subsection*{1.1 COVERS AND ROLLER}

\section*{©CAUTION}
- Turn off the main power switch and unplug the machine before beginning any of the procedures in this section.

\subsection*{1.1.1 COVERS}


\section*{Rear Cover}
1. Hold brackets \([\mathrm{A}]\) ( \(\mathrm{C} \times 1\) each)
2. Rear cover \([B](\hat{\xi} \times 3)\)

\section*{Right Cover}
1. Right side stopper [C] ( \((\mathbb{\xi} \times 3)\)
2. Right cover [D] ( \(\hat{\xi}^{2} \mathrm{x}, \mathrm{knob}\) screw x 2 )

Covers and Roller

\subsection*{1.1.2 FEED ROLLER}

1. Pull out the tray \([A]\).
2. Release the lock lever [B].
3. Feed roller [C]

\section*{1．2 DRIVE COMPONENTS}

\section*{©CAUTION}
－Turn off the main power switch and unplug the machine before beginning any of the procedures in this section．

\section*{1．2．1 UPPER FEED CLUTCH}


1．Rear cover（ \(\omega^{\text {＂Covers＂）}}\)
2．Bracket \([A](\hat{\xi} \times 2)\)
3．Hold bracket \([B]\left(\begin{array}{l}\text { B } \\ \text { 2 }\end{array}\right.\) ，bushing \(\left.\times 1\right)\)
4．Upper feed clutch［C］（E豆 \(\times 1\) ）

\section*{1．2．2 LOWER FEED CLUTCH}


1．Rear cover（＂Covers＂）
2．Lower feed clutch［A］（药 \(\times 1\) ，炰 \(\times 1\) ，氟 \(\times 1\) ）

\section*{1．2．3 RELAY CLUTCH}


1．Rear cover（＊＂Covers＂）
2．Relay clutch \([A]\)（氯 \(\times 1\) ，韦 \(\times 1\) ）

\section*{1．2．4 PAPER FEED MOTOR}


1．Rear cover（＂Covers＂）
2．Tray main board（ \(\omega^{-T r a y ~ M a i n ~ B o a r d ") ~}\)
3．Gear \([A](\mathbb{3}) \times 1)\)
4．Paper feed motor bracket \([B]\left(\begin{array}{l}\text { 雨 } \times 5)\end{array}\right.\)
5．Paper feed motor［C］（ \(\left.\mathcal{F}^{(1)} \times 2\right)\)

\subsection*{1.2.5 LIFT MOTORS}

\section*{Upper Lift Motor}

1. Rear cover ( \(\omega^{-C o v e r s ") ~}\)
2. Spring \([A]\) (snap ring \(\times 1\), spacer \(\times 1\) )

4. Upper lift motor [C] ( \((\hat{\xi} \times 3)\)

\section*{Lower Lift Motor}
1. Rear cover ( "Covers")
2. Spring (snap ring \(\times 1\), spacer \(\times 1\) )

4. Lower lift motor \(\left(\hat{\xi^{3}} \times 3\right)\)

\subsection*{1.3 ELECTRICAL COMPONENTS}

\section*{©CAUTION}
- Turn off the main power switch and unplug the machine before beginning any of the procedures in this section.

\subsection*{1.3.1 VERTICAL TRANSPORT SENSOR}

1. Open the tray cover \([\mathrm{A}]\)
2. Guide plate \([\mathrm{B}](\widehat{\xi} \times 2)\)
3. Sensor bracket \([C](\hat{\beta} \times 1\), 妞 \(\times 1\) )
4. Vertical transport sensor [D] (hooks)

\subsection*{1.3.2 PAPER END SENSOR}

1. Pull out the tray \([\mathrm{A}]\)

3. Paper end sensor [C] (hooks)

\subsection*{1.3.3 PAPER SIZE SENSORS}

1. Pull out the two trays.
2. Sensor bracket cover \([A]\left(\hat{\beta}^{3} \times 1\right)\)
3. Sensor bracket \([\mathrm{B}]\left(\right.\) ( \(\mathrm{E}_{\mathrm{U}}^{\mathrm{U}} \times 3\), \(\times 2\) )
4. Paper size sensors (hooks)

\subsection*{1.3.4 TRAY MAIN BOARD}

1. Rear cover (* "Covers")


\section*{2. DETAILED SECTION DESCRIPTIONS}

\subsection*{2.1 COMPONENT LAYOUT}

\subsection*{2.1.1 MECHANICAL COMPONENT LAYOUT}

\begin{tabular}{|l|l|}
\hline 1. Upper paper feed roller & 5. Lower tray \\
2. Lower paper feed roller & 6. Upper tray \\
3. Lower bottom plate & 7. Upper bottom plate \\
4. Optional tray heater & \\
\hline
\end{tabular}

\subsection*{2.1.2 ELECTRICAL COMPONENT LAYOUT}

1. Paper feed motor
2. Upper lift sensor
3. Upper lift motor
4. Upper tray set switch
5. Upper paper height 2 sensor
6. Upper paper height 1 sensor
7. Upper paper feed clutch
8. Relay clutch
9. Tray cover switch
10. Lower paper feed clutch
11. Lower paper height 2 sensor
12. Lower paper height 1 sensor
13. Vertical transport sensor
14. Lower tray set switch
15. Lower paper end sensor
16. Upper paper end sensor
17. Optional tray heater
18. Lower lift motor
19. Lower paper size sensors
20. Lower lift sensor
21. Upper paper size sensors
22. Tray main board

\subsection*{2.1.3 ELECTRICAL COMPONENT DESCRIPTION}
\begin{tabular}{|c|c|c|c|}
\hline Symbol & Name & Function & \begin{tabular}{c} 
Index \\
No.
\end{tabular} \\
\hline
\end{tabular}


Component Layout
\begin{tabular}{|c|l|l|c|}
\hline & Size & & \\
\hline & & & \\
\hline \multicolumn{2}{|l|}{ Switches } & \\
\hline SW1 & Tray Cover & Detects whether the tray cover is opened or not. & 9 \\
\hline SW2 & Upper Tray Set & \begin{tabular}{l} 
Detects whether the upper tray is opened or \\
not.
\end{tabular} & 4 \\
\hline SW3 & Lower Tray Set & Detects whether the lower tray is opened or not. & 14 \\
\hline & & & \\
\hline
\end{tabular}

Magnetic Clutches
\begin{tabular}{|c|l|l|c|}
\hline MC1 & \begin{tabular}{l} 
Upper Paper \\
Feed
\end{tabular} & Starts paper feed from the upper tray. & 7 \\
\hline MC2 & \begin{tabular}{l} 
Lower Paper \\
Feed
\end{tabular} & Starts paper feed from the lower tray. & 10 \\
\hline MC3 & Relay & Drives the relay rollers. & 8 \\
\hline & & & 22 \\
\hline PCBs & \multicolumn{4}{|l|}{\begin{tabular}{|c|l|l|c|}
\hline PCB1 & Tray Main \\
with the copier/printer.
\end{tabular}} & \\
\hline H1 & \begin{tabular}{l} 
Optional Tray \\
Heater
\end{tabular} & Removes humidity from the paper in the trays. & 17 \\
\hline Others & \multicolumn{4}{|l|}{} \\
\hline & & & 2 \\
\hline
\end{tabular}

\subsection*{2.1.4 DRIVE LAYOUT}

\begin{tabular}{|l|l|}
\hline 1. Paper feed motor & 5. Lower paper feed clutch \\
2. Drive belt & 6. Upper paper feed roller \\
3. Upper paper feed clutch & 7. Relay roller \\
4. Relay clutch & 8. Lower paper feed roller \\
\hline
\end{tabular}

\subsection*{2.2 PAPER FEED AND SEPARATION MECHANISM}


The paper tray holds 500 sheets. The paper feed roller [A] drives the top sheet of paper from the paper tray to the copier/printer. The friction pad \([B]\) allows only one sheet to feed at a time. The friction pad applies pressure to the feed roller with a spring [C].

\subsection*{2.3 PAPER LIFT MECHANISM}


The paper size switch detects when the tray is pushed in.
When the paper tray is pushed into the machine, the pin [A] for the lift motor pressure shaft engages the lift motor coupling \([B]\) and the pin \([C]\) for the bottom plate lift shaft in the tray engages the bottom plate pressure lever coupling [D]. The pin [E] on the rear of the tray pushes the lock lever so that the lift motor can lift the bottom plate pressure lever.
The lift motor turns on, and turns clockwise as viewed on the diagram. The main pressure spring \([\mathrm{H}]\) pulls the bottom plate pressure lever, and this lifts the tray bottom plate. When the top of the stack touches the feed roller, the motor cannot pull up the plate any more, so it pulls the actuator [G] into the lift sensor [F].
The pressure of the feed roller on the paper is now too high, so the lift motor reverses to reduce this pressure. It reverses for 300 ms or 600 ms , depending on the paper size. For smaller paper, it reverses the larger amount ( 600 ms ) to reduce the pressure more.

When the paper tray is pulled out, the pins \([A, C]\) disengage from the couplings \([B, D]\), and

\section*{Paper Lift Mechanism}
the bottom plate drops. To make it easier to push the tray in, the lift motor rotates
backwards 1.7 seconds to return the bottom plate pressure lever coupling [D] to the original position.

\subsection*{2.4 PAPER END DETECTION}


If there is some paper in the paper tray, the paper stack raises the paper end feeler \([A]\) and the paper end sensor \([\mathrm{B}]\) is deactivated.
When the paper tray runs out of paper, the paper end feeler drops into the cutout [C] in the tray bottom plate and the paper end sensor is activated.

When the paper tray is drawn out with no paper in the tray, the shape of the paper end feeler causes it to lift up.

\subsection*{2.5 PAPER HEIGHT DETECTION}


The amount of paper in the tray is detected by the combination of on/off signals from two paper height sensors \([A]\) and \([B]\).
When the amount of paper decreases, the bottom plate pressure lever [C] moves the actuator up.

The following combination of sensor signals is sent to the copier/printer.
\begin{tabular}{|c|c|c|}
\hline Amount of Paper & Paper Height Sensor 1 & Paper Height Sensor 2 \\
\hline Near End & OFF & ON \\
\hline \(30 \%\) & ON & ON \\
\hline \(70 \%\) & ON & OFF \\
\hline \(100 \%\) & OFF & OFF \\
\hline
\end{tabular}

When the tray contains paper of a small width, the paper feed pressure may become too low when the thickness of the remaining stack of paper has decreased. The lift motor rotates forward 300 ms after the sensor detects a certain amount of paper remaining in the tray to increase paper feed pressure, simulating the pressure generated by a full tray.

\subsection*{2.6 PAPER SIZE DETECTION}


There are three paper size sensors [A] (SN1, SN2 and SN3) on the paper tray unit. Each paper tray has its own actuator \([\mathrm{B}]\), with a unique combination of notches. This actuator is moved when the paper end fence [C] is adjusted for the installed paper. To determine which size has been installed, the CPU reads which paper size sensors the actuator has switched off. Refer to the size detection lists as shown below.
\begin{tabular}{|l|c|c|c|c|l|}
\hline \multicolumn{2}{|c|}{ EU/ AISA Size } & SN1 & SN2 & SN3 & \multicolumn{1}{|c|}{ SP Setting } \\
\hline A6 SEF & \(148 \times 105\) & OFF & ON & OFF & A5 LEF \\
\hline B5 LEF & \(182 \times 257\) & ON & OFF & ON & B6 SEF/ Exe LEF \\
\hline A4 LEF & \(210 \times 297\) & ON & ON & OFF & \begin{tabular}{l} 
LT LEF/ A5 SEF/ HLT \\
SEF
\end{tabular} \\
\hline B5 SEF & \(257 \times 182\) & OFF & OFF & ON & \\
\hline LT SEF & \(279 \times 216\) & OFF & OFF & OFF & \\
\hline A4 SEF & \(297 \times 210\) & ON & OFF & OFF & LG SEF \\
\hline B4 SEF & \(364 \times 257\) & ON & ON & ON & \\
\hline
\end{tabular}

Paper Size Detection
\begin{tabular}{|l|c|c|c|c|l|}
\hline A3 SEF & \(420 \times 297\) & OFF & ON & ON & DLT SEF \\
\hline \multicolumn{2}{|c|}{ NA Size } & SN1 & SN2 & SN3 & SP Setting \\
\hline A6 SEF & \(148 \times 105\) & OFF & ON & OFF & A5 LEF \\
\hline B5 LEF & \(182 \times 257\) & ON & OFF & ON & Exe LEF/ B6 SEF \\
\hline LT LEF & \(210 \times 297\) & ON & ON & OFF & \begin{tabular}{l} 
A4 LEF/ A5 SEF/ HLT \\
SEF
\end{tabular} \\
\hline B5 SEF & \(257 \times 182\) & OFF & OFF & ON & \\
\hline LT SEF & \(279 \times 216\) & OFF & OFF & OFF & \\
\hline A4 SEF & \(297 \times 210\) & ON & OFF & OFF & \\
\hline LG SEF & \(364 \times 257\) & ON & ON & ON & \\
\hline DLT SEF & \(420 \times 297\) & OFF & ON & ON & A3 SEF \\
\hline
\end{tabular}

The CPU disables paper feed from a tray if the paper size cannot be detected. If the paper size actuator is broken, or if there is no tray installed, the Add Paper indicator will light.

\subsection*{2.7 SIDE AND END FENCES}


\subsection*{2.7.1 SIDE FENCES}

If the tray is full of paper and it is pushed in strongly, the fences may deform or bend. This may cause the paper to skew or the side-to-side registration to be incorrect. To correct this, each side fence has a stopper [A] attached to it. Each side fence can be secured with a screw [B], for customers who do not want to change the paper size.

\subsection*{2.7.2 END FENCE}

As the amount of paper in the tray decreases, the bottom plate [C] lifts up gradually. The end fence [D] is connected to the bottom plate. When the tray bottom plate rises, the end fence moves forward and pushes the back of the paper stack to keep it squared up.

\section*{D361/D510}

\section*{FAX OPTION TYPE 3350/3351}
\begin{tabular}{|c|c|l|}
\hline \multicolumn{4}{|l|}{ FAX OPTION TYPE 3350/3351 REVISION HISTORY } \\
\hline Page & Date & \multicolumn{1}{l|}{ Added/Updated/New } \\
\hline 12 & \(09 / 01 / 2009\) & Fax installation \\
\hline
\end{tabular}

\section*{D361/D510 \\ Fax Option Type 3350/3351}

\section*{TABLE OF CONTENTS}
1. INSTALLATION ..... 9
1.1 INSTALLATION ..... 9
1.1.1 FAX UNIT (D361/D510) ..... 9
Accessory Check ..... 9
Fax Installation ..... 10
1.1.2 G3 INTERFACE UNIT (D361) ..... 13
Accessory Check ..... 13
G3 Interface Installation ..... 14
1.1.3 32 MB MEMORY (OPTION) ..... 16
1.1.4 HANDSET (B433) ..... 16
2. REPLACEMENT AND ADJUSTMENT ..... 18
2.1 FCU ..... 18
3. TROUBLESHOOTING ..... 19
3.1 ERROR CODES ..... 19
3.2 IFAX TROUBLESHOOTING ..... 43
3.3 IP-FAX TROUBLESHOOTING ..... 48
3.3.1 IP-FAX TRANSMISSION ..... 48
Cannot send by IP Address/Host Name ..... 48
Cannot send via VoIP Gateway. ..... 50
Cannot send by Alias Fax number. ..... 52
3.3.2 IP-FAX RECEPTION ..... 54
Cannot receive by IP Address/Host name ..... 54
Cannot receive by VoIP Gateway ..... 55
Cannot receive by Alias Fax number ..... 56
4. SERVICE TABLES ..... 58
4.1 CAUTIONS ..... 58
4.2 SERVICE PROGRAM TABLES ..... 59
4.2.1 SP1-XXX (BIT SWITCHES) ..... 59
4.2.2 SP2-XXX (RAM DATA) ..... 61
4.2.3 SP3-XXX (TEL LINE SETTINGS) ..... 63
4.2.4 SP4-XXX (ROM VERSIONS). ..... 66
4.2.5 SP5-XXX (INITIALIZING) ..... 67
4.2.6 SP6-XXX (REPORTS) ..... 68
4.2.7 SP7-XXX (TEST MODES) ..... 71
4.2.8 SP9-XXX (DESIGN SWITCH MODE) ..... 73
4.3 BIT SWITCHES - 1 ..... 74
4.3.1 SYSTEM SWITCHES ..... 74
4.4 BIT SWITCHES - 2 ..... 94
4.4.1 I-FAX SWITCHES ..... 95
4.4.2 PRINTER SWITCHES ..... 106
4.5 BIT SWITCHES - 3 ..... 115
4.5.1 COMMUNICATION SWITCHES ..... 115
4.6 BIT SWITCHES - 4 ..... 129
4.6.1 G3 SWITCHES ..... 129
4.7 BIT SWITCHES - 5 ..... 144
4.7.1 G3-2 AND G3-3 SWITCHES ..... 144
4.7.2 G4 INTERNAL SWITCHES ..... 144
4.7.3 G4 PARAMETER SWITCHES ..... 144
4.8 BIT SWITCHES - 6 ..... 145
4.8.1 IP FAX SWITCHES ..... 145
4.9 NCU PARAMETERS ..... 157
4.10 DEDICATED TRANSMISSION PARAMETERS ..... 174
4.10.1 PROGRAMMING PROCEDURE ..... 174
4.10.2 PARAMETERS ..... 174
Fax Parameters ..... 174
E-mail Parameters ..... 180
4.11 SERVICE RAM ADDRESSES ..... 184
5. DETAILED SECTION DESCRIPTIONS ..... 197
5.1 OVERVIEW ..... 197
5.2 BOARDS ..... 198
5.2.1 FCU ..... 198
5.2.2 MBU ..... 199
5.2.3 SG3 BOARD ..... 200
5.3 VIDEO DATA PATH ..... 202
5.3.1 TRANSMISSION ..... 202
Memory Transmission and Parallel Memory Transmission ..... 202
Immediate Transmission ..... 203
JBIG Transmission ..... 203
Adjustments ..... 203
5.3.2 RECEPTION ..... 204
5.4 FAX COMMUNICATION FEATURES ..... 205
5.4.1 MULTI-PORT ..... 205
5.4.2 DOCUMENT SERVER ..... 205
5.4.3 INTERNET MAIL COMMUNICATION ..... 207
Mail Transmission ..... 207
Mail Reception ..... 209
Handling Mail Reception Errors ..... 211
Secure Internet Reception ..... 212
Transfer Request: Request By Mail ..... 212
E-Mail Options (Sub TX Mode) ..... 213
5.5 IP-FAX ..... 217
5.5.1 WHAT IS IP-FAX? ..... 217
5.5.2 T.38 PACKET FORMAT ..... 217
UDP Related Switches ..... 217
5.5.3 SETTINGS ..... 217
6. SPECIFICATIONS ..... 218
6.1 GENERAL SPECIFICATIONS ..... 218
6.2 CAPABILITIES OF PROGRAMMABLE ITEMS ..... 220
6.3 IFAX SPECIFICATIONS ..... 222
6.4 IP-FAX SPECIFICATIONS ..... 223
6.5 FAX UNIT CONFIGURATION ..... 224

\section*{Read This First}

\section*{Important Safety Notices}

\section*{\(\triangle\) WARNING}
- Never install telephone wiring during a lightning storm.
- Never install telephone jacks in wet locations unless the jack is specifically designed for wet locations.
- Never touch uninsulated telephone wires or terminals unless the telephone line has been disconnected at the network interface.
- Use caution when installing or modifying telephone lines.
- Avoid using a telephone (other than a cordless type) during an electrical storm. There may be a remote risk of electric shock from lightning.
- Do not use a telephone or cellular phone to report a gas leak in the vicinity of the leak.

\section*{©CAUTION}
- Before installing the fax unit, switch off the main switch, and disconnect the power cord.
- The fax unit contains a lithium battery. The danger of explosion exists if a battery of this type is incorrectly replaced. Replace only with the same or an equivalent type recommended by the manufacturer. Discard batteries in accordance with the manufacturer's instructions and local regulations.

\section*{v. Note}
- Note for Australia:
- Unit must be connected to Telecommunication Network through a line cord which meets the requirements of ACA Technical Standard TS008.

\section*{Symbols and Abbreviations}

\section*{Conventions Used in this Manual}

This manual uses several symbols.
\begin{tabular}{|c|l|}
\hline Symbol & What it means \\
\hline & Refer to section number \\
\hline & Screw \\
\hline (3) & Connector \\
\hline E-ring \\
\hline 包 & Clip ring \\
\hline
\end{tabular}


\section*{Cautions, Notes, etc.}

The following headings provide special information:

\section*{©WARNING}
- Failure to obey warning information could result in serious injury or death.

\section*{\(\triangle\) CAUTION}
- Obey these guidelines to ensure safe operation and prevent minor injuries.

\section*{t Important}
- Obey these guidelines to avoid problems such as misfeeds, damage to originals, loss of valuable data and to prevent damage to the machine.
- Always obey these guidelines to avoid serious problems such as misfeeds, damage to originals, loss of valuable data and to prevent damage to the machine. bold is added for emphasis.
- This document provides tips and advice about how to best service the machine.

\section*{1. INSTALLATION}

\subsection*{1.1 INSTALLATION}

\subsection*{1.1.1 FAX UNIT (D361/D510)}

\section*{Accessory Check}

Check the quantity and condition of the accessories against the following list.
\begin{tabular}{|r|l|c|}
\hline No. & \multicolumn{1}{|c|}{ Description } & Qty \\
\hline 1. & Handset Bracket (NA only) & 1 \\
\hline 2. & Serial Number Label & 1 \\
\hline 3. & FCC Label (NA only) & 1 \\
\hline 4. & G3 Decal & 1 \\
\hline 5. & Fax Keytops & 2 \\
\hline & Copy Keytops (D361 only) & 2 \\
\hline 6. & Fax Unit & 1 \\
\hline 7. & Data Display Overlay (for operation panel) & 2 \\
\hline 8. & Telephone Cable (NA only) & 1 \\
\hline 9. & Screw-M3x6 & 3 \\
\hline 10. & Ferrite Core (NA Only) & 1 \\
\hline 11. & Facsimile Reference & 1 \\
\hline
\end{tabular}

Installation


Fax Installation

1. Remove:
[A] Application (plastic) cover ( \({ }^{2} \times 1\) )
[B] Left cover plate ( ( \(\hat{\xi} \times 1\) )
[C] Knockouts
- LINE 1 for Fax Unit
- If one G3 Unit will be installed, remove the knockout for LINE 1 and LINE 2.
- If two G3 Units will be installed, remove the knockouts for both LINE 1, LINE 2, and LINE 3

2. Through the window, remove the jumper \([A]\) and set it to the ON position.
3. Press down the MBU.
\(\downarrow\) Nole
- Make sure that the MBU is seated correctly. If not, SC672 occurs.
4. Remove the jumper [A] (set to OFF) and set it to ON.

\section*{\(\downarrow\) Nole}
- The machine may issue SC819, SC820 if the jumper is not set to "ON" correctly.
- (sometimes these SC codes are not issued.)
5. If the 32 MB Memory (option) will be installed, do this now. (32 MB Memory (Option)")
6. If one or two G3 interface units (options) will be installed, do this now. "G3 Interface Unit (D361)")
7. Slide the fax unit \([B]\) into the machine and fasten it ( \(\mathrm{E}^{2} \times 3\) ).
8. Reattach the plastic application cover ( C 1 )
9. Attach the Serial number label and FCC decal (NA only) to under the serial number decal in rear cover of the main body.

10. For NA models, attach the ferrite core to the telephone cord. The end of the ferrite core must be about 5 cm (2.1") [A] from the end of the cable.
11. Connect the telephone cord to the "LINE 1" jack.

12. Remove the dummy keytop [A] (3rd from the top) and replace it with a facsimile keytop [B].

13. Attach the G 3 decal to the front of the machine.
14. Connect the power cord to the machine.
15. Make sure that the plug is grounded properly at the power source.
16. Switch the machine on.
\(\qquad\)
- If you see a message that tells you the SRAM has been formatted (due to a problem with SRAM), cycle the machine off/on to clear the message.
17. Check the clock settings (date and time) with the User Tools.
18. Enter SP Mode and program the serial number into the fax unit with SP3102. You can find the serial number on the serial number label (attached to the machine in Step).

\subsection*{1.1.2 G3 INTERFACE UNIT (D361)}

\section*{Accessory Check}

Check the quantity and condition of the accessories against the following list.
\begin{tabular}{|r|l|c|}
\hline No. & \multicolumn{1}{|c|}{ Description } & Qty \\
\hline 1. & Telephone Cable (NA) & 1 \\
\hline 2. & Screws M3 x 6 & 6 \\
\hline 3. & FFC (Flat Flexible Cable) & 1 \\
\hline 4. & G3 Board & 1 \\
\hline 5. & CCUIF & 1 \\
\hline 6. & FCC Label (NA only) & 1 \\
\hline
\end{tabular}


Installation

\section*{G3 Interface Installation}
1. If the fax unit is already installed in the machine, remove:
- Application (plastic) cover ( - \(^{(1)}\) )
- FCU (的 x3)

d361i201

One G3 Unit

3. Connect the G3 interface unit \([A]\) and CCUIF \([B]\) (edge connector).
- Fasten the connected G3/CCUIF to the cover [C].
- G3: ( ( \(^{2}\) x2)
- CCUIF (舟 x 4 )
4. Connect the FCU [D] and CCUIF [B] (FFC x1).
5. Reconnect the speaker harness [E] ( Cl ) x 1 )

\section*{Two G3 Units}

1. Connect the \(G 3\) interface units \([A]\) and \([B]\) to the CCUIF [C] (edge connector).
- Fasten the connected G3/CCUIF to the cover [D].
- G3: ( \(\hat{\theta}^{2}\) x2 ea.)
- CCUIF ( \(\mathrm{B}^{(1)} \times 4\) )
2. Connect the FCU [E] and CCUIF [B] (FFC x1).
3. Reconnect the speaker harness \([F](\mathrm{F}) \mathrm{x} 1)\)
4. One and Two G3 Units connect the telephone lines to the back of the machine at LINE 2 (single port) or LINE 2 and LINE 3 (dual port).
5. Plug in the machine. Then turn the main switch on.
6. Enter the Fax SP mode and set Bit 1 of Communication Switch 16 to "1" if you install the single port.
-or-
Enter the Fax SP mode and set Bit 3 of Communication Switch 16 to "1" if you install the dual ports.
7. Print the system parameter list. Make sure that "G3-2" (single port) and "G3-3" (dual port) are listed as an option.
8. Set up and program the item required for PSTN-2 communication.

Installation

\subsection*{1.1.3 32 MB MEMORY (OPTION)}

1. Remove:
- Application cover ( E )
- FCU [A] ( E ) .
2. Attach the DIMM \([B]\) to the FCU.

\subsection*{1.1.4 HANDSET (B433)}

\section*{\(\downarrow\) Note}
- The optional handset is available for the U.S. version only.

1. Remove the scanner left cover \([A]\left(\xi^{7} \times 2\right)\).

2. Make two holes \([B]\) in the scanner left cover.

- Drill a hole from the outside of the cover with a screwdriver.

3. Reinstall the scanner left cover on the machine ( \(\times 2\) ).
4. Install the handset bracket \([C]\left(\begin{array}{l}(1)\end{array}\right)\) on the scanner left cover.
5. Attach the clamp to the location [D].
6. Set the handset on the handset bracket.
7. Clamp the handset cord.
8. Connect the handset cable to the "TEL" jack at the rear of the machine.

\section*{2. REPLACEMENT AND ADJUSTMENT}

\subsection*{2.1 FCU}
1. When you replace the FCU board, remove the MBU board from the old FCU board and install it on the new FCU board.
2. Set the correct date and time with the User Tools:
- User Tools> System Settings> Timer Setting> Set Date/Time
\(\downarrow\) Nole
- Do not turn off the battery switch (SW1).
- Do SP6101 to print the system parameters. Then check the settings.

\section*{3. TROUBLESHOOTING}

\subsection*{3.1 ERROR CODES}

If an error code occurs, retry the communication. If the same problem occurs, try to fix the problem as suggested below. Note that some error codes appear only in the error code display and on the service report.
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Suggested Cause/Action \\
\hline 0-00 & DIS/NSF not detected within 40 s of Start being pressed & \begin{tabular}{l}
- Check the line connection. \\
- Check the NCU - FCU connectors. \\
- The machine at the other end may be incompatible. \\
- Replace the NCU or FCU. \\
- Check for DIS/NSF with an oscilloscope. \\
- If the rx signal is weak, there may be a bad line.
\end{tabular} \\
\hline 0-01 & DCN received unexpectedly & \begin{tabular}{l}
- The other party is out of paper or has a jammed printer. \\
- The other party pressed Stop during communication.
\end{tabular} \\
\hline 0-03 & Incompatible modem at the other end & - The other terminal is incompatible. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Suggested Cause/Action \\
\hline 0-04 & CFR or FTT not received after modem training & \begin{tabular}{l}
- Check the line connection. \\
- Check the NCU - FCU connectors. \\
- Try changing the tx level and/or cable equalizer settings. \\
- Replace the FCU or NCU. \\
- The other terminal may be faulty; try sending to another machine. \\
- If the rx signal is weak or defective, there may be a bad line. \\
Cross reference \\
- Tx level - NCU Parameter 01 (PSTN) \\
- Cable equalizer - G3 Switch 07 (PSTN) \\
- Dedicated Tx parameters - Section 4
\end{tabular} \\
\hline 0-05 & Unsuccessful after modem training at 2400 bps & \begin{tabular}{l}
- Check the line connection. \\
- Check the NCU - FCU connectors. \\
- Try adjusting the tx level and/or cable equalizer. \\
- Replace the FCU or NCU. \\
- Check for line problems. \\
Cross reference \\
- See error code 0-04.
\end{tabular} \\
\hline 0-06 & The other terminal did not reply to DCS & \begin{tabular}{l}
- Check the line connection. \\
- Check the FCU - NCU connectors. \\
- Try adjusting the tx level and/or cable equalizer settings. \\
- Replace the NCU or FCU. \\
- The other end may be defective or incompatible; try sending to another machine. \\
- Check for line problems. \\
Cross reference \\
- See error code 0-04.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Suggested Cause/Action \\
\hline 0-07 & No post-message response from the other end after a page was sent & \begin{tabular}{l}
- Check the line connection. \\
- Check the FCU - NCU connectors. \\
- Replace the NCU or FCU. \\
- The other end may have jammed or run out of paper. \\
- The other end user may have disconnected the call. \\
- Check for a bad line. \\
- The other end may be defective; try sending to another machine.
\end{tabular} \\
\hline 0-08 & The other end sent RTN or PIN after receiving a page, because there were too many errors & \begin{tabular}{l}
- Check the line connection. \\
- Check the FCU - NCU connectors. \\
- Replace the NCU or FCU. \\
- The other end may have jammed, or run out of paper or memory space. \\
- Try adjusting the tx level and/or cable equalizer settings. \\
- The other end may have a defective modem/NCU/FCU; try sending to another machine. \\
- Check for line problems and noise. \\
Cross reference \\
- Tx level - NCU Parameter 01 (PSTN) \\
- Cable equalizer - G3 Switch 07 (PSTN) \\
- Dedicated Tx parameters - Section 4
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Suggested Cause/Action \\
\hline 0-14 & Non-standard post message response code received & \begin{tabular}{l}
- Check the FCU - NCU connectors. \\
- Incompatible or defective remote terminal; try sending to another machine. \\
- Noisy line: resend. \\
- Try adjusting the tx level and/or cable equalizer settings. \\
- Replace the NCU or FCU. \\
Cross reference \\
- See error code 0-08.
\end{tabular} \\
\hline 0-15 & The other terminal is not capable of specific functions. & \begin{tabular}{l}
- The other terminal is not capable of accepting the following functions, or the other terminal's memory is full. \\
- Confidential rx \\
- Transfer function \\
- SEP/SUB/PWD/SID
\end{tabular} \\
\hline 0-16 & CFR or FTT not detected after modem training in confidential or transfer mode & \begin{tabular}{l}
- Check the line connection. \\
- Check the FCU - NCU connectors. \\
- Replace the NCU or FCU. \\
- Try adjusting the tx level and/or cable equalizer settings. \\
- The other end may have disconnected, or it may be defective; try calling another machine. \\
- If the rx signal level is too low, there may be a line problem. \\
Cross reference \\
- See error code 0-08.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Suggested Cause/Action \\
\hline 0-20 & Facsimile data not received within 6 s of retraining & \begin{tabular}{l}
- Check the line connection. \\
- Check the FCU - NCU connectors. \\
- Replace the NCU or FCU. \\
- Check for line problems. \\
- Try calling another fax machine. \\
- Try adjusting the reconstruction time for the first line and/or \(r x\) cable equalizer setting. \\
Cross reference \\
- Reconstruction time - G3 Switch 0A, bit 6 \\
- Rx cable equalizer - G3 Switch 07 (PSTN)
\end{tabular} \\
\hline 0-21 & EOL signal (end-of-line) from the other end not received within 5 s of the previous EOL signal & \begin{tabular}{l}
- Check the connections between the FCU, NCU, \& line. \\
- Check for line noise or other line problems. \\
- Replace the NCU or FCU. \\
- The remote machine may be defective or may have disconnected. \\
Cross reference \\
- Maximum interval between EOLs and between ECM frames - G3 Bit Switch 0A, bit 4
\end{tabular} \\
\hline 0-22 & The signal from the other end was interrupted for more than the acceptable modem carrier drop time (default: 200 ms ) & \begin{tabular}{l}
- Check the line connection. \\
- Check the FCU - NCU connectors. \\
- Replace the NCU or FCU. \\
- Defective remote terminal. \\
- Check for line noise or other line problems. \\
- Try adjusting the acceptable modem carrier drop time. \\
Cross reference \\
- Acceptable modem carrier drop time - G3 Switch 0A, bits 0 and 1
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Suggested Cause/Action \\
\hline 0-23 & Too many errors during reception & \begin{tabular}{l}
- Check the line connection. \\
- Check the FCU - NCU connectors. \\
- Replace the NCU or FCU. \\
- Defective remote terminal. \\
- Check for line noise or other line problems. \\
- Try asking the other end to adjust their \(t x\) level. \\
- Try adjusting the rx cable equalizer setting and/or rx error criteria. \\
Cross reference \\
- Rx cable equalizer - G3 Switch 07 (PSTN) \\
- Rx error criteria - Communication Switch 02, bits 0 and 1
\end{tabular} \\
\hline 0-30 & The other terminal did not reply to NSS(A) in AI short protocol mode & \begin{tabular}{l}
- Check the line connection. \\
- Check the FCU - NCU connectors. \\
- Try adjusting the tx level and/or cable equalizer settings. \\
- The other terminal may not be compatible. \\
Cross reference \\
- Dedicated tx parameters - Section 4
\end{tabular} \\
\hline 0-32 & The other terminal sent a DCS, which contained functions that the receiving machine cannot handle. & \begin{tabular}{l}
- Check the protocol dump list. \\
- Ask the other party to contact the manufacturer.
\end{tabular} \\
\hline 0-33 & The data reception (not ECM) is not completed within 10 minutes. & \begin{tabular}{l}
- Check the line connection. \\
- The other terminal may have a defective modem/FCU.
\end{tabular} \\
\hline 0-52 & Polarity changed during communication & \begin{tabular}{l}
- Check the line connection. \\
- Retry the communication.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Suggested Cause/Action \\
\hline 0-55 & FCE does not detect the SG3-V34. & \begin{tabular}{l}
- FCU firmware or board defective. \\
- SG3-V34 firmware or board defective.
\end{tabular} \\
\hline 0-56 & The stored message data exceeds the capacity of the mailbox in the SG3-V34. & - SG3-V34 firmware or board defective. \\
\hline 0-70 & The communication mode specified in CM/JM was not available (V. 8 calling and called terminal) & \begin{tabular}{l}
- The other terminal did not have a compatible communication mode (e.g., the other terminal was a V. 34 data modem and not a fax modem.) \\
- A polling tx file was not ready at the other terminal when polling rx was initiated from the calling terminal.
\end{tabular} \\
\hline 0-74 & The calling terminal fell back to T. 30 mode, because it could not detect ANSam after sending Cl . & \begin{tabular}{l}
- The calling terminal could not detect ANSam due to noise, etc. \\
- ANSam was too short to detect. \\
- Check the line connection and condition. \\
- Try making a call to another V.8/V. 34 fax.
\end{tabular} \\
\hline 0-75 & The called terminal fell back to T. 30 mode, because it could not detect a CM in response to ANSam (ANSam timeout). & \begin{tabular}{l}
- The terminal could not detect ANSam. \\
- Check the line connection and condition. \\
- Try receiving a call from another V.8/V. 34 fax.
\end{tabular} \\
\hline 0-76 & \begin{tabular}{l}
The calling terminal fell back to T .30 mode, because it could not detect a JM in response to a CM \\
(CM timeout).
\end{tabular} & \begin{tabular}{l}
- The called terminal could not detect a CM due to noise, etc. \\
- Check the line connection and condition. \\
- Try making a call to another V.8/V. 34 fax.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Suggested Cause/Action \\
\hline 0-77 & \begin{tabular}{l}
The called terminal fell back to T. 30 mode, because it could not detect a CJ in response to JM \\
(JM timeout).
\end{tabular} & \begin{tabular}{l}
- The calling terminal could not detect a JM due to noise, etc. \\
- A network that has narrow bandwidth cannot pass JM to the other end. \\
- Check the line connection and condition. \\
- Try receiving a call from another V.8/V. 34 fax.
\end{tabular} \\
\hline 0-79 & The called terminal detected Cl while waiting for a V .21 signal. & \begin{tabular}{l}
- Check for line noise or other line problems. \\
- If this error occurs, the called terminal falls back to T .30 mode.
\end{tabular} \\
\hline 0-80 & The line was disconnected due to a timeout in V. 34 phase 2 line probing. & The guard timer expired while starting these phases. Serious noise, narrow bandwidth, or low signal level can cause these errors. \\
\hline 0-81 & The line was disconnected due to a timeout in V. 34 phase 3 equalizer training. & \begin{tabular}{l}
If these errors happen at the transmitting terminal: \\
- Try making a call at a later time. \\
- Try using V. 17 or a slower modem using
\end{tabular} \\
\hline 0-82 & The line was disconnected due to a timeout in the V. 34 phase 4 - control channel start-up. & \begin{tabular}{l}
- Try increasing the tx level. \\
- Try adjusting the tx cable equalizer setting. \\
If these errors happen at the receiving terminal: \\
- Try adjusting the rx cable equalizer setting.
\end{tabular} \\
\hline 0-83 & The line was disconnected due to a timeout in the V. 34 control channel restart sequence. & \begin{tabular}{l}
- Try increasing the tx level. \\
- Try using V. 17 or a slower modem if the same error is frequent when receiving from multiple senders.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Suggested Cause/Action \\
\hline 0-84 & The line was disconnected due to abnormal signaling in V. 34 phase 4 - control channel start-up. & \begin{tabular}{l}
- The signal did not stop within 10 s . \\
- Turn off the machine, then turn it back on. \\
- If the same error is frequent, replace the FCU.
\end{tabular} \\
\hline 0-85 & The line was disconnected due to abnormal signaling in V. 34 control channel restart. & \begin{tabular}{l}
- The signal did not stop within 10 s . \\
- Turn off the machine, then turn it back on. \\
- If the same error is frequent, replace the FCU.
\end{tabular} \\
\hline 0-86 & The line was disconnected because the other terminal requested a data rate using MPh that was not available in the currently selected symbol rate. & \begin{tabular}{l}
- The other terminal was incompatible. \\
- Ask the other party to contact the manufacturer.
\end{tabular} \\
\hline 0-87 & The control channel started after an unsuccessful primary channel. & \begin{tabular}{l}
- The receiving terminal restarted the control channel because data reception in the primary channel was not successful. \\
- This does not result in an error communication.
\end{tabular} \\
\hline 0-88 & The line was disconnected because PPR was transmitted/received 9 (default) times within the same ECM frame. & \begin{tabular}{l}
- Try using a lower data rate at the start. \\
- Try adjusting the cable equalizer setting.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Suggested Cause/Action \\
\hline 2-11 & Only one V. 21 connection flag was received & - Replace the FCU. \\
\hline 2-12 & Modem clock irregularity & - Replace the FCU. \\
\hline 2-13 & Modem initialization error & \begin{tabular}{l}
- Turn off the machine, then turn it back on. \\
- Update the modem ROM. \\
- Replace the FCU.
\end{tabular} \\
\hline 2-23 & JBIG compression or reconstruction error & \begin{tabular}{l}
- Turn off the machine, then turn it back on. \\
- Replace the EXFUNC board if the error is frequent.
\end{tabular} \\
\hline 2-24 & JBIG ASIC error & \begin{tabular}{l}
- Turn off the machine, then turn it back on. \\
- Replace the EXFUNC board if the error is frequent.
\end{tabular} \\
\hline 2-25 & JBIG data reconstruction error (BIH error) & \\
\hline 2-26 & JBIG data reconstruction error (Float marker error) & - JBIG data error \\
\hline 2-27 & JBIG data reconstruction error (End marker error) & - Update the MBU ROM. \\
\hline 2-28 & JBIG data reconstruction error (Timeout) & \\
\hline 2-29 & JBIG trailing edge maker error & \begin{tabular}{l}
- FCU defective \\
- Check the destination device.
\end{tabular} \\
\hline 2-50 & The machine resets itself for a fatal FCU system error & - If this is frequent, update the ROM, or replace the FCU. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Suggested Cause/Action \\
\hline 2-51 & The machine resets itself because of a fatal communication error & - If this is frequent, update the ROM, or replace the FCU. \\
\hline 2-53 & Snd msg() in the manual task is an error because the mailbox for the operation task is full. & - The user did the same operation many times, and this gave too much load to the machine. \\
\hline 4-01 & Line current was cut & \begin{tabular}{l}
- Check the line connector. \\
- Check the connection between FCU and NCU. \\
- Check for line problems. \\
- Replace the FCU or the NCU.
\end{tabular} \\
\hline 4-10 & Communication failed because of an ID Code mismatch (Closed Network) or Tel. No./CSI mismatch (Protection against Wrong Connections) & \begin{tabular}{l}
- Get the ID Codes the same and/or the CSIs programmed correctly, then resend. \\
- The machine at the other end may be defective.
\end{tabular} \\
\hline 5-10 & DCR timer expired & - Replace the FCU. \\
\hline 5-20 & Storage impossible because of a lack of memory & \begin{tabular}{l}
- Temporary memory shortage. \\
- Test the SAF memory.
\end{tabular} \\
\hline 5-21 & Memory overflow & \\
\hline 5-23 & Print data error when printing a substitute rx or confidential rx message & \begin{tabular}{l}
- Test the SAF memory. \\
- Ask the other end to resend the message. \\
- Replace the FCU or optional EXMEM board.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Suggested Cause/Action \\
\hline 5-25 & SAF file access error & - Replace the FCU or EXMEM board. \\
\hline 6-00 & G3 ECM - T1 time out during reception of facsimile data & \\
\hline 6-01 & G3 ECM - no V. 21 signal was received & \begin{tabular}{l}
- Try adjusting the rx cable equalizer. \\
- Replace the FCU or NCU.
\end{tabular} \\
\hline 6-02 & G3 ECM - EOR was received & \\
\hline 6-04 & G3 ECM - RTC not detected & \begin{tabular}{l}
- Check the line connection. \\
- Check connections from the NCU to the FCU. \\
- Check for a bad line or defective remote terminal. \\
- Replace the FCU or NCU.
\end{tabular} \\
\hline 6-05 & G3 ECM - facsimile data frame not received within 18 s of CFR, but there was no line fail & \begin{tabular}{l}
- Check the line connection. \\
- Check connections from the NCU to the FCU. \\
- Check for a bad line or defective remote terminal. \\
- Replace the FCU or NCU. \\
- Try adjusting the rx cable equalizer \\
Cross reference \\
- Rx cable equalizer - G3 Switch 07 (PSTN)
\end{tabular} \\
\hline 6-06 & G3 ECM coding/decoding error & \begin{tabular}{l}
- Defective FCU. \\
- The other terminal may be defective.
\end{tabular} \\
\hline 6-08 & G3 ECM - PIP/PIN received in reply to PPS.NULL & \begin{tabular}{l}
- The other end pressed Stop during communication. \\
- The other terminal may be defective.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Suggested Cause/Action \\
\hline 6-09 & G3 ECM - ERR received & \begin{tabular}{l}
- Check for a noisy line. \\
- Adjust the tx levels of the communicating machines. \\
- \(\quad\) See code 6-05.
\end{tabular} \\
\hline 6-10 & G3 ECM - error frames still received at the other end after all communication attempts at 2400 bps & \begin{tabular}{l}
- Check for line noise. \\
- Adjust the tx level (use NCU parameter 01 or the dedicated tx parameter for that address). \\
- Check the line connection. \\
- Defective remote terminal.
\end{tabular} \\
\hline 6-21 & V. 21 flag detected during high speed modem communication & - The other terminal may be defective or incompatible. \\
\hline 6-22 & The machine resets the sequence because of an abnormal handshake in the V. 34 control channel & \begin{tabular}{l}
- Check for line noise. \\
- If the same error occurs frequently, replace the FCU. \\
- Defective remote terminal.
\end{tabular} \\
\hline 6-99 & V .21 signal not stopped within 6 s & - Replace the FCU. \\
\hline 13-17 & SIP user name registration error & \begin{tabular}{l}
- Double registration of the SIP user name. \\
- Capacity for user-name registration in the SIP server is not sufficient.
\end{tabular} \\
\hline 13-18 & SIP server access error & \begin{tabular}{l}
- Incorrect initial setting for the SIP server. \\
- Defective SIP server.
\end{tabular} \\
\hline 13-24 & SIP authentication error & - Registered password in the device does not match the password in the SIP server. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Suggested Cause/Action \\
\hline 13-25 & Network I/F setting error & \begin{tabular}{l}
- IPV4 is not active in the active protocol setting. \\
- IP address of the device is not registered.
\end{tabular} \\
\hline 13-26 & Network I/F setting error at power on & \begin{tabular}{l}
- Active protocol setting does not match the I/F setting for SIP server. \\
- IP address of the device is not registered.
\end{tabular} \\
\hline 13-27 & IP address setting error & - IP address of the device is not registered. \\
\hline 14-00 & SMTP Send Error & Error occurred during sending to the SMTP server. Occurs for any error other than 14-01 to 16. For example, the mail address of the system administrator is not registered. \\
\hline 14-01 & SMTP Connection Failed & \begin{tabular}{l}
Failed to connect to the SMTP server (timeout) because the server could not be found. \\
- The PC is not ready to transfer files. \\
- SMTP server not functioning correctly. \\
- The DNS IP address is not registered. \\
- Network not operating correctly. \\
- Destination folder selection not correct.
\end{tabular} \\
\hline 14-02 & \begin{tabular}{l}
No Service by SMTP \\
Service (421)
\end{tabular} & \begin{tabular}{l}
SMTP server operating incorrectly, or the destination for direct SMTP sending is not correct. \\
- Contact the system administrator and check that the SMTP server has the correct settings and operates correctly. \\
- Contact the system administrator for direct SMTP sending and check the sending destination.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Suggested Cause/Action \\
\hline 14-03 & \begin{tabular}{l}
Access to SMTP Server \\
Denied (450)
\end{tabular} & \begin{tabular}{l}
Failed to access the SMTP server because the access is denied. \\
- SMTP server operating incorrectly. Contact the system administrator to determine if there is a problem with the SMTP server and to check that the SMTP server settings are correct. \\
- Folder send destination is incorrect. Contact the system administrator to determine that the SMTP server settings and path to the server are correct. \\
- Device settings incorrect. Confirm that the user name and password settings are correct. \\
- Direct SMTP destination incorrect. Contact the system administrator to determine if there is a problem at the destination at that the settings at the destination are correct.
\end{tabular} \\
\hline 14-04 & Access to SMTP Server Denied (550) & \begin{tabular}{l}
- SMTP server operating incorrectly \\
- Direct SMTP sending not operating correctly
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Suggested Cause/Action \\
\hline 14-05 & SMTP Server HDD Full
(452) & \begin{tabular}{l}
Failed to access the SMTP server because the HDD on the server is full. \\
- Insufficient free space on the HDD of the SMTP server. Contact the system administrator and check the amount of space remaining on the SMTP server HDD. \\
- Insufficient free space on the HDD where the destination folder is located. Contact the system administrator and check the amount of space remaining on the HDD where the target folder is located. \\
- Insufficient free space on the HDD at the target destination for SMTP direct sending. Contact the system administrator and check the amount of space remaining on the target HDD.
\end{tabular} \\
\hline 14-06 & User Not Found on SMTP Server (551) & \begin{tabular}{l}
The designated user does not exist. \\
- The designated user does not exist on the SMTP server. \\
- The designated address is not for use with direct SMTP sending.
\end{tabular} \\
\hline 14-07 & \begin{tabular}{l}
Data Send to SMTP \\
Server Failed (4XX)
\end{tabular} & \begin{tabular}{l}
Failed to access the SMTP server because the transmission failed. \\
- PC not operating correctly. \\
- SMTP server operating incorrectly \\
- Network not operating correctly. \\
- Destination folder setting incorrect. \\
- Direct SMTP sending not operating correctly.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Suggested Cause/Action \\
\hline 14-08 & \begin{tabular}{l}
Data Send to SMTP \\
Server Failed (5XX)
\end{tabular} & \begin{tabular}{l}
Failed to access the SMTP server because the transmission failed. \\
- SMTP server operating incorrectly \\
- Destination folder setting incorrect. \\
- Direct SMTP sending not operating correctly. \\
- Software application error.
\end{tabular} \\
\hline 14-09 & Authorization Failed for Sending to SMTP Server & \begin{tabular}{l}
- POP-Before-SMTP or SMTP authorization failed. \\
- Incorrect setting for file transfer
\end{tabular} \\
\hline 14-10 & Addresses Exceeded & Number of broadcast addresses exceeded the limit for the SMTP server. \\
\hline 14-11 & Buffer Full & The send buffer is full so the transmission could not be completed. Buffer is full due to using Scan-to-Email while the buffer is being used send mail at the same time. \\
\hline 14-12 & Data Size Too Large & Transmission was cancelled because the detected size of the file was too large. \\
\hline 14-13 & Send Cancelled & Processing is interrupted because the user pressed Stop. \\
\hline 14-21 & SMIME Sending Error & Make sure the user certificate or device certificate is registered correctly. \\
\hline 14-30 & MCS File Creation Failed & \begin{tabular}{l}
Failed to create the MCS file because: \\
- The number of files created with other applications on the Document Server has exceeded the limit. \\
- HDD is full or not operating correctly. \\
- Software error.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Suggested Cause/Action \\
\hline 14-31 & UFS File Creation Failed & \begin{tabular}{l}
UFS file could not be created: \\
- Not enough space in UFS area to handle both Scan-to-Email and IFAX transmission. \\
- HDD full or not operating correctly. \\
- Software error.
\end{tabular} \\
\hline 14-32 & Cancelled the Mail Due to Error Detected by NFAX & Error detected with NFAX and send was cancelled due to a software error. \\
\hline 14-33 & No Mail Address For the Machine & Neither the mail address of the machine nor the mail address of the network administrator is registered. \\
\hline 14-34 & Address designated in the domain for SMTP sending does not exist & \begin{tabular}{l}
Operational error in normal mail sending or direct SMTP sending. \\
- Check the address selected in the address book for SMTP sending. \\
- Check the domain selection.
\end{tabular} \\
\hline 14-50 & Mail Job Task Error & \begin{tabular}{l}
Due to an FCU mail job task error, the send was cancelled: \\
- Address book was being edited during creation of the notification mail. \\
- Software error.
\end{tabular} \\
\hline 14-51 & UCS Destination Download Error & \begin{tabular}{l}
Not even one return notification can be downloaded: \\
- The address book was being edited. \\
- The number for the specified destination does not exist (it was deleted or edited after the job was created).
\end{tabular} \\
\hline 14-60 & Send Cancel Failed & The cancel operation by the user failed to cancel the send operation. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Suggested Cause/Action \\
\hline 14-61 & \begin{tabular}{l}
Notification Mail Send \\
Failed for All \\
Destinations
\end{tabular} & All addresses for return notification mail failed. \\
\hline 15-01 & \begin{tabular}{l}
POP3/IMAP4 Server Not \\
Registered
\end{tabular} & At startup, the system detected that the IP address of the POP3/IMAP4 server has not been registered in the machine. \\
\hline 15-02 & \begin{tabular}{l}
POP3/IMAP4 Mail \\
Account Information Not Registered
\end{tabular} & The POP3/IMAP4 mail account has not been registered. \\
\hline 15-03 & Mail Address Not Registered & The mail address has not been registered. \\
\hline 15-10 & DCS Mail Receive Error & Error other than 15-11 to 15-18. \\
\hline 15-11 & Connection Error & \begin{tabular}{l}
The DNS or POP3/IMAP4 server could not be found: \\
- The IP address for DNS or POP3/IMAP4 server is not stored in the machine. \\
- The DNS IP address is not registered. \\
- Network not operating correctly.
\end{tabular} \\
\hline 15-12 & Authorization Error & \begin{tabular}{l}
POP3/IMAP4 send authorization failed: \\
- Incorrect IFAX user name or password. \\
- Access was attempted by another device, such as the PC. \\
- POP3/IMAP4 settings incorrect.
\end{tabular} \\
\hline 15-13 & Receive Buffer Full & \begin{tabular}{l}
Occurs only during manual reception. \\
Transmission cannot be received due to insufficient buffer space. The buffer is being used for mail send or Scan-to-Email.
\end{tabular} \\
\hline 15-14 & Mail Header Format Error & The mail header is not standard format. For example, the Date line description is incorrect. \\
\hline
\end{tabular}

Error Codes
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Suggested Cause/Action \\
\hline 15-15 & Mail Divide Error & The e-mail is not in standard format. There is no boundary between parts of the e-mail, including der. the header. \\
\hline 15-16 & Mail Size Receive Error & The mail cannot be received because it is too large. \\
\hline 15-17 & Receive Timeout & May occur during manual receiving only because the network is not operating correctly. \\
\hline 15-18 & \begin{tabular}{l}
Incomplete Mail \\
Received
\end{tabular} & Only one portion of the mail was received. \\
\hline 15-31 & \begin{tabular}{l}
Final Destination for \\
Transfer Request \\
Reception Format Error
\end{tabular} & The format of the final destination for the transfer request was incorrect. \\
\hline 15-39 & \begin{tabular}{l}
Send/Delivery \\
Destination Error
\end{tabular} & \begin{tabular}{l}
The transmission cannot be delivered to the final destination: \\
- Destination file format is incorrect. \\
- Could not create the destination for the file transmission.
\end{tabular} \\
\hline 15-41 & SMTP Receive Error & Reception rejected because the transaction exceeded the limit for the "Auth. E-mail RX" setting. \\
\hline 15-42 & Off Ramp Gateway Error & The delivery destination address was specified with Off Ramp Gateway OFF. \\
\hline 15-43 & Address Format Error & Format error in the address of the Off Ramp Gateway. \\
\hline 15-44 & Addresses Over & The number of addresses for the Off Ramp Gateway exceeded the limit of 30 . \\
\hline 15-61 & Attachment File Format Error & The attached file is not TIFF format. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Suggested Cause/Action \\
\hline 15-62 & TIFF File Compatibility Error & \begin{tabular}{l}
Could not receive transmission due to: \\
- Resolution error \\
- Image of resolution greater than 200 dpi without extended memory. \\
- Resolution is not supported. \\
- Page size error \\
- The page size was larger than A3. \\
- Compression error \\
- File was compressed with other than MH, MR, or MMR.
\end{tabular} \\
\hline 15-63 & TIFF Parameter Error & \begin{tabular}{l}
The TIFF file sent as the attachment could not be received because the TIFF header is incorrect: \\
- The TIFF file attachment is a type not supported. \\
- The TIFF file attachment is corrupted. \\
- Software error.
\end{tabular} \\
\hline 15-64 & TIFF Decompression Error & \begin{tabular}{l}
The file received as an attachment caused the TIFF decompression error: \\
- The TIFF format of the attachment is corrupted. \\
- Software error.
\end{tabular} \\
\hline 15-71 & Not Binary Image Data & The file could not be received because the attachment was not binary image data. \\
\hline 15-73 & MDN Status Error & Could not find the Disposition line in the header of the Return Receipt, or there is a problem with the firmware. \\
\hline 15-74 & MSDN Message ID Error & Could not find the Original Message ID line in the header of the Return Receipt, or there is a problem with the firmware. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Suggested Cause/Action }
\end{tabular} \left\lvert\, \(\left.\begin{array}{l}\text { Could not receive the transmission because the } \\
\text { destination buffer is full and the destination could } \\
\text { not be created (this error may occur when } \\
\text { receiving a transfer request or a request for } \\
\text { notification of reception). }\end{array}\right.\right\}\)
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Suggested Cause/Action \\
\hline 22-00 & Original length exceeded the maximum scan length & \begin{tabular}{l}
- Divide the original into more than one page. \\
- Check the resolution used for scanning. Lower the scan resolution if possible. \\
- Add optional page memory.
\end{tabular} \\
\hline 22-01 & Memory overflow while receiving & \begin{tabular}{l}
- Wait for the files in the queue to be sent. \\
- Delete unnecessary files from memory. \\
- Transfer the substitute reception files to another fax machine, if the machine's printer is busy or out of order. \\
- Add an optional SAF memory card or hard disk.
\end{tabular} \\
\hline 22-02 & Tx or rx job stalled due to line disconnection at the other end & \begin{tabular}{l}
- The job started normally but did not finish normally; data may or may not have been received fully. \\
- Restart the machine.
\end{tabular} \\
\hline 22-04 & The machine cannot store received data in the SAF & \begin{tabular}{l}
- Update the ROM \\
- Replace the FCU.
\end{tabular} \\
\hline 22-05 & No G3 parameter confirmation answer & - Defective FCU board or firmware. \\
\hline 23-00 & Data read timeout during construction & \begin{tabular}{l}
- Restart the machine. \\
- Replace the FCU
\end{tabular} \\
\hline 25-00 & The machine software resets itself after a fatal transmission error occurred & \begin{tabular}{l}
- Update the ROM \\
- Replace the FCU.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Suggested Cause/Action \\
\hline 31-21 & LAN Fax Error & \begin{tabular}{l}
- It was cancelled received LAN Fax images during store the image to SAF of FCU. \\
- The LAN Fax transmission of a message was cancelled by the LAN Fax driver.
\end{tabular} \\
\hline F0-xx & V. 34 modem error & - Replace the FCU. \\
\hline F6-xx & SG3-V34 modem error & \begin{tabular}{l}
- Update the SG3-V34 modem ROM. \\
- Replace the SG3-V34 board. \\
- Check for line noise or other line problems. \\
- Try communicating another V.8/V. 34 fax.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{3.2 IFAX TROUBLESHOOTING}

Use the following procedures to determine whether the machine or another part of the network is causing the problem.
\begin{tabular}{|c|c|c|c|}
\hline Communication Route & Item & Action & Remarks \\
\hline \multirow[t]{2}{*}{General LAN} & 1. Connection with the LAN & \begin{tabular}{l}
- Check that the LAN cable is connected to the machine. \\
- Check that the LEDs on the hub are lit.
\end{tabular} & \\
\hline & 2. LAN activity & - Check that other devices connected to the LAN can communicate through the LAN. & \\
\hline \multirow[t]{2}{*}{Between IFAX and PC} & 1. Network settings on the PC & - Check the network settings on the PC. & - Is the IP address registered in the TCP/IP properties in the network setup correct? Check the IP address with the administrator of the network. \\
\hline & 2. Check that PC can connect with the machine & - Use the "ping" command on the PC to contact the machine. & - At the MS-DOS prompt, type ping then the IP address of the machine, then \\
\hline
\end{tabular}

IFAX Troubleshooting
\begin{tabular}{|c|c|c|c|}
\hline Communication Route & Item & Action & Remarks \\
\hline \multirow[t]{2}{*}{} & & & press Enter. \\
\hline & 3. LAN settings in the machine & \begin{tabular}{l}
- Check the LAN parameters \\
- Check if there is an IP address conflict with other PCs.
\end{tabular} & \begin{tabular}{l}
- Use the "Network" function in the User Tools. \\
- If there is an IP address conflict, inform the administrator.
\end{tabular} \\
\hline \multirow[b]{2}{*}{Between machine and e-mail server} & 1. LAN settings in the machine & \begin{tabular}{l}
- Check the LAN parameters \\
- Check if there is an IP address conflict with other PCs.
\end{tabular} & \begin{tabular}{l}
- Use the "Network" function in the User Tools. \\
- If there is an IP address conflict, inform the administrator.
\end{tabular} \\
\hline & 2. E-mail account on the server & \begin{tabular}{l}
- Make sure that the machine can log into the e-mail server. \\
- Check that the account and password stored in the server are the same as in the machine.
\end{tabular} & - Ask the administrator to check. \\
\hline
\end{tabular}

IFAX Troubleshooting
\begin{tabular}{|c|c|c|c|}
\hline Communication Route & Item & Action & Remarks \\
\hline & 3. E-mail server & - Make sure that the client devices which have an account in the server can send/receive e-mail. & \begin{tabular}{l}
- Ask the administrator to check. \\
- Send a test e-mail with the machine's own number as the destination. The machine receives the returned e-mail if the communication is performed successfully.
\end{tabular} \\
\hline
\end{tabular}

IFAX Troubleshooting
\begin{tabular}{|c|c|c|c|}
\hline Communication Route & Item & Action & Remarks \\
\hline Between e-mail server and internet & 1. E-mail account on the Server & \begin{tabular}{l}
- Make sure that the PC can log into the e-mail server. \\
- Check that the account and password stored in the server are the same as in the machine.
\end{tabular} & - Ask the administrator to check. \\
\hline & 2. E-mail server & - Make sure that the client devices which have an account in the server can send/receive e-mail. & \begin{tabular}{l}
- Ask the administrator to check. \\
- Send a test e-mail with the machine's own number as the destination. The machine receives the returned e-mail if the communication is performed successfully.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{c} 
Communication \\
Route
\end{tabular} & \multicolumn{1}{c|}{ Item } & \multicolumn{1}{c|}{ Action } & \multicolumn{1}{c|}{ Remarks } \\
\hline & & \begin{tabular}{l} 
- \begin{tabular}{l} 
Make sure that the \\
e-mail address is \\
actually used. \\
Check that the \\
e-mail address \\
contains no \\
incorrect \\
characters such as \\
spaces.
\end{tabular} \\
\hline
\end{tabular} & \begin{tabular}{l} 
e-mail address
\end{tabular} \\
\hline
\end{tabular}

\subsection*{3.3 IP-FAX TROUBLESHOOTING}

\subsection*{3.3.1 IP-FAX TRANSMISSION}

\section*{Cannot send by IP Address/Host Name}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|c|}{ Check Point } & \multicolumn{1}{c|}{ Action } \\
\hline 1 & LAN cable connected? & Check the LAN cable connection. \\
\hline 2 & Specified IP address/host name correct? & Check the IP address/host name. \\
\hline 3 & Firewall/NAT is installed? & \begin{tabular}{l} 
Cannot breach the firewall. Send by \\
using another method (Fax, Internet \\
Fax)
\end{tabular} \\
\hline 4 & Transmission sent manually? & Manual sending not supported. \\
\hline 5 & IP address of local machine registered? & Register the IP address. \\
\hline 6 & \begin{tabular}{l} 
Remote terminal port number setting other \\
than 1720?
\end{tabular} & Send by specifying the port number. \\
\hline 7 & Specified port number correct? & \begin{tabular}{l} 
Confirm the port number of the remote \\
fax.
\end{tabular} \\
\hline 8 & \begin{tabular}{l} 
DNS server registered when host name \\
specified?
\end{tabular} & Contact the network administrator. \\
\hline 9 & Remote fax a T.38 terminal? & \begin{tabular}{l} 
Check whether the remote fax is a T38 \\
terminal.
\end{tabular} \\
\hline 10 & Remote fax switched off or busy? & \begin{tabular}{l} 
Check that the remote fax is switched \\
on.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|c|}{ Check Point } & \multicolumn{1}{c|}{ Action } \\
\hline \multirow{4}{*}{11} & Network bandwidth too narrow? & \begin{tabular}{l} 
Request the network administrator to \\
increase the bandwidth.
\end{tabular} \\
\cline { 3 - 5 } & & \begin{tabular}{l} 
Raise the delay level. \\
IPFAX SW 01 Bit 0 to 3
\end{tabular} \\
\cline { 3 - 5 } & & \begin{tabular}{l} 
IP-Fax bandwidth is the same as the \\
DCS speed. Set IP-Fax SW00 Bit 6 to \\
1.
\end{tabular} \\
\hline 12 & Remote fax cancelled transmission? & \begin{tabular}{l} 
Check whether the remote fax \\
cancelled the transmission.
\end{tabular} \\
\hline
\end{tabular}

Check whether the remote fax cancelled the transmission.

\section*{IP-Fax Troubleshooting}

\section*{Cannot send via VoIP Gateway}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|c|}{ Check Point } & \multicolumn{1}{c|}{ Action } \\
\hline 1 & LAN cable connected? & Check the LAN cable connection. \\
\hline 2 & VoIP Gateway T.38 standard? & Contact the network administrator. \\
\hline 3 & VoIP Gateway installed correctly? & Contact the network administrator. \\
\hline 4 & VoIP Gateway power switched on? & Contact the network administrator. \\
\hline 5 & \begin{tabular}{l} 
Is the IP address/host name of the \\
specified Gateway correct?
\end{tabular} & Check the IP address/host name. \\
\hline 6 & Number of the specified fax correct? & Check the remote fax number. \\
\hline 7 & Firewall/NAT is installed? & \begin{tabular}{l} 
Cannot breach the firewall. Send by \\
using another method (Fax, Internet \\
Fax)
\end{tabular} \\
\hline 8 & Transmission sent manually? & Manual sending not supported. \\
\hline 9 & IP address of local fax registered? & Register the IP address. \\
\hline 10 & \begin{tabular}{l} 
DNS registered when host name \\
specified?
\end{tabular} & Contact the network administrator. \\
\hline 11 & Remote fax a G3 fax? & Check that the remote fax is a G3 fax. \\
\hline 12 & G3 fax is connected to VoIP gateway? & Check that G3 fax is connected. \\
\hline 13 & Remote G3 fax turned on? & Check that G3 fax is switched on. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|r|}{Check Point} & Action \\
\hline \multirow{3}{*}{14} & \multirow{3}{*}{Network bandwidth too narrow?} & Request the network administrator to increase the bandwidth. \\
\hline & & Raise the network delay level. IPFAX SW 01 Bit 0 to 3 \\
\hline & & IP-Fax bandwidth is the same as the DCS speed. Set IP-Fax SW00 Bit 6 to 1. \\
\hline
\end{tabular}

\section*{IP-Fax Troubleshooting}

\section*{Cannot send by Alias Fax number.}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|c|}{ Check Point } & \multicolumn{1}{c|}{ Action } \\
\hline 1 & LAN cable connected? & Check the LAN cable connection. \\
\hline 2 & Number of specified Alias fax correct? & \begin{tabular}{l} 
Confirm the Alias of the remote fax. \\
Error Code: 13-14
\end{tabular} \\
\hline 3 & Firewall/NAT installed? & \begin{tabular}{l} 
Cannot breach the firewall. Send by \\
using another method (Fax, Internet \\
Fax)
\end{tabular} \\
\hline 4 & Transmission sent manually? & Manual sending not supported. \\
\hline 5 & Gatekeeper installed correctly? & Contact the network administrator. \\
\hline 6 & Gatekeeper power switched on? & Contact the network administrator. \\
\hline 7 & \begin{tabular}{l} 
IP address/host name of Gatekeeper \\
correct?
\end{tabular} & Check the IP address/host name. \\
\hline 8 & \begin{tabular}{l} 
DNS server registered when Gatekeeper \\
host name specified?
\end{tabular} & Contact the network administrator. \\
\hline 9 & Enable H.323 SW is set to on? & \begin{tabular}{l} 
Check the settings. \\
See User Parameter SW 34 Bit 0
\end{tabular} \\
\hline 10 & IP address of local fax registered? & Register the IP address of the local fax. \\
\hline 11 & Alias number of local fax registered? & \begin{tabular}{l} 
Register the Alias number of the local \\
fax.
\end{tabular} \\
\hline 12 & Remote fax registered in Gatekeeper? & Contact the network administrator. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|c|}{ IP-Fax Troubleshooting } \\
\hline 13 & Remote fax a T.38 terminal? & \multicolumn{1}{c|}{ Action } \\
\hline 14 & Remote fax switched off or busy? & \begin{tabular}{l} 
Check whether the remote fax is a T38 \\
terminal.
\end{tabular} \\
\hline 15 & Network bandwidth too narrow? & \begin{tabular}{l} 
Contact the network administrator. \\
Request the system administrator to \\
increase the bandwidth.
\end{tabular} \\
\cline { 3 - 4 } & & \begin{tabular}{l} 
Raise the delay level. IPFAX SW 01 Bit \\
0 to 3
\end{tabular} \\
\cline { 3 - 4 } & & \begin{tabular}{l} 
Lower the modem transmission baud \\
rate. IPFAX SW 05
\end{tabular} \\
\hline 16 & Remote fax cancelled transmission? & \begin{tabular}{l} 
Check whether the remote fax \\
cancelled the transmission.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{3.3.2 IP-FAX RECEPTION}

\section*{Cannot receive by IP Address/Host name}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|c|}{ Check Point } & \multicolumn{1}{c|}{ Action } \\
\hline 1 & LAN cable connected? & Check the LAN cable connection. \\
\hline 2 & Firewall/NAT is installed? & \begin{tabular}{l} 
Cannot breach the firewall. Send by using \\
another method (Fax, Internet Fax)
\end{tabular} \\
\hline 3 & IP address of local fax registered? & Register the IP address. \\
\hline 4 & \begin{tabular}{l} 
Port number specified at remote sender \\
fax (if required)?
\end{tabular} & \begin{tabular}{l} 
Request the sender to specify the port \\
number.
\end{tabular} \\
\hline 5 & \begin{tabular}{l} 
Specified port number correct (if \\
required)?
\end{tabular} & \begin{tabular}{l} 
Request the sender to check the port \\
number.
\end{tabular} \\
\hline 6 & \begin{tabular}{l} 
DNS server registered when host name \\
specified on sender side?
\end{tabular} & \begin{tabular}{l} 
Contact the network administrator. \\
Note: The sender machine displays this \\
error code if the sender fax is a Ricoh \\
model.
\end{tabular} \\
\hline 7 & Network bandwidth too narrow? & \begin{tabular}{l} 
Request the system administrator to \\
increase the bandwidth.
\end{tabular} \\
\hline 8 & Remote fax cancelled transmission? & \begin{tabular}{l} 
Lower the start modem reception baud \\
rate on the receiving side. IPFAX SW06
\end{tabular} \\
\hline Check whether the remote fax cancelled \\
\hline
\end{tabular}

\section*{Cannot receive by VoIP Gateway.}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|c|}{ Check Point } & \multicolumn{1}{c|}{ Action } \\
\hline 1 & LAN cable connected? & Check the LAN cable connection. \\
\hline 2 & Firewall/NAT is installed? & \begin{tabular}{l} 
Cannot breach the firewall. Request the \\
remote fax to send by using another \\
method (Fax, Internet Fax)
\end{tabular} \\
\hline 3 & VoIP Gateway installed correctly? & Contact the network administrator. \\
\hline 4 & VoIP Gateway power switched on? & Contact the network administrator. \\
\hline 5 & \begin{tabular}{l} 
IP address/host name of specified VoIP \\
Gateway correct on sender's side?
\end{tabular} & \begin{tabular}{l} 
Request the remote fax to check the IP \\
address/host name.
\end{tabular} \\
\hline 6 & \begin{tabular}{l} 
DNS server registered when host name \\
specified on sender side?
\end{tabular} & Contact the network administrator. \\
\hline 7 & Network bandwidth too narrow? & \begin{tabular}{l} 
Request the network administrator to \\
increase the bandwidth.
\end{tabular} \\
\hline 8 & G3 fax connected? & Check that G3 fax is connected. \\
\hline 9 & G3 fax power switched on? & Check that G3 fax is switched on. \\
\hline
\end{tabular}

\section*{IP-Fax Troubleshooting}

\section*{Cannot receive by Alias Fax number.}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|c|}{ Check Point } & \multicolumn{1}{c|}{ Action } \\
\hline 1 & LAN cable connected? & Check the LAN cable connection. \\
\hline 2 & Firewall/NAT is installed? & \begin{tabular}{l} 
Cannot the breach firewall. Request the \\
remote fax to send by using another \\
method (Fax, Internet Fax)
\end{tabular} \\
\hline 3 & Gatekeeper installed correctly? & \begin{tabular}{l} 
Contact the network administrator. \\
Note: The sender machine displays this \\
error code if the sender fax is a Ricoh \\
model.
\end{tabular} \\
\hline 4 & Power to Gatekeeper switched on? & \begin{tabular}{l} 
Contact the network administrator. \\
Note: The sender machine displays this \\
error code if the sender fax is a Ricoh \\
model.
\end{tabular} \\
\hline 5 & \begin{tabular}{ll} 
IP address/host name of Gatekeeper \\
correct on the sender's side?
\end{tabular} & \begin{tabular}{l} 
Request the sender to check the IP \\
address/host name. \\
Note: The sender machine displays this \\
error code if the sender fax is a Ricoh \\
model.
\end{tabular} \\
\hline 6 & \begin{tabular}{l} 
DNS server registered when \\
Gatekeeper host name specified on \\
sender's side?
\end{tabular} & \begin{tabular}{l} 
Contact the network administrator. \\
Note: The sender machine displays this \\
error code if the sender fax is a Ricoh \\
model.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|r|}{Check Point} & Action \\
\hline 7 & Enable H. 323 SW is set to on? & \begin{tabular}{l}
Request the sender to check the settings. \\
User Parameter SW 34 Bit 0 \\
Note: Only if the remote sender fax is a Ricoh fax.
\end{tabular} \\
\hline 8 & Local fax IP address registered? & Register the IP address. \\
\hline 9 & Local fax Alias number registered? & Register the Alias number. \\
\hline & & Request the system administrator to increase the bandwidth. \\
\hline 10 & Network bandwidth too narrow? & \begin{tabular}{l}
Lower the start modem reception baud rate on the receiving side. \\
IPFAX SW06
\end{tabular} \\
\hline 11 & Remote fax cancelled transmission? & Check whether the remote fax cancelled the transmission. \\
\hline 12 & Local fax registered in Gatekeeper? & \begin{tabular}{l}
Contact the network administrator. \\
Note: The sender machine displays this error code if the sender fax is a Ricoh model.
\end{tabular} \\
\hline
\end{tabular}

\section*{4. SERVICE TABLES}

\subsection*{4.1 CAUTIONS}

\section*{Important}
- Never turn off the main power switch when the power LED is lit or flashing. To avoid damaging the hard disk or memory, press the operation power switch to switch the power off, wait for the power LED to go off, and then switch the main power switch off.
- The main power LED lights or flashes while the platen cover or ARDF is open, while the main machine is communicating with a facsimile or the network server, or while the machine is accessing the hard disk or memory for reading or writing data.

\subsection*{4.2 SERVICE PROGRAM TABLES}

\subsection*{4.2.1 SP1-XXX (BIT SWITCHES)}
\begin{tabular}{|c|c|c|c|}
\hline 1 & \multicolumn{2}{|c|}{Mode No.} & Function \\
\hline \multirow[b]{2}{*}{101} & \multicolumn{3}{|l|}{System Switch} \\
\hline & 001-032 & 00-1F & \begin{tabular}{l}
Changes the bit switches for system settings for the fax option. \\
See section 4.2 Bit Switches
\end{tabular} \\
\hline \multirow[b]{2}{*}{102} & \multicolumn{3}{|l|}{Ifax Switch} \\
\hline & 001-016 & O0-0F & \begin{tabular}{l}
Changes the bit switches for internet fax settings for the fax option. \\
See section 4.2 Bit Switches
\end{tabular} \\
\hline \multirow[b]{2}{*}{103} & \multicolumn{3}{|l|}{Printer Switch} \\
\hline & 001-016 & O0-0F & \begin{tabular}{l}
Changes the bit switches for printer settings for the fax option. \\
See section 4.2 Bit Switches
\end{tabular} \\
\hline & \multicolumn{3}{|l|}{Communication Switch} \\
\hline 104 & 001-032 & 00-1F & Changes the bit switches for communication settings for the fax option. See section 4.2 Bit Switches \\
\hline & \multicolumn{3}{|l|}{G3-1 Switch} \\
\hline 105 & 001-016 & O0-0F & \begin{tabular}{l}
Changes the bit switches for the protocol settings of the standard G3 board. \\
See section 4.2 Bit Switches
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 1 & \multicolumn{2}{|c|}{Mode No.} & Function \\
\hline \multirow[b]{2}{*}{106} & \multicolumn{3}{|l|}{G3-2 Switch} \\
\hline & 001-016 & O0-0F & \begin{tabular}{l}
Changes the bit switches for the protocol settings of the optional G3 board. \\
See section 4.2 Bit Switches
\end{tabular} \\
\hline \multirow[b]{2}{*}{107} & \multicolumn{3}{|l|}{G3-3 Switch} \\
\hline & 001-016 & O0-0F & \begin{tabular}{l}
Changes the bit switches for the protocol settings of the optional G3 board. \\
See section 4.2 Bit Switches
\end{tabular} \\
\hline \multirow{2}{*}{108} & \multicolumn{3}{|l|}{G4 Internal Switch} \\
\hline & 001-032 & 00-1F & Not used (Do not change the bit switches) \\
\hline \multirow{2}{*}{109} & \multicolumn{3}{|l|}{G4 Parameter Switch} \\
\hline & 001-016 & 00-0F & Not used (Do not change the bit switches) \\
\hline & \multicolumn{3}{|l|}{IP fax Switch} \\
\hline 111 & 001-016 & O0-0F & \begin{tabular}{l}
Changes the bit switches for optional IP fax parameters. \\
See section 4.2 Bit Switches
\end{tabular} \\
\hline
\end{tabular}

\subsection*{4.2.2 SP2-XXX (RAM DATA)}
\begin{tabular}{|c|c|c|c|}
\hline 2 & \multicolumn{2}{|r|}{Mode No.} & Function \\
\hline \multirow[b]{2}{*}{101} & \multicolumn{3}{|l|}{RAM Read/Write} \\
\hline & 001 & & Changes RAM data for the fax board directly. See section 4.5 Service RAM Addresses. \\
\hline \multirow{5}{*}{102} & \multicolumn{3}{|l|}{Memory Dump} \\
\hline & 001 & G3-1 Memory Dump & \begin{tabular}{l}
Prints out RAM data for the fax board. \\
See section 4.5 Service RAM Addresses.
\end{tabular} \\
\hline & 002 & G3-2 Memory Dump & Prints out RAM data for the optional SG3 board. \\
\hline & 003 & G3-3 Memory Dump & Prints out RAM data for the optional SG3 board. \\
\hline & 004 & G4 Memory Dump & \begin{tabular}{l}
Not used. \\
Prints out RAM data for the SiG4 board.
\end{tabular} \\
\hline \multirow[b]{2}{*}{103} & \multicolumn{3}{|l|}{G3-1 NCU Parameters} \\
\hline & 001-023 & CC, 01 - 22 & \begin{tabular}{l}
NCU parameter settings for the standard G3 board. \\
See section 4.3 NCU Parameters.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 2 & \multicolumn{2}{|r|}{Mode No.} & Function \\
\hline \multirow[b]{2}{*}{104} & \multicolumn{3}{|l|}{G3-2 NCU Parameters} \\
\hline & 001-023 & CC, 01 - 22 & \begin{tabular}{l}
NCU parameter settings for the optional G3 board. \\
See section 4.3 NCU Parameters.
\end{tabular} \\
\hline & \multicolumn{3}{|l|}{G3-3 NCU Parameters} \\
\hline 105 & 001-023 & CC, 01 - 22 & \begin{tabular}{l}
NCU parameter settings for the optional G3 board. \\
See section 4.3 NCU Parameters.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{4.2.3 SP3-XXX (TEL LINE SETTINGS)}
\begin{tabular}{|c|c|c|c|}
\hline 3 & \multicolumn{2}{|r|}{Mode No.} & Function \\
\hline \multirow{3}{*}{101} & \multicolumn{3}{|l|}{Service Station} \\
\hline & 001 & Fax Number & Enter the fax number of the service station. \\
\hline & 002 & Select Line & Select the line type. \\
\hline \multirow{2}{*}{102} & \multicolumn{3}{|l|}{Serial Number} \\
\hline & 000 & & Enter the fax unit's serial number. \\
\hline \multirow{4}{*}{103} & \multicolumn{3}{|l|}{PSTN-1 Port Settings} \\
\hline & 001 & Select Line & Select the line type setting for the G3-1 line If the machine is installed on a PABX line, select "PABX", "PABX(GND)" or "PABX(FLASH)". \\
\hline & 002 & \begin{tabular}{l}
PSTN Access \\
Number
\end{tabular} & Enter the PSTN access number for the G3-1 line. \\
\hline & 003 & \begin{tabular}{l}
Memory Lock \\
Disabled
\end{tabular} & If the customer does not want to receive transmissions using Memory Lock on this line, turn this SP on. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 3 & \multicolumn{2}{|r|}{Mode No.} & Function \\
\hline \multirow{5}{*}{104} & \multicolumn{3}{|l|}{PSTN-2 Port Settings} \\
\hline & 001 & Select Line & Select the line setting for the G3-2 line. If the machine is installed on a PABX line, select "PABX", "PABX(GND)" or "PABX(FLASH)". \\
\hline & 002 & \begin{tabular}{l}
PSTN Access \\
Number
\end{tabular} & Enter the PSTN access number for the G3-2 line. \\
\hline & 003 & \begin{tabular}{l}
Memory Lock \\
Disabled
\end{tabular} & If the customer does not want to receive transmissions using Memory Lock on this line, change this SP to on. \\
\hline & 004 & \begin{tabular}{l}
Transmission \\
Disabled
\end{tabular} & If you turn this SP on, the machine does not send any fax messages on the G3-2 line. \\
\hline \multirow{5}{*}{105} & \multicolumn{3}{|l|}{PSTN-3 Port Settings} \\
\hline & 001 & Select Line & Select the line setting for the G3-3 line. If the machine is installed on a PABX line, select "PABX", "PABX(GND)" or "PABX(FLASH)". \\
\hline & 002 & \begin{tabular}{l}
PSTN Access \\
Number
\end{tabular} & Enter the PSTN access number for the G3-3 line. \\
\hline & 003 & \begin{tabular}{l}
Memory Lock \\
Disabled
\end{tabular} & If the customer does not want to receive transmissions using Memory Lock on this line, change this SP to on. \\
\hline & 004 & \begin{tabular}{l}
Transmission \\
Disabled
\end{tabular} & If you turn this SP on, the machine does not send any fax messages on the G3-3 line. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 3 & \multicolumn{2}{|r|}{Mode No.} & Function \\
\hline \multirow{4}{*}{106} & \multicolumn{3}{|l|}{ISDN Port Settings} \\
\hline & 001 & Select Line & \multirow{4}{*}{Not used (Do not change the bit switches)} \\
\hline & 002 & \begin{tabular}{l}
PSTN Access \\
Number
\end{tabular} & \\
\hline & 003 & \begin{tabular}{l}
Memory Lock \\
Disabled
\end{tabular} & \\
\hline 106 & 004 & \begin{tabular}{l}
Transmission \\
Disabled
\end{tabular} & \\
\hline \multirow{8}{*}{107} & \multicolumn{3}{|l|}{IPFAX Port Settings} \\
\hline & 001 & H323 Port & \\
\hline & 002 & SIP Port & \\
\hline & 003 & RAS Port & \\
\hline & 004 & Gatekeeper port & \\
\hline & 005 & T. 38 Port & \\
\hline & 006 & SIP Server Port & \\
\hline & 007 & \begin{tabular}{l}
IPFAX Protocol \\
Priority
\end{tabular} & Select "H323" or "SIP". \\
\hline \multirow{2}{*}{201} & \multicolumn{3}{|l|}{FAX SW} \\
\hline & 001-032 & 00-1F & \\
\hline
\end{tabular}

\subsection*{4.2.4 SP4-XXX (ROM VERSIONS)}
\begin{tabular}{|c|l|l|l|}
\hline \multicolumn{1}{|c|}{4} & \multicolumn{2}{|c|}{ Mode No. } & \multicolumn{1}{c|}{ Function } \\
\hline 101 & 001 & FCU ROM Version & Displays the FCU ROM version. \\
\hline 102 & 001 & Error Codes & Displays the latest 64 fax error codes. \\
\hline 103 & 001 & G3-1 ROM Version & Displays the G3-1 modem version. \\
\hline 104 & 001 & G3-2 ROM Version & Displays the G3-2 modem version. \\
\hline 105 & 001 & G3-3 ROM Version & Displays the G3-3 modem version. \\
\hline 106 & 001 & G4 ROM Version & Not used (Do not change the bit switches) \\
\hline 107 & 001 & Charge ROM Version & Not used (Do not change the bit switches) \\
\hline
\end{tabular}

\subsection*{4.2.5 SP5-XXX (INITIALIZING)}
\begin{tabular}{|c|c|c|c|}
\hline 5 & & Mode No. & Function \\
\hline \multirow[b]{2}{*}{101} & \multicolumn{3}{|l|}{Initialize SRAM} \\
\hline & 000 & & Initializes the bit switches and user parameters, user data in the SRAM, files in the SAF memory, and clock. \\
\hline \multirow{2}{*}{102} & \multicolumn{3}{|l|}{Erase All Files} \\
\hline & 000 & & Erases all files stored in the SAF memory. \\
\hline \multirow[b]{2}{*}{103} & \multicolumn{3}{|l|}{Reset Bit Switches} \\
\hline & 000 & & Resets the bit switches and user parameters. \\
\hline \multirow[b]{2}{*}{104} & \multicolumn{3}{|l|}{Factory setting} \\
\hline & 000 & & Resets the bit switches and user parameters, user data in the SRAM and files in the SAF memory. \\
\hline \multirow{2}{*}{105} & \multicolumn{3}{|l|}{Initialize All Bit Switches} \\
\hline & 000 & & Initializes all the current bit switch settings. \\
\hline & \multicolumn{3}{|l|}{Initialize Security Bit Switches} \\
\hline 106 & 000 & & Initializes only the security bit switches. If you select automatic output/display for the user parameter switches, the security settings are initialized. \\
\hline
\end{tabular}

\section*{Service Program Tables}

\subsection*{4.2.6 SP6-XXX (REPORTS)}
\begin{tabular}{|c|c|c|c|c|}
\hline 6 & \multicolumn{2}{|r|}{Mode No.} & Function & \\
\hline \multirow[b]{2}{*}{101} & \multicolumn{3}{|l|}{System Parameter List} & \\
\hline & 000 & & Touch the "ON" button to print the system parameter list. & \\
\hline \multirow[b]{2}{*}{102} & \multicolumn{3}{|l|}{Service Monitor Report} & \\
\hline & 000 & & Touch the "ON" button to print the service monitor report. & \\
\hline \multirow{3}{*}{103} & \multicolumn{3}{|l|}{G3 Protocol Dump List} & \\
\hline & 001 & \begin{tabular}{l}
G3 All \\
Communications
\end{tabular} & Prints the protocol dump list of all communications for all G3 lines. & \\
\hline & 002 & \begin{tabular}{l}
G3-1 (All \\
Communications)
\end{tabular} & Prints the protocol dump list of all communications for the G3-1 line. & \\
\hline \multirow{5}{*}{103} & 003 & \begin{tabular}{l}
G3-1 (1 \\
Communication)
\end{tabular} & Prints the protocol dump list of the last communication for the G3-1 line. & \\
\hline & 004 & \begin{tabular}{l}
G3-2 (All \\
Communications)
\end{tabular} & Prints the protocol dump list of all communications for the G3-2 line. & \\
\hline & 005 & \begin{tabular}{l}
G3-2 (1 \\
Communication)
\end{tabular} & Prints the protocol dump list of the last communication for the G3-2 line. & \\
\hline & 006 & \begin{tabular}{l}
G3-3 (All \\
Communications)
\end{tabular} & Prints the protocol dump list of all communications for the G3-3 line. & \\
\hline & 007 & \begin{tabular}{l}
G3-3 (1 \\
Communication)
\end{tabular} & Prints the protocol dump list of the last communication for the G3-3 line. & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline 6 & \multicolumn{2}{|r|}{Mode No.} & Function \\
\hline \multirow{14}{*}{107} & \multicolumn{3}{|l|}{Log List Print out} \\
\hline & 001 & All log files & \multirow{13}{*}{These log print out functions are for designer use only.} \\
\hline & 002 & Printer & \\
\hline & 003 & SC/TRAP Stored & \\
\hline & 004 & Decompression & \\
\hline & 005 & Scanner & \\
\hline & 006 & JOB/SAF & \\
\hline & 007 & Reconstruction & \\
\hline & 008 & JBIG & \\
\hline & 009 & Fax Driver & \\
\hline & 010 & G3CCU & \\
\hline & 011 & Fax Job & \\
\hline & 012 & CCU & \\
\hline & 013 & Scanner Condition & \\
\hline \multirow{3}{*}{108} & \multicolumn{3}{|l|}{IP Protocol Dump List} \\
\hline & 001 & All Communications & Prints the protocol dump list of all communications for the IP fax line. \\
\hline & 002 & 1 Communication & Prints the protocol dump list of the last communication for the IP fax line. \\
\hline
\end{tabular}

\subsection*{4.2.7 SP7-XXX (TEST MODES)}

These are the test modes for PTT approval.
\begin{tabular}{|c|c|}
\hline 7 & Function \\
\hline 101 & G3-1 Modem Tests \\
\hline 102 & G3-1 DTMF Tests \\
\hline 103 & Ringer Test \\
\hline 104 & G3-1 V34 (S2400baud) \\
\hline 105 & G3-1 V34 (S2800baud) \\
\hline 106 & G3-1 V34 (S3000baud) \\
\hline 107 & G3-1 V34 (S3200baud) \\
\hline 108 & G3-1 V34 (S3429baud) \\
\hline 109 & Recorded Message Test \\
\hline 110 & G3-2 Modem Tests \\
\hline 111 & G3-2 DTMF Tests \\
\hline 112 & G3-2 V34 (S2400baud) \\
\hline 113 & G3-2 V34 (S2800baud) \\
\hline 114 & G3-2 V34 (S3000baud) \\
\hline 115 & G3-2 V34 (S3200baud) \\
\hline 116 & G3-2 V34 (S3429baud) \\
\hline 117 & G3-3 Modem Tests \\
\hline 118 & G3-3 DTMF Tests \\
\hline 119 & G3-3 V34 (S2400baud) \\
\hline
\end{tabular}

\section*{Service Program Tables}
\begin{tabular}{|c|c|}
\hline 7 & Function \\
\hline 120 & G3-3 V34 (S2800baud) \\
\hline 121 & G3-3 V34 (S3000baud) \\
\hline 122 & G3-3 V34 (S3200baud) \\
\hline 123 & G3-3 V34 (S3429baud) \\
\hline 124 & IG3-1 Modem Tests - Not used \\
\hline 125 & IG3-1 DTMF Tests - Not used \\
\hline 126 & IG3-1 V34 (S2400baud) - Not used \\
\hline 127 & IG3-1 V34 (S2800baud) - Not used \\
\hline 128 & IG3-1 V34 (S3000baud) - Not used \\
\hline 129 & IG3-1 V34 (S3200baud) - Not used \\
\hline 130 & IG3-1 V34 (S3429baud) - Not used \\
\hline 131 & IG3-2 Modem Tests - Not used \\
\hline 132 & IG3-2 DTMF Tests - Not used \\
\hline 133 & IG3-2 V34 (S2400baud) - Not used \\
\hline 134 & IG3-2 V34 (S2800baud) - Not used \\
\hline 135 & IG3-2 V34 (S3000baud) - Not used \\
\hline 136 & IG3-2 V34 (S3200baud) - Not used \\
\hline 137 & IG3-2 V34 (S3429baud) - Not used \\
\hline
\end{tabular}

\subsection*{4.2.8 SP9-XXX (DESIGN SWITCH MODE)}
\begin{tabular}{|c|c|c|}
\hline \(\mathbf{9}\) & \multicolumn{1}{|c|}{ Mode No. } & Function \\
\hline 702 & Design Switch DFU & \\
\hline
\end{tabular}

\section*{Bit Switches - 1}

\subsection*{4.3 BIT SWITCHES - 1}
\(\downarrow\) Note
- Do not adjust a bit switch or use a setting that is described as "Not used", as this may cause the machine to malfunction or to operate in a manner that is not accepted by local regulations. Such bits are for use only in other areas, such as Japan.

Default settings for bit switches are not listed in this manual. Refer to the System Parameter List printed by the machine.

\subsection*{4.3.1 SYSTEM SWITCHES}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|c|}{ System Switch 00 (SP No. 1-101-001) } \\
\hline No & \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{c|}{ Comments } \\
\hline 0 & \begin{tabular}{l} 
Dedicated transmission \\
parameter programming \\
0: Disabled \\
1: Enabled
\end{tabular} & \begin{tabular}{l} 
Set this bit to 1 before changing any dedicated \\
transmission parameters. \\
Reset this bit to 0 after programming dedicated \\
transmission parameters.
\end{tabular} \\
\hline 1 & Not used & \begin{tabular}{l} 
Technical data printout on the \\
Journal \\
0: Disabled \\
1: Enabled
\end{tabular}
\end{tabular} \begin{tabular}{l} 
1: Instead of the personal name, the following \\
data are listed on the Journal for each G3 \\
communication.
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{System Switch 00 (SP No. 1-101-001)} \\
\hline No & Function & Comments \\
\hline & \multicolumn{2}{|l|}{\begin{tabular}{l}
Example: \\
\(0000 \quad 32 \mathrm{~V} 34 \quad 288 / 264 \quad\) L0100 0304 \\
\(\begin{array}{lllll}\text { (1) } & (2)(3) & \text { (4) } & \text { (5) } & \text { (6) }\end{array} \quad\) (7) (8) \\
(1): EQM value (Line quality data). A larger number means more errors. \\
(2): Symbol rate (V. 34 only) \\
(3): Final modem type used \\
(4): Starting data rate (for example, 288 means 28.8 kbps ) \\
(5): Final data rate \\
(6): Rx revel (see below for how to read the rx level) \\
(7): Total number of error lines that occurred during non-ECM reception. \\
(8): Total number of burst error lines that occurred during non-ECM reception.
\(\square\) \\
- EQM and rx level are fixed at "FFFF" in tx mode. \\
- The seventh and eighth numbers are fixed at " 00 " for transmission records and ECM reception records.
\end{tabular}} \\
\hline & \multicolumn{2}{|l|}{\begin{tabular}{l}
Rx level calculation \\
Example: \\
\(0000 \quad 32 \mathrm{~V} 34 \quad\) 288/264 \(\quad\) L0100 0304 \\
\(\begin{array}{lllll}\text { (1) } & \text { (2)(3) } & \text { (4) } & \text { (5) } & \text { (6) }\end{array}\) (7) (8) \\
The four-digit hexadecimal value ( N ) after "L" indicates the rx level. \\
The high byte is given first, followed by the low byte. Divide the decimal value of N by -16 to get the rx level. \\
In the above example, the decimal value of \(\mathrm{N}(=0100[\mathrm{H}])\) is 256 . \\
So, the actual rx level is \(256 /-16=-16 \mathrm{~dB}\)
\end{tabular}} \\
\hline 3 & Not used & Do not change this setting. \\
\hline 4 & \begin{tabular}{l}
Line error mark print \\
0 : OFF, 1: ON (print)
\end{tabular} & When " 1 " is selected, a line error mark is printed on the printout if a line error occurs during reception. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{System Switch 00 (SP No. 1-101-001)} \\
\hline No & Function & Comments \\
\hline 5 & \begin{tabular}{l}
G3/G4 communication \\
parameter display \\
0 : Disabled \\
1: Enabled
\end{tabular} & \begin{tabular}{l}
This is a fault-finding aid. The LCD shows the key parameters (see below). This is normally disabled because it cancels the CSI display for the user. \\
Be sure to reset this bit to 0 after testing.
\end{tabular} \\
\hline 6 & \begin{tabular}{l}
Protocol dump list output after each communication \\
0: Off \\
1: On
\end{tabular} & This is only used for communication troubleshooting. It shows the content of the transmitted facsimile protocol signals. Always reset this bit to 0 after finishing testing. If system switch 09 bit 6 is at " 1 ", the list is only printed if there was an error during the communication. \\
\hline 7 & Not used & Do not change the setting. \\
\hline
\end{tabular}

\section*{G3 Communication Parameters}
\begin{tabular}{|c|c|}
\hline Modem rate & 336: 33600 bps 168: 16800 bps 312: 31200 bps 144: 14400 bps 288: 28800 bps 120: 12000 bps 264: 26400 bps 96: 9600 bps 240: \(24000 \mathrm{bps} 72: 7200 \mathrm{bps}\) 216: 21600 bps 48 : 4800 bps 192: 19200 bps 24: 2400 bps \\
\hline Resolution & \begin{tabular}{l}
S: Standard ( \(8 \times 3.85\) dots \(/ \mathrm{mm}\) ) \\
D: Detail ( \(8 \times 7.7\) dots \(/ \mathrm{mm}\) ) \\
F: Fine ( \(8 \times 15.4\) dots \(/ \mathrm{mm}\) ) \\
SF: Superfine ( \(16 \times 15.4\) dots \(/ \mathrm{mm}\) ) \\
21: Standard ( \(200 \times 100 \mathrm{dpi}\) ) \\
22: Detail ( \(200 \times 200 \mathrm{dpi}\) ) \\
44: Superfine ( \(400 \times 400 \mathrm{dpi}\) )
\end{tabular} \\
\hline Compression mode & \begin{tabular}{l}
MMR: MMR compression \\
MR: MR compression \\
MH: MH compression \\
JBO: JBIG compression (Optional mode) \\
JBB: JBIG compression (Basic mode)
\end{tabular} \\
\hline Communication mode & \begin{tabular}{l}
ECM: With ECM \\
NML: With no ECM
\end{tabular} \\
\hline
\end{tabular}

\section*{Bit Switches - 1}
\begin{tabular}{|c|c|}
\hline Width and reduction & A4: A4 (8.3"), no reduction B4: B4 (10.1"), no reduction A3: A3 (11.7"), no reduction \\
\hline I/O rate & \begin{tabular}{l}
\(0: 0 \mathrm{~ms} / \mathrm{line}\) \\
5: \(5 \mathrm{~ms} / \mathrm{line}\) \\
10: \(10 \mathrm{~ms} / \mathrm{line}\) \\
20: \(20 \mathrm{~ms} / \mathrm{line}\) \\
25: \(2.5 \mathrm{~ms} / \mathrm{line}\) \\
40: \(40 \mathrm{~ms} / \mathrm{line}\) \\
Note \\
- " 40 " is displayed while receiving a fax message using AI short protocol.
\end{tabular} \\
\hline
\end{tabular}

System Switch 01 - Not used (Do not change the factory settings.)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|r|}{System Switch 02 (SP No. 1-101-003)} \\
\hline No & \multicolumn{3}{|r|}{Function} & Comments \\
\hline 0 & \multicolumn{3}{|l|}{Not used} & Do not change these settings. \\
\hline 2 & \multicolumn{3}{|l|}{\begin{tabular}{l}
Forced reset after transmission stalls \\
0 : Off \\
1: On
\end{tabular}} & With this setting on, the machine resets itself automatically if a transmission stalls and fails to complete the job. \\
\hline 3 & \multicolumn{3}{|l|}{Not used} & Do not change these settings. \\
\hline 4 & \multicolumn{3}{|l|}{\begin{tabular}{l}
File retention time \\
0: Depends on User Parameter \\
24 [18(H)] \\
1: No limit
\end{tabular}} & 1: A file that had a communication error will not be erased unless the communication is successful. \\
\hline 5 & \multicolumn{3}{|l|}{Not used} & Do not change this setting. \\
\hline \multirow{7}{*}{6-7} & \multicolumn{3}{|l|}{Memory read/write by RDS} & \multirow[t]{7}{*}{\begin{tabular}{l}
\((0,0)\) : All RDS systems are always locked out. ( 0,1 ), ( 1,0 ): Normally, RDS systems are locked out, but the user can temporarily switch RDS on to allow RDS operations to take place. RDS will automatically be locked out again after a certain time, which is stored in System Switch 03. Note that if an RDS operation takes place, RDS will not switch off until this time limit has expired. \\
(1,1): At any time, an RDS system can access the machine.
\end{tabular}} \\
\hline & Bit 7 & Bit 6 & Setting & \\
\hline & 0 & 0 & Always disabled & \\
\hline & 0 & 1 & User selectable & \\
\hline & 1 & 0 & User selectable & \\
\hline & 1 & 1 & Always enabled & \\
\hline & & & & \\
\hline
\end{tabular}

\section*{Bit Switches - 1}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|c|}{ System Switch 03 (SP No. 1-101-004) } \\
\hline No & \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{c|}{ Comments } \\
\hline 0 & \begin{tabular}{l} 
Length of time that RDS is \\
temporarily switched on when \\
to \\
7
\end{tabular} & \begin{tabular}{l}
\(00-99\) hours (BCD). \\
This setting is only valid if bits 6 and 7 of System Switch \\
02 are set to "User selectable"
\end{tabular} \\
\begin{tabular}{l} 
System Switch 02 are set to "User selectable". \\
The default setting is 24 hours.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|}
\hline \multicolumn{2}{|c|}{ System Switch 04 (SP No. 1-101-005) } \\
\hline No & \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{c|}{ Comments } \\
\hline \(0-2\) & Not used & Do not change these settings. \\
\hline 3 & \begin{tabular}{l} 
Printing dedicated tx \\
parameters on Quick/Speed \\
Dial Lists \\
0: Disabled \\
1: Enabled
\end{tabular} & \begin{tabular}{l} 
1: Each Quick/Speed dial number on the list is \\
printed with the dedicated tx parameters (10 \\
bytes each). \\
The first 10 bytes of data are the programmed \\
dedicated tx parameters; 34 bytes of data are \\
printed (the other 24 bytes have no use for \\
service technicians).
\end{tabular} \\
\hline \(4-7\) & Not used & Do not change these settings. \\
\hline
\end{tabular}

System Switch 05 - Not used (Do not change the factory settings.)

System Switch 06 - Not used (Do not change the factory settings.)

System Switch 07 - Not used (Do not change the factory settings.)

System Switch 08 - Not used (Do not change the factory settings.)
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|c|}{ System Switch 09 (SP No. 1-101-010) } \\
\hline No & \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{c|}{ Comments } \\
\hline 0 & \begin{tabular}{l} 
Addition of image data from \\
confidential transmissions on \\
the transmission result report \\
0: Disabled 1: Enabled
\end{tabular} & \begin{tabular}{l} 
If this feature is enabled, the top half of the first \\
page of confidential messages will be printed \\
on transmission result reports.
\end{tabular} \\
\hline 1 & \begin{tabular}{l} 
Inclusion of communications on \\
the Journal when no image data \\
was exchanged. \\
0: Disabled 1: Enabled
\end{tabular} & \begin{tabular}{l} 
0: Communications that reached phase C \\
(message tx/rx) of the T.30 protocol are listed \\
on the Journal. \\
1: Communications that reached phase A (call \\
setup) of T.30 protocol are listed on the \\
Journal. This will include telephone calls.
\end{tabular} \\
\hline 2 & \begin{tabular}{l} 
Automatic error report printout \\
0: Disabled 1: Enabled
\end{tabular} & \begin{tabular}{l} 
0: Error reports will not be printed. \\
1: Error reports will be printed automatically \\
after failed communications.
\end{tabular} \\
\hline 3 & \begin{tabular}{l} 
Printing of the error code on the \\
error report \\
0: No 1: Yes
\end{tabular} & \begin{tabular}{l} 
1: Error codes are printed on the error reports.
\end{tabular} \\
\hline 4 & Not used & \begin{tabular}{l} 
Power failure report \\
0: Disabled 1: Enabled
\end{tabular} \\
\hline 5 & \begin{tabular}{l} 
Do not change this setting.
\end{tabular} \\
printed after the power is switched on if a fax \\
message disappeared from the memory when \\
the power was turned off last.
\end{tabular}\(|\)

\section*{Bit Switches - 1}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{System Switch 09 (SP No. 1-101-010)} \\
\hline No & Function & Comments \\
\hline 6 & \begin{tabular}{l}
Conditions for printing the protocol dump list \\
0 : Print for all communications \\
1: Print only when there is a communication error
\end{tabular} & \begin{tabular}{l}
This switch becomes effective only when system switch 00 bit 6 is set to 1 . \\
1: Set this bit to 1 when you wish to print a protocol dump list only for communications with errors.
\end{tabular} \\
\hline 7 & \begin{tabular}{l}
Priority given to various types of remote terminal ID when printing reports \\
0 : RTI > CSI > Dial label > Tel. \\
number \\
1: Dial label > Tel. number > RTI \\
> CSI
\end{tabular} & \begin{tabular}{l}
This bit determines which set of priorities the machine uses when listing remote terminal names on reports. \\
Dial Label: The name stored, by the user, for the Quick/Speed Dial number.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{System Switch 0A (SP No. 1-101-011)} \\
\hline No & Function & Comments \\
\hline 0 & \begin{tabular}{l}
Automatic port selection \\
0 : Disabled, 1: Enabled
\end{tabular} & When " 1 " is selected, a suitable port is automatically selected if the selected port is not used. \\
\hline 1-3 & Not used & Do not change these settings. \\
\hline 4 & \begin{tabular}{l}
Dialing on the ten-key pad when the external telephone is off-hook \\
0: Disabled 1: Enabled
\end{tabular} & \begin{tabular}{l}
0 : Prevents dialing from the ten-key pad while the external telephone is off-hook. Use this setting when the external telephone is not by the machine, or if a wireless telephone is connected as an external telephone. \\
1: The user can dial on the machine's ten-key pad when the handset is off-hook.
\end{tabular} \\
\hline 5 & On hook dial 0: Disabled 1: Enabled & 0: On hook dial is disabled. \\
\hline 6-7 & Not used & Do not change the factory settings \\
\hline
\end{tabular}

System Switch 0B - Not used (Do not change the factory settings.)
System Switch 0C - Not used (Do not change the factory settings.)
System Switch OD - Not used (Do not change the factory settings.)

\section*{Bit Switches - 1}
\begin{tabular}{|c|l|l|}
\hline \multicolumn{3}{|c|}{ System Switch 0E (SP No. 1-101-015) } \\
\hline No & \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{c|}{ Comments } \\
\hline \(0-1\) & Not used & \begin{tabular}{l} 
Enable/disable for direct \\
sending selection change the settings. \\
0: Direct sending off \\
1: Direct sending on
\end{tabular} \\
\hline 2 & \begin{tabular}{l} 
Direct sending cannot operate when the \\
capture function is on during sending. Setting \\
this switch to "1" enables direct sending without \\
capture. Setting this switch to "0" masks the \\
direct sending function on the operation panel \\
so it cannot be selected.
\end{tabular} \\
\hline 3 & \begin{tabular}{l} 
Action when the external \\
handset goes off-hook \\
0: Manual tx and rx operation \\
1: Memory tx and rx operation \\
(the display remains the same)
\end{tabular} & \begin{tabular}{l} 
0: Manual tx and rx are possible while the \\
external handset is off-hook. However, memory \\
tx is not possible. \\
1: The display stays in standby mode even \\
when the external handset is used, so that \\
other people can use the machine for memory \\
tx operation. Note that manual tx and rx are not \\
possible with this setting.
\end{tabular} \\
\hline \(4-7\) & Not used & Do not change these settings.
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{System Switch OF (SP No. 1-101-016)} \\
\hline No & \multicolumn{2}{|r|}{Function} & Comments \\
\hline \multirow{18}{*}{0
to
7} & \multicolumn{2}{|l|}{Country/area code for functional settings (Hex)} & \multirow[b]{8}{*}{This country/area code determines the factory settings of bit switches and RAM addresses. However, it has no effect on the NCU parameter settings and} \\
\hline & 00: France & 11: USA & \\
\hline & 01: Germany & 12: Asia & \\
\hline & 02: UK & 13: Japan & \\
\hline & 03: Italy & 14: Hong Kong & \\
\hline & 04: Austria & 15: South Africa & \\
\hline & 05: Belgium & 16: Australia & \\
\hline & 06: Denmark & 17: New Zealand & \\
\hline & 07: Finland & 18: Singapore &  \\
\hline & 08: Ireland & 19: Malaysia & NCU country code: \\
\hline & 09: Norway & 1A: China & SP No. 2-104-001 for G3-2 \\
\hline & 0A: Sweden & 1B: Taiwan & SP No. 2-105-001 for G3-3 \\
\hline & OB: Switz. & 1C: Korea & \\
\hline & OC: Portugal & 20: Turkey & \\
\hline & OD: Holland & 21: Greece & \\
\hline & OE: Spain & 22: Hungary & \\
\hline & OF: Israel & 23: Czech & \\
\hline & 10: --- & 24: Poland & \\
\hline
\end{tabular}

\section*{Bit Switches - 1}
\begin{tabular}{|c|l|l|}
\hline \multicolumn{2}{|c|}{ System Switch 10 (SP No. 1-101-017) } \\
\hline No & \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{c|}{ Comments } \\
\hline \(0-7\) & \begin{tabular}{l} 
Threshold memory level for \\
parallel memory transmission
\end{tabular} & \begin{tabular}{l} 
Threshold \(=\mathrm{N} \times 128 \mathrm{~KB}+256 \mathrm{~KB}\) \\
N can be between 00 \(-\mathrm{FF}(\mathrm{H})\) \\
Default setting: 02(H) \(=512 \mathrm{~KB}\)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|c|}{ System Switch 11 (SP No. 1-101-018) } \\
\hline No & \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{c|}{ Comments } \\
\hline 0 & \(\begin{array}{l}\text { TTI printing position } \\
\text { 0: Superimposed on the page } \\
\text { data } \\
\text { 1: Printed before the data } \\
\text { leading edge }\end{array}\) & \(\begin{array}{l}\text { Change this bit to 1 if the TTI overprints } \\
\text { information that the customer considers to be } \\
\text { important (G3 transmissions). }\end{array}\) \\
\hline 1 & \(\begin{array}{l}\text { TSI (G3) printing position } \\
\text { 0: Superimposed on the page } \\
\text { data } \\
\text { 1: Printed before the data } \\
\text { leading edge }\end{array}\) & \(\begin{array}{l}\text { Change this bit to 1 if the TSI (G3) overprints } \\
\text { information that the customer considers to be } \\
\text { important. }\end{array}\) \\
\hline 2 & Not used & \(\begin{array}{l}\text { TTI used for broadcasting } \\
\text { 0: The TTIs selected for each } \\
\text { Quick/Speed dial are used } \\
\text { 1: The same TTI is used for all } \\
\text { destinations }\end{array}\)
\end{tabular} \(\left.\begin{array}{l}\text { 1: The TTI (TTI_1 or TTI_2) which is selected } \\
\text { for all destinations during broadcasting. }\end{array}\right\}\)\begin{tabular}{l} 
Do not change the factory settings.
\end{tabular}
\begin{tabular}{|c|l|l|}
\hline \multicolumn{2}{|c|}{ System Switch 12 (SP No. 1-101-019) } \\
\hline No & \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{c|}{ Comments } \\
\hline 0-7 & \(\begin{array}{l}\text { TTI printing position in the main } \\
\text { scan direction }\end{array}\) & \(\begin{array}{l}\text { TTI: 08 to 92 (BCD) mm } \\
\text { Input even numbers only. } \\
\text { This setting determines the print start position } \\
\text { for the TTI from the left edge of the paper. If the }\end{array}\) \\
TTI is moved too far to the right, it may \\
overwrite the file number which is on the top \\
right of the page. On an A4 page, if the TTI is \\
moved over by more than 50 mm, it may \\
overwrite the page number.
\end{tabular}\(]\)

System Switch 13 - Not used (do not change these settings)
System Switch 14 - Not used (do not change these settings)

\section*{Bit Switches - 1}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|r|}{System Switch 15 (SP No. 1-101-022)} \\
\hline No & \multicolumn{3}{|r|}{Function} & Comments \\
\hline 0 & \multicolumn{3}{|l|}{Not used} & Do not change the settings. \\
\hline 1 & \multicolumn{3}{|l|}{\begin{tabular}{l}
Going into the Energy Saver mode automatically \\
0: Enabled \\
1: Disabled
\end{tabular}} & 1: The machine will restart from the Energy Saver mode quickly, because the +5 V power supply is active even in the Energy Saver mode. \\
\hline 2-3 & \multicolumn{3}{|l|}{Not used} & Do not change these settings. \\
\hline \multirow{6}{*}{4-5} & \multicolumn{3}{|l|}{Interval for preventing the machine from entering Energy Saver mode if there is a pending transmission file.} & \multirow{6}{*}{\begin{tabular}{l}
If there is a file waiting for transmission, the machine does not go to Energy Saver mode during the selected period. \\
After transmitting the file, if there is no file waiting for transmission, the machine goes to the Energy Saver mode.
\end{tabular}} \\
\hline & Bit 5 & Bit 4 & Setting & \\
\hline & 0 & 0 & 1 min & \\
\hline & 0 & 1 & 30 min & \\
\hline & 1 & 0 & 1 hour & \\
\hline & 1 & 1 & 24 hours & \\
\hline 6-7 & \multicolumn{3}{|l|}{Not used} & Do not change \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|c|}{ System Switch 16 (SP No. 1-101-023) } \\
\hline No & \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{c|}{ Comments } \\
\hline 0 & \begin{tabular}{l} 
Parallel Broadcasting \\
0: Disabled \\
1: Enabled
\end{tabular} & \begin{tabular}{l} 
1: The machine sends messages \\
simultaneously using all available ports during \\
broadcasting.
\end{tabular} \\
\hline 1 & \begin{tabular}{l} 
Priority setting for the G3 line. \\
0: PSTN-1 > PSTN-2 or 3 \\
1: PSTN-2 or 3 > PSTN-1
\end{tabular} & \begin{tabular}{l} 
This function allows the user to select the \\
default G3 line type. The optional SG3 units are \\
required to use the PSTN-2 or 3 setting.
\end{tabular} \\
\hline \(2-7\) & Not used & Do not change these settings. \\
\hline
\end{tabular}

System Switch 17 - Not used (do not change these settings)
System Switch 18 - Not used (do not change these settings)

\section*{Bit Switches - 1}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|c|}{ System Switch 19 (SP No. 1-101-026) } \\
\hline No & \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{c|}{ Comments } \\
\hline \(0-5\) & Not used & \begin{tabular}{l} 
Extended scanner page \\
memory after memory option is \\
installed \\
0: Disabled \\
1: Enabled
\end{tabular} \\
\hline 7 & \begin{tabular}{l} 
0: After installing the memory expansion option, \\
the scanner page memory is extended to 4 MB \\
from 2 MB. \\
1: If this bit is set to 1 after installing the \\
memory expansion option, the scanner page \\
memory is extended to 12 MB. But the SAF \\
memory decreases to 18 MB.
\end{tabular} \\
\hline \begin{tabular}{l} 
Special Original mode \\
0: Disabled \\
1: Enabled
\end{tabular} & \begin{tabular}{l} 
1: If the customer frequently wishes to transmit \\
a form or letterhead which has a colored or \\
printed background, change this bit to "1". \\
"Original 1" and "Original 2" can be selected in \\
addition to the "Text", "Text/Photo" and "Photo" \\
modes.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|c|}{ System Switch 1A (SP No. 1-101-027) } \\
\hline No & \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{|c|}{ Comments } \\
\hline 0 & \begin{tabular}{l} 
LS RX memory capacity \\
threshold setting \\
to \\
7
\end{tabular} & \begin{tabular}{l} 
Sets the value to \(x 4 \mathrm{~KB}\). When the amount of \\
available memory drops below this setting, RX \\
documents are printed to conserve memory. \\
Initial setting 0x80 (512 KB)
\end{tabular} \\
\hline
\end{tabular}

System Switch 1B - Not used (do not change these settings)
System Switch 1C - Not used (do not change these settings)
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|c|}{ System Switch 1D (SP No. 1-101-030) } \\
\hline No & \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{|c|}{ Comments } \\
\hline 0 & \begin{tabular}{l} 
RTI/CSI/CPS code display \\
0: Enable \\
\(1:\) Disable
\end{tabular} & \begin{tabular}{l} 
0: RTI, CSI, CPS codes are displayed on the \\
top line of the LCD panel during \\
communication. \\
\(1: ~ C o d e s ~ a r e ~ s w i t c h e d ~ o f f ~(n o ~ d i s p l a y) ~\)
\end{tabular} \\
\hline \(1-7\) & Not used & Do not change this setting. \\
\hline
\end{tabular}

System Switch 1E (SP No. 1-101-031)
\begin{tabular}{|c|c|c|}
\hline No & Function & Comments \\
\hline 0 & \begin{tabular}{l}
Communication after the Journal data storage area has become full \\
0: Impossible \\
1: Possible
\end{tabular} & \begin{tabular}{l}
0 : When this switch is on and the journal history becomes full, the next report prints. If the journal history is not deleted, the next transmission cannot be received. This prevents overwriting communication records before the machine can print them. \\
1: If the buffer memory of the communication records for the Journal is full, fax communications are still possible. But the machine will overwrite the oldest communication records.
\(\square\) \\
- This setting is effective only when Automatic Journal printout is enabled but the machine cannot print the report (e.g., no paper).
\end{tabular} \\
\hline
\end{tabular}

\section*{Bit Switches - 1}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{System Switch 1E (SP No. 1-101-031)} \\
\hline No & Function & Comments \\
\hline 1 & \begin{tabular}{l}
Action when the SAF memory has become full during scanning \\
0 : The current page is erased. \\
1: The entire file is erased.
\end{tabular} & \begin{tabular}{l}
0: If the SAF memory becomes full during scanning, the successfully scanned pages are transmitted. \\
1: If the SAF memory becomes full during scanning, the file is erased and no pages are transmitted.
\(\square\) \\
- This setting is effective only when Automatic Journal printout is enabled but the machine cannot print the report (e.g., no paper).
\end{tabular} \\
\hline 2 & \begin{tabular}{l}
RTI/CSI display priority \\
0: RTI 1: CSI
\end{tabular} & This bit determines which identifier, RTI or CSI, is displayed on the LCD while the machine is communicating in G3 non-standard mode. \\
\hline 3 & \begin{tabular}{l}
File No. printing \\
0: Enabled \\
1: Disabled
\end{tabular} & 1: File numbers are not printed on any reports. \\
\hline 4 & \begin{tabular}{l}
Action when authorized reception is enabled but authorized RTIs/CSIs are not yet programmed \\
0 : All fax reception is disabled \\
1: Faxes can be received if the sender has an RTI or CSI
\end{tabular} & \begin{tabular}{l}
If authorized reception is enabled but the user has stored no acceptable sender RTIs or CSIs, the machine will not be able to receive any fax messages. \\
If the customer wishes to receive messages from any sender that includes an RTI or CSI, and to block messages from senders that do not include an RTI or CSI, change this bit to "1", then enable Authorized Reception. \\
Otherwise, keep this bit at " 0 (default setting)".
\end{tabular} \\
\hline 5-7 & Not used & Do not change the settings \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|c|}{ System Switch 1F (SP No. 1-101-032) } \\
\hline No & \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{c|}{ Comments } \\
\hline 0 & Not used & Do not change the settings. \\
\hline 1 & \(\begin{array}{l}\text { Report printout after an original } \\
\text { jam during SAF storage or if the } \\
\text { SAF memory fills up } \\
\text { 0: Enabled } \\
\text { 1: Disabled }\end{array}\) & \(\begin{array}{l}\text { 0: When an original jams, or the SAF memory } \\
\text { overflows during scanning, a report will be } \\
\text { printed. } \\
\text { Change this bit to "1" if the customer does not } \\
\text { want to have a report in these cases. } \\
\text { Memory tx - Memory storage report } \\
\text { Parallel memory tx - Transmission result report }\end{array}\) \\
\hline 2 & Not used & \(\begin{array}{l}\text { Received fax print start timing } \\
\text { (G3 reception) } \\
\text { 0: After receiving each page } \\
\text { 1: After receiving all pages }\end{array}\) \\
\hline Do not change the settings. \\
\hline 3 \\
after the machine receives it. \\
1: The machine prints the complete message \\
after the machine receives all the pages in the \\
memory.
\end{tabular}\(\}\)

\section*{Bit Switches - 2}

\subsection*{4.4 BIT SWITCHES - 2}

\section*{\(\downarrow\) Note}
- Do not adjust a bit switch or use a setting that is described as "Not used", as this may cause the machine to malfunction or to operate in a manner that is not accepted by local regulations. Such bits are for use only in other areas, such as Japan.

Default settings for bit switches are not listed in this manual. Refer to the System Parameter List printed by the machine.

\subsection*{4.4.1 I-FAX SWITCHES}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|c|}{ I-fax Switch 00 (SP No. 1-102-001) } \\
\hline No & \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{c|}{ Comments } \\
\hline Original Width of TX Attachment File & \(\begin{array}{l}\text { This setting sets the maximum size of the } \\
\text { original that the destination can receive. (Bits } \\
3 \sim 7 \text { are reserved for future use or not used.) }\end{array}\) \\
\hline 0 & A4 & \(\begin{array}{l}\text { 0: Off (not selected), 1: On (selected) } \\
\text { If more than one of these three bits is set to "1", } \\
\text { the larger size has priority. For example, if both }\end{array}\) \\
\hline 1 & B4 & \(\begin{array}{l}\text { Bit } 2 \text { and Bit } 1 \text { are set to "1" then the maximum } \\
\text { size is "A3" (Bit 2). } \\
\text { When mail is sent, there is no negotiation with }\end{array}\) \\
\hline 2 & A3 & Reserved \\
\hline 7 & the receiving machine at the destination, so the \\
sending machine cannot make a selection for \\
the receiving capabilities (original width setting) \\
of the receiving machine. The original width \\
selected with this switch is used as the RX \\
machine's original width setting, and the \\
original is reduced to this size before sending. \\
The default is A4. \\
If the width selected with this switch is higher
\end{tabular}\(\}\)\begin{tabular}{l} 
than the receiving machine can accept, the \\
machine detects this and this causes an error.
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|c|}{ I-fax Switch 01 (SP No. 1-102-002) } \\
\hline No & \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{c|}{ Comments } \\
\hline \begin{tabular}{l} 
Original Line Resolution of TX \\
Attachment File
\end{tabular} & \begin{tabular}{l} 
These settings set the maximum resolution of \\
the original that the destination can receive.
\end{tabular} \\
\hline 0 & \(200 \times 100\) Standard & \\
\hline 1 & \(200 \times 200\) Detail & \begin{tabular}{l} 
0: Not selected \\
1: Selected \\
If more than one of these three bits is set to "1", \\
the higher resolution has priority. For example, \\
if both Bit 0 and Bit 2 are set to "1" Then The \\
Resolution is set for "Bit \(2200 \times 400\).
\end{tabular} \\
\hline 2 & \(200 \times 400\) Fine & \(300 \times 300\) Reserve \\
\hline 3 & \(400 \times 400\) Super Fine & \(600 \times 600\) Reserve
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{I-fax Switch 01 (SP No. 1-102-002)} \\
\hline No & Function Comments \\
\hline & \begin{tabular}{l}
This setting selects mm/inch conversion for mail transmission. \\
0 : Off (No conversion), 1: On (Conversion) \\
When on (set to "1"), the machine converts millimeters to inches for sending mail. There is no switch for converting inches to millimeters. \\
Unlike G3 fax transmissions which can negotiate between sender and receiver to determine the setting, mail cannot negotiate between terminals; the \(\mathrm{mm} / \mathrm{inch}\) selection is determined by the sender fax. \\
When this switch is Off ( 0 ): \\
- Images scanned in inches are sent in inches. \\
- Images scanned in mm are sent in mm. \\
- Images received in inches are transmitted in inches. \\
- Images received in mm are transmitted in mm . \\
When this switch is On (1): \\
- Images scanned in inches are sent in inches. \\
- Images scanned in mm are converted to inches. \\
- Images received in inches are transmitted in inches. \\
- Images received in mm are converted to inches.
\end{tabular} \\
\hline
\end{tabular}

I-fax Switch 02 (SP No. 1-102-003)
\begin{tabular}{|c|c|}
\hline No & Function Comments \\
\hline & RX Text Mail Header Processing \\
\hline 0 & \begin{tabular}{l}
This setting determines whether the header information is printed with text e-mails when they are received. \\
0 : Prints only text mail. \\
1: Prints mail header information attached to text mail. \\
When a text mail is received with this switch On (1), the "From" address and "Subject" address are printed as header information. \\
When a mail with only binary data is received (a TIFF-F file, for example), this setting is ignored and no header is printed.
\end{tabular} \\
\hline & Output from Attached Document at E-mail TX Error \\
\hline 1 & \begin{tabular}{l}
This setting determines whether only the first page or all pages of an e-mail attachment are printed at the sending station when a transmission error occurs. This allows the customer to see which documents have not reached their intended destinations if sent to the wrong e-mail addresses, for example. \\
0 : Prints 1st page only. \\
1: Prints all pages.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|c|}{ I-fax Switch 02 (SP No. 1-102-003) } \\
\hline No & \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{c|}{ Comments } \\
\hline & Text String for Return Receipt \\
\hline & \begin{tabular}{l} 
This setting determines the text string output for the Return Receipt that confirms \\
the transmission was received normally at the destination.
\end{tabular} \\
\hline & \begin{tabular}{l} 
00: "Dispatched" \\
Sends from PC mail a request for a Return Receipt. Receives the Return Receipt \\
with "dispatched" in the 2nd part: \\
Disposition: Automatic-action/MDN-send automatically; dispatched \\
The "dispatched" string is included in the Subject string. \\
21: "Displayed" \\
Sends from PC mail a request for a Return Receipt. Receives the Return Receipt \\
with "displayed" in the 2nd part: \\
Disposition: Automatic-action/MDN-send automatically; displayed \\
The "displayed" string is included in the Subject string. \\
10: Reserved \\
11: Reserved \\
A mail requesting a Return Receipt sent from an IFAX with this switch set to "00" \\
(for "dispatched") received by Microsoft Outlook 2000 may cause an error. If any \\
setting other than "displayed" (01) causes a problem, change the setting to "01" to \\
enable normal sending of the Return Receipt.
\end{tabular} \\
\hline & \begin{tabular}{l} 
Media accept feature
\end{tabular} \\
\hline This setting adds or does not add the media accept feature to the answer mail to \\
confirm a reception. \\
0: Does not add the media accept feature to the answer mail \\
1: Adds the media accept feature to the answer mail. \\
Use this bit switch if a problem occurs when the machine receives an answer \\
mail, which contains the media accept feature field.
\end{tabular}

\section*{Bit Switches - 2}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|c|}{ I-fax Switch 02 (SP No. 1-102-003) } \\
\hline No & Function & Comments \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \(5-6\) & Not Used \\
\hline \multirow{4}{*}{7} & Image Resolution of RX Text Mail \\
\cline { 2 - 3 } & \begin{tabular}{l} 
This setting determines the image resolution of the received mail. \\
\(0: 200 \times 200\) \\
\(1: 400 \times 400\) \\
The "1" setting requires installation of the Function Upgrade Card in order to have \\
enough SAF (Store and Forward) memory to receive images at \(400 \times 400\) \\
resolution.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|c|}{ I-fax Switch 03 (SP No. 1-102-004) } \\
\hline No & \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{|c|}{ Comments } \\
\hline 0 & \begin{tabular}{l} 
Original Output at Transfer Station \\
This setting determines whether the original is output at the transfer station when \\
is the same as for G3 transfer transmissions. \\
0: Received original not output at the transfer station. \\
1: Received original output. The original is printed after the transfer station has \\
transferred it to the destinations, so its output confirms that the original has been \\
transferred.
\end{tabular} \\
\hline \multirow{2}{*}{\begin{tabular}{ll} 
Transfer Result Report
\end{tabular}} \\
\hline & \begin{tabular}{l} 
This setting determines when a Transfer Result Report is generated and returned \\
to the transfer requestor. \\
0: Returns the report after each transfer. \\
1: Returns the report only if an error occurred during transfer.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|c|}{ I-fax Switch 03 (SP No. 1-102-004) } \\
\hline No & \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{c|}{ Comments } \\
\hline \multirow{5}{*}{} & \multicolumn{1}{|c|}{\begin{tabular}{l} 
Destination Error Handling for Reception Transfer Request
\end{tabular}} \\
\cline { 2 - 4 } & \begin{tabular}{l} 
This setting restricts transfer transmission based on whether the final destinations \\
are correct or not. \\
0: The transfer station transmits to correct destinations only (addresses with no \\
errors in them). \\
1: If any address has an error in it, the transfer station transfers no transmissions \\
and returns a transfer transmission failure report to the requestor that initiated the \\
transfer. \\
There is no negotiation between the transfer initiator and the transfer station to \\
determine whether the final destination addresses are correct or not. This setting \\
determines whether or not the transfer station transfers the transmissions if there \\
is a mistake in even one of the final destination addresses.
\end{tabular} \\
\hline \multirow{3}{*}{\begin{tabular}{ll} 
Polling ID Check for Reception of Transfer Request
\end{tabular}} \\
\hline & \begin{tabular}{l} 
This setting determines whether the polling IDs of incoming transmissions are \\
checked to ensure that the polling IDs match. \\
0: Receives and transfers only messages that have matching polling IDs. \\
1: Receives and transfers all messages, even if the polling IDs do not match.
\end{tabular} \\
\hline \(4-7\) & \begin{tabular}{l} 
Not Used
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{I-fax Switch 04 (SP No. 1-102-005)} \\
\hline No & Function & Comments \\
\hline & \multicolumn{2}{|l|}{Subject for Delivery TX/Memory Transfer} \\
\hline 0 & \multicolumn{2}{|l|}{\begin{tabular}{l}
This setting determines whether the RTI/CSI registered on this machine or the RTI/CSI of the originator is used in the subject lines of transferred documents. \\
0 : Puts the RTI/CSI of the originator in the Subject line. If this is used, either the RTI or CSI is used. Only one of these can be received for use in the subject line. \\
1: Puts the RTI/CSI registered on this machine in the Subject line. \\
When this switch is used to transfer and deliver mail to a PC, the information in the Subject line that indicates where the transmission originated can be used to determine automatically the destination folder for each e-mail.
\end{tabular}} \\
\hline 1 & \multicolumn{2}{|l|}{\begin{tabular}{l}
Subject corresponding to mail post database \\
0: Standard subject \\
1: Mail post database subject \\
The standard subject is replaced by the mail post database subject in the following three cases: \\
1) When the service technician sets the service (software) switch. \\
2) When memory sending or delivery specified by F code is applied by the SMTP server \\
3) With relay broadcasting (1st stage without the Schmidt 4 function). \\
Note \\
- This switch does not apply for condition 3) when the RX system is set up for memory sending, delivery by F-code, sending with SMTP RX and when operators are using FOL (to prevent problems when receiving transmissions).
\end{tabular}} \\
\hline 2-7 & \multicolumn{2}{|l|}{Not Used} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|c|}{ I-fax Switch 05 (SP No. 1-102-006) } \\
\hline No & \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{c|}{ Comments } \\
\hline \multirow{4}{|c|}{\begin{tabular}{l} 
Mail Addresses of SMTP Broadcast Recipients
\end{tabular}} \\
\cline { 2 - 5 } & \begin{tabular}{l} 
Determines whether the e-mail addresses of the destinations that receive \\
transmissions broadcasted using SMTP protocol are recorded in the Journal. \\
For example: \\
"1st destination + Total number of destinations: 9" in the Journal indicates a \\
broadcast to 9 destinations. \\
0: Not recorded \\
1: Recorded
\end{tabular} \\
\hline 1 & \begin{tabular}{l} 
Determines whether the I-fax automatically redials when an error occurs. \\
0: OFF \\
1: ON
\end{tabular} \\
\hline \(2-7\) & Not Used \\
\hline
\end{tabular}

I-fax Switch 06 - Not used (do not change the settings)
I-fax Switch 07 - Not used (do not change the settings)

\section*{Bit Switches - 2}
\begin{tabular}{|c|l|l|}
\hline \multicolumn{2}{|c|}{ I-fax Switch 08 (SP No. 1-102-009) } \\
\hline No & \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{c|}{ Comments } \\
\hline \(0-7\) & \begin{tabular}{l} 
Memory Threshold for POP Mail Reception \\
This setting determines the amount of SAF (Store and Forward) memory. (SAF \\
stores fax messages to send later for transmission to more than one location, and \\
also holds incoming messages if they cannot be printed.) When the amount of \\
SAF memory available falls below this setting, mail can no longer be received; \\
received mail is then stored on the mail server. \\
00-FF (0 to 1024 KB: HEX) \\
The hexadecimal number you enter is multiplied by 4 KB to determine the amount \\
of memory.
\end{tabular} \\
\cline { 2 - 3 }
\end{tabular}
\begin{tabular}{|c|l|l|}
\hline \multicolumn{2}{|c|}{ I-fax Switch 09 (SP No. 1-102-010) } \\
\hline No & \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{c|}{ Comments } \\
\hline \(0-3\) & Not used & Do not change the settings \\
\hline \(4-7\) & Restrict TX Retries & \begin{tabular}{l} 
This setting determines the number of retries \\
when connection and transmission fails due to \\
errors. \\
\(01-F ~(1-15 ~ H e x) ~\)
\end{tabular} \\
\hline
\end{tabular}

I-fax Switch 0A - Not used (do not change the settings)

I-fax Switch OB - Not used (do not change the settings)
I-fax Switch OC - Not used (do not change the settings)

I-fax Switch OD - Not used (do not change the settings)

I-fax Switch 0E - Not used (do not change the settings)
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|c|}{ I-fax Switch OF (SP No. 1-102-016) } \\
\hline No & \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{c|}{ Comments } \\
\hline \multirow{4}{*}{0} & Delivery Method for SMTP RX Files \\
\cline { 2 - 4 } & \begin{tabular}{l} 
This setting determines whether files received with SMTP protocol are delivered \\
or output immediately. \\
0: Off. Files received via SMTP are output immediately without delivery. \\
1: On. Files received via SMTP are delivered immediately to their destinations.
\end{tabular} \\
\hline 1 & \begin{tabular}{l} 
Signature for SMTP
\end{tabular} \\
\cline { 2 - 3 } & \begin{tabular}{l} 
This setting determines whether a signature is put on an e-mail via SMTP. \\
0: No signature \\
1: Signature
\end{tabular} \\
\hline \multirow{2}{*}{2} & \begin{tabular}{l} 
This setting determines whether an e-mail via SMTP is encrypted. \\
0: Not encrypted \\
1: Encrypted
\end{tabular} \\
\hline \(3-7\) & Not used \\
\hline
\end{tabular}

\subsection*{4.4.2 PRINTER SWITCHES}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{Printer Switch 00 (SP No. 1-103-001)} \\
\hline No & Function & Comments \\
\hline 0 & \begin{tabular}{l}
Select page separation marks \\
0: Off \\
1: On
\end{tabular} & \begin{tabular}{l}
0 : If a 2 page \(R X\) transmission is split, [*] is printed in the bottom right corner of the 1st page and only a [2] is printed in the upper right corner of the 2nd page. \\
1: If a 2 page \(R X\) transmission is split into two pages, for example, [*] [2] is printed in the bottom right corner of the 1st page and only a [2] is printed in the upper right corner of the 2nd page. \\
- This helps the user to identify pages that have been split because the size of the paper is smaller than the size of the document received. (When A5 is used to print an A4 size document, for example.)
\end{tabular} \\
\hline 1 & \begin{tabular}{l}
Repetition of data when the received page is longer than the printer paper \\
0 : Off \\
1: On
\end{tabular} & \begin{tabular}{l}
1: Default. 10 mm of the trailing edge of the previous page are repeated at the top of the next page. \\
0 : The next page continues from where the previous page stopped without any repeated text.
\end{tabular} \\
\hline 2 & \begin{tabular}{l}
Prints the date and time on received fax messages \\
0: Disabled \\
1: Enabled
\end{tabular} & \begin{tabular}{l}
This switch is only effective when user parameter 02 - bit 2 (printing the received date and time on received fax messages) is enabled. \\
1: The machine prints the received and printed date and time at the bottom of each received page.
\end{tabular} \\
\hline 3-7 & Not used & Do not change the settings. \\
\hline
\end{tabular}

Bit Switches - 2
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|r|}{Printer Switch 01 (SP No. 1-103-002)} \\
\hline No & \multicolumn{3}{|c|}{Function} & Comments \\
\hline 0-2 & \multicolumn{3}{|l|}{Not used} & Do not change the settings. \\
\hline \multirow{6}{*}{3-4} & \multicolumn{3}{|l|}{Maximum print width used in the setup protocol} & \multirow{6}{*}{These bits are only effective when bit 7 of printer switch 01 is "1".} \\
\hline & Bit 4 & Bit 3 & Setting & \\
\hline & 0 & 0 & Not used & \\
\hline & 0 & 1 & A3 & \\
\hline & 1 & 0 & B4 & \\
\hline & 1 & 1 & A4 & \\
\hline 5-6 & \multicolumn{3}{|l|}{Not used} & Do not change the settings. \\
\hline 7 & \multicolumn{4}{|l|}{\begin{tabular}{l|l} 
& \begin{tabular}{l}
\(0:\) The machine informs the transmitting \\
machine of the print width depending on the
\end{tabular} \\
Received message width & \begin{tabular}{l} 
paper size available from the paper feed \\
reations. \\
restriction in the protocol signal \\
to the sender \\
0: Disabled \\
1: Enabled
\end{tabular} \\
\begin{tabular}{l} 
Refer to the table on the next page for how the \\
machine chooses the paper width used in the \\
setup protocol (NSF/DIS). \\
1: The machine informs the transmitting \\
machine of the fixed paper width which is \\
specified by bits 3 and 4 above.
\end{tabular} \\
\hline
\end{tabular}} \\
\hline
\end{tabular}

Relationship between available paper sizes and printer width used in the setup protocol
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Available Paper Size } & \multicolumn{1}{|c|}{ Printer width used in the Protocol (NSF/DIS) } \\
\hline A4 or \(8.5^{\prime \prime} \times 11^{\prime \prime}\) & 297 mm width \\
\hline B5 & 256 mm width \\
\hline A5 or \(8.5^{\prime \prime} \times 5.5^{\prime \prime}\) & 216 mm width \\
\hline No paper available (Paper end) & 216 mm width \\
\hline
\end{tabular}

Printer Switch 02 (SP No. 1-103-003)
\begin{tabular}{|c|c|c|}
\hline No & Function & Comments \\
\hline 0 & \begin{tabular}{l}
1st paper feed station usage for fax printing \\
0: Enabled \\
1: Disabled
\end{tabular} & \\
\hline 1 & \begin{tabular}{l}
2nd paper feed station usage for fax printing \\
0: Enabled \\
1: Disabled
\end{tabular} & 0: The paper feed station can be used to print fax messages and reports. \\
\hline 2 & \begin{tabular}{l}
3rd paper feed station usage for fax printing \\
0: Enabled \\
1: Disabled
\end{tabular} & \begin{tabular}{l}
used for printing fax messages and reports. \\
Note \\
- Do not disable usage for a paper feed station which has been specified by
\end{tabular} \\
\hline 3 & \begin{tabular}{l}
4th paper feed station usage for fax printing \\
0: Enabled \\
1: Disabled
\end{tabular} & User Parameter Switch 0F (15), or which is used for the Specified Cassette Selection feature. \\
\hline 4 & \begin{tabular}{l}
LCT usage for fax printing \\
0: Enabled \\
1: Disabled
\end{tabular} & \\
\hline 5-7 & Not used & Do not change the settings. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|c|}{ Printer Switch 03 (SP No. 1-103-004) } \\
\hline No & \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{c|}{ Comments }
\end{tabular} \left\lvert\, \(\left.\begin{array}{ll}\text { Length reduction of received } \\
\text { data } \\
0: \text { Disabled } \\
\text { 1: Enabled } \\
\text { reduction. } \\
\text { (Page separation threshold: Printer Switch 03, } \\
\text { bits 4 to 7) } \\
1: \text { Incoming page length is reduced when } \\
\text { printing. } \\
\text { (Maximum reducible length: Printer Switches } \\
04, \text { bits 0 to 4) }\end{array}\right.\right\}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Printer Switch 04 (SP No. 1-103-005)} \\
\hline No & \multicolumn{3}{|c|}{Function} & \multicolumn{3}{|c|}{Comments} \\
\hline \multirow{7}{*}{0
to
4} & \multicolumn{6}{|l|}{\begin{tabular}{l}
Maximum reducible length when length reduction is enabled with switch 03-0 above. \\
[Maximum reducible length] = [Paper length] \(+(\mathrm{N} \times 5 \mathrm{~mm})\) \\
" N " is the decimal value of the binary setting of bits 0 to 4 .
\end{tabular}} \\
\hline & Bit 4 & Bit 3 & Bit 2 & Bit 1 & Bit 0 & Setting \\
\hline & 0 & 0 & 0 & 0 & 0 & 0 mm \\
\hline & 0 & 0 & 0 & 0 & 1 & 5 mm \\
\hline & 0 & 0 & 1 & 0 & 0 & 20 mm \\
\hline & 1 & 1 & 1 & 1 & 1 & 155 mm \\
\hline & \multicolumn{6}{|l|}{\begin{tabular}{l}
For A 5 sideways and B 5 sideways paper \\
[Maximum reducible length \(=[\) Paper length \(]+0.75 \times(\mathrm{N} \times 5 \mathrm{~mm})\)
\end{tabular}} \\
\hline \multirow{6}{*}{5
6} & \multicolumn{6}{|l|}{Length of the duplicated image on the next page, when page separation has taken place.} \\
\hline & \multicolumn{2}{|c|}{Bit 6} & \multicolumn{2}{|c|}{Bit 5} & \multicolumn{2}{|c|}{Setting} \\
\hline & \multicolumn{2}{|c|}{0} & \multicolumn{2}{|c|}{0} & \multicolumn{2}{|c|}{4 mm} \\
\hline & \multicolumn{2}{|c|}{0} & \multicolumn{2}{|c|}{1} & \multicolumn{2}{|c|}{10 mm} \\
\hline & \multicolumn{2}{|c|}{1} & \multicolumn{2}{|c|}{0} & \multicolumn{2}{|c|}{15 mm} \\
\hline & \multicolumn{2}{|c|}{1} & \multicolumn{2}{|c|}{1} & \multicolumn{2}{|c|}{Not used} \\
\hline 7 & \multicolumn{2}{|l|}{Not used.} & \multicolumn{4}{|l|}{Do not change the setting.} \\
\hline
\end{tabular}

Printer Switch 05 - Not used (do not change the settings)
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|c|}{ Printer Switch 06 (SP No. 1-103-007) } \\
\hline No & \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{|c|}{ Comments } \\
\hline & \begin{tabular}{l} 
Printing while a paper cassette \\
is pulled out, when the Just Size \\
Printing feature is enabled. \\
0: Printing will not start \\
1: Printing will start if another \\
cassette has a suitable size of \\
paper, based on the paper size \\
selection priority tables.
\end{tabular} & \begin{tabular}{l} 
Cross reference \\
Just size printing on/off - User switch 05, bit 5
\end{tabular} \\
\hline \(1-7\) & Not used. & Do not change the settings. \\
\hline
\end{tabular}

\section*{Bit Switches - 2}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|c|}{ Printer Switch 07 (SP No. 1-103-008) } \\
\hline No & \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{c|}{ Comments } \\
\hline 0 & \begin{tabular}{l} 
Reduction for Journal printing \\
0: Off \\
1: On
\end{tabular} & \begin{tabular}{l} 
1: The Journal is reduced to 91\% to ensure that \\
there is enough space in the left margin for \\
punch holes or staples.
\end{tabular} \\
\hline 2-3 & Not used. & \begin{tabular}{l} 
Do not change the settings. \\
List of destinations in the \\
for broadcasting \\
0: All destinations \\
1: Only destinations where \\
communication failure occurred
\end{tabular} \\
\hline \(5-7\) & \begin{tabular}{l} 
Not used.
\end{tabular} & \begin{tabular}{l} 
1: Only destinations where communication \\
failure occurred are printed on the
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|}
\hline Printer Switch 08 - Not used (do not change the settings) \\
\hline Printer Switch 09 - Not used (do not change the settings) \\
\hline Printer Switch 0A - Not used (do not change the settings) \\
\hline Printer Switch 0B - Not used (do not change the settings) \\
\hline Printer Switch 0C - Not used (do not change the settings) \\
\hline Printer Switch 0D - Not used (do not change the settings) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Printer Switch 0E (SP No. 1-103-015)} \\
\hline No & \multicolumn{3}{|r|}{Function} & Comments \\
\hline 0 & \multicolumn{3}{|l|}{\begin{tabular}{l}
Paper size selection priority \\
0: Width \\
1: Length
\end{tabular}} & 0 : A paper size that has the same width as the received data is selected first. 1: A paper size which has enough length to print all the received lines without reduction is selected first. \\
\hline 1 & \multicolumn{3}{|l|}{\begin{tabular}{l}
Paper size selected for printing A4 width fax data \\
0: 8.5" x 11" size \\
1: A4 size
\end{tabular}} & This switch determines which paper size is selected for printing A4 width fax data, when the machine has both A4 and \(8.5^{\prime \prime} \mathrm{x}\) \(11 "\) size paper. \\
\hline 2 & \multicolumn{3}{|l|}{\begin{tabular}{l}
Page separation \\
0: Enabled \\
1: Disabled
\end{tabular}} & 1: If all paper sizes in the machine require page separation to print a received fax message, the machine does not print the message (Substitute Reception is used). After a larger size of paper is set in a cassette, the machine automatically prints the fax message. \\
\hline \multirow{6}{*}{3-4} & \multicolumn{3}{|l|}{Printing the sample image on reports} & \multirow{6}{*}{\begin{tabular}{l}
"Same size" means the sample image is printed at \(100 \%\), even if page separation occurs. \\
User Parameter Switch 19 (13H) bit 4 must be set to "0" to enable this switch. Refer to Detailed Section Descriptions for more on this feature.
\end{tabular}} \\
\hline & Bit 4 & Bit 3 & Setting & \\
\hline & 0 & 0 & The upper half only & \\
\hline & 0 & 1 & \begin{tabular}{l}
50\% reduction \\
(sub-scan only)
\end{tabular} & \\
\hline & 1 & 0 & Same size & \\
\hline & 1 & 1 & Not used & \\
\hline 5-6 & \multicolumn{3}{|l|}{Not used} & Do not change the settings. \\
\hline
\end{tabular}

\section*{Bit Switches - 2}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|c|}{ Printer Switch OE (SP No. 1-103-015) } \\
\hline No & \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{|c|}{ Comments } \\
\hline 7 & \begin{tabular}{l} 
Equalizing the reduction ratio among \\
separated pages \\
(Page Separation) \\
0: Enabled \\
1: Disabled
\end{tabular} & \begin{tabular}{l} 
0: When page separation has taken \\
place, all the pages are reduced with the \\
same reduction ratio. \\
1: Only the last page is reduced to fit the \\
selected paper size when page \\
separation has taken place. Other pages \\
are printed without reduction.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Printer Switch OF (SP No. 1-103-016)} \\
\hline No & \multicolumn{3}{|c|}{Function} & Comments \\
\hline \multirow{6}{*}{0-1} & \multicolumn{3}{|l|}{Smoothing feature} & \multirow{6}{*}{\((0,0)(0,1)\) : Disable smoothing if the machine receives halftone images from other manufacturers fax machines frequently.} \\
\hline & Bit 1 & Bit 0 & Setting & \\
\hline & 0 & 0 & Disabled & \\
\hline & 0 & 1 & Disabled & \\
\hline & 1 & 0 & Enabled & \\
\hline & 1 & 1 & Not used & \\
\hline 2 & \multicolumn{3}{|l|}{\begin{tabular}{l}
Duplex printing \\
0: Disabled \\
1: Enabled
\end{tabular}} & 1: The machine always prints received fax messages in duplex printing mode: \\
\hline 3 & \multicolumn{3}{|l|}{\begin{tabular}{l}
Binding direction for Duplex printing \\
0 : Left binding \\
1: Top binding
\end{tabular}} & \begin{tabular}{l}
0 : Sets the binding for the left edge of the stack. \\
1: Sets the binding for the top of the stack.
\end{tabular} \\
\hline 4-7 & \multicolumn{3}{|l|}{Not used} & Do not change the settings. \\
\hline
\end{tabular}

\subsection*{4.5 BIT SWITCHES - 3}
- Do not adjust a bit switch or use a setting that is described as "Not used", as this may cause the machine to malfunction or to operate in a manner that is not accepted by local regulations. Such bits are for use only in other areas, such as Japan.
Default settings for bit switches are not listed in this manual. Refer to the System Parameter List printed by the machine.

\subsection*{4.5.1 COMMUNICATION SWITCHES}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Communication Switch 00 (SP No. 1-104-001)} \\
\hline No & \multicolumn{3}{|r|}{Function} & Comments \\
\hline \multirow{6}{*}{0-1} & \multicolumn{3}{|l|}{Compression modes available in receive mode} & \multirow{6}{*}{These bits determine the compression capabilities to be declared in phase B (handshaking) of the T. 30 protocol.} \\
\hline & Bit 1 & Bit 0 & Modes & \\
\hline & 0 & 0 & MH only & \\
\hline & 0 & 1 & MH/MR & \\
\hline & 1 & 0 & MH/MR/MMR & \\
\hline & 1 & 1 & MH/MR/MMR/JBIG & \\
\hline \multirow{6}{*}{2-3} & \multicolumn{3}{|l|}{Compression modes available in transmit mode} & \multirow{6}{*}{These bits determine the compression capabilities to be used in the transmission and to be declared in phase B (handshaking) of the T .30 protocol.} \\
\hline & Bit 3 & Bit 2 & Modes & \\
\hline & 0 & 0 & MH only & \\
\hline & 0 & 1 & MH/MR & \\
\hline & 1 & 0 & MH/MR/MMR & \\
\hline & 1 & 1 & MH/MR/MMR/JBIG & \\
\hline
\end{tabular}

Bit Switches - 3
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|c|}{ Communication Switch 00 (SP No. 1-104-001) } \\
\hline No & \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{c|}{ Comments } \\
\hline 4 & Not used & Do not change the settings. \\
\hline 5 & \(\begin{array}{l}\text { JBIG compression method: Reception } \\
\text { 0: Only basic supported } \\
\text { 1: Basic and optional both supported }\end{array}\) & \(\begin{array}{l}\text { Change the setting when } \\
\text { communication problems occur } \\
\text { using JBIG compression. }\end{array}\) \\
\hline 6 & \(\begin{array}{l}\text { JBIG compression method: Transmission } \\
\text { 0: Basic mode priority } \\
\text { 1: Optional mode priority }\end{array}\) & \(\begin{array}{l}\text { Change the setting when } \\
\text { communication problems occur } \\
\text { using JBIG compression. }\end{array}\) \\
\hline 7 & \(\begin{array}{l}\text { Closed network (reception) } \\
\text { : Disabled } \\
\text { 1: Enabled }\end{array}\) & \(\begin{array}{l}\text { 1: Reception will not go ahead if the } \\
\text { polling ID code of the remote } \\
\text { terminal does not match the polling } \\
\text { ID code of the local terminal. This }\end{array}\) \\
\hline function is only available in
\end{tabular}\(\}\) NSF/NSS mode. \begin{tabular}{l} 
\\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{4}{|c|}{ Communication Switch 01 (SP No. 1-104-002) } \\
\hline No & \multicolumn{3}{|c|}{ Function } & \multicolumn{1}{c|}{ Comments }
\end{tabular}\(\left.| \begin{array}{l}\text { If this bit is set to 0, ECM is switched off for all } \\
\text { communications. } \\
\text { In addition, V.8 protocol and JBIG compression } \\
\text { are switched off automatically. }\end{array}\right]\)

\section*{Bit Switches - 3}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|r|}{Communication Switch 01 (SP No. 1-104-002)} \\
\hline No & \multicolumn{3}{|r|}{Function} & Comments \\
\hline & \multicolumn{3}{|l|}{Maximum printable page length available} & \multirow{6}{*}{The setting determined by these bits is informed to the transmitting terminal in the pre-message protocol exchange (in the DIS/NSF frames).} \\
\hline & Bit 7 & Bit 6 & Setting & \\
\hline 6-7 & 0 & 0 & No limit & \\
\hline & 0 & 1 & B4 (364 mm) & \\
\hline & 1 & 0 & A4 (297 mm) & \\
\hline & 1 & 1 & Not used & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Communication Switch 02 (SP No. 1-104-003)} \\
\hline No & Function & & Comments \\
\hline \multirow{5}{*}{0} & \multirow{5}{*}{\begin{tabular}{l}
G3 Burst error threshold \\
0: Low 1: High
\end{tabular}} & \multicolumn{2}{|l|}{If there are more consecutive error lines in the received page than the threshold, the machine will send a negative response. The Low and High threshold values depend on the sub-scan resolution, and are as follows.} \\
\hline & & 100 dpi & \(6(\mathrm{~L}) \rightarrow\) 12(H) \\
\hline & & 200 dpi & 12(L) \(\rightarrow\) 24(H) \\
\hline & & 300 dpi & 18(L) \(\rightarrow\) 36(H) \\
\hline & & 400 dpi & 24(L) \(\rightarrow\) 48(H) \\
\hline 1 & Acceptable total error line ratio
0: 5\% 1: 10\% & \multicolumn{2}{|l|}{If the error line ratio for a page exceeds the acceptable ratio, RTN will be sent to the other end.} \\
\hline 2 & \begin{tabular}{l}
Treatment of pages received with errors during G3 reception \\
0 : Deleted from memory without printing \\
1: Printed
\end{tabular} & \multicolumn{2}{|l|}{0 : Pages received with errors are not printed.} \\
\hline 3 & Hang-up decision when a negative code (RTN or PIN) is received during G3 immediate transmission 0 : No hang-up, 1: Hang-up & \multicolumn{2}{|l|}{\begin{tabular}{l}
0 : The next page will be sent even if RTN or PIN is received. \\
1: The machine will send DCN and hang up if it receives RTN or PIN. \\
This bit is ignored for memory transmissions or if ECM is being used.
\end{tabular}} \\
\hline 4-7 & Not used & \multicolumn{2}{|l|}{Do not change the settings.} \\
\hline
\end{tabular}

\section*{Bit Switches - 3}
\begin{tabular}{|c|l|l|}
\hline \multicolumn{3}{|c|}{ Communication Switch 03 (SP No. 1-104-004) } \\
\hline No & \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{c|}{ Comments } \\
\hline 0-7 & \begin{tabular}{l} 
Maximum number of page \\
retransmissions in a G3 \\
memory transmission
\end{tabular} & \begin{tabular}{l} 
00-FF (Hex) times. \\
This setting is not used if ECM is switched on. \\
Default setting -03(H)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|}
\hline Communication Switch 04 - Not used (do not change the settings) \\
\hline Communication Switch 05 - Not used (do not change the settings) \\
\hline Communication Switch 06 - Not used (do not change the settings) \\
\hline Communication Switch 07 - Not used (do not change the settings) \\
\hline Communication Switch 08 - Not used (do not change the settings) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{Communication Switch 09 (SP No. 1-104-010)} \\
\hline No & Function & Comments \\
\hline 0-7 & IP-Fax dial interval setting & \begin{tabular}{l}
Adjusts the interval of \(I\)-fax dialing. \\
The interval of I-fax dialing is calculated with the following formula. \\
[Interval time \(=\) specified value with this switch x 0.2 ms ]
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|c|}{ Communication Switch 0A (SP No. 1-104-011) } \\
\hline No & \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{c|}{ Comments } \\
\hline 0 & \begin{tabular}{l} 
Point of resumption of memory \\
transmission upon redialing \\
0: From the error page \\
1: From page 1
\end{tabular} & \begin{tabular}{l} 
0: The transmission begins from the page \\
where transmission failed the previous time. \\
1: Transmission begins from the first page, \\
using normal memory transmission.
\end{tabular} \\
\hline \(1-7\) & Not used & Do not change the settings. \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|}
\hline \multicolumn{3}{|c|}{ Communication Switch OB (SP No. 1-104-012) } \\
\hline No & \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{c|}{ Comments } \\
\hline \(0-3\) & Not used & Do not change the settings. \\
\hline 4 & \begin{tabular}{l} 
Printout of the message when \\
acting as a Transfer Station \\
0: Disabled, 1: Enabled
\end{tabular} & \begin{tabular}{l} 
When the machine is acting as a Transfer \\
Station, this bit determines whether the \\
machine prints the fax message coming in \\
from the Requesting Terminal.
\end{tabular} \\
\hline \(5-7\) & Not used & Do not change the settings. \\
\hline
\end{tabular}

Communication Switch 0C - Not used (do not change the settings)

\section*{Bit Switches - 3}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|c|}{ Communication Switch OD (SP No. 1-104-014) } \\
\hline No & \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{c|}{ Comments } \\
\hline 0-7 & & \(\begin{array}{l}\text { (e.g., 06(H) }=24 \text { kbytes) } \\
\text { The available memory } \\
\text { threshold, below which ringing } \\
\text { One page is about 24 kbytes. } \\
\text { detection (and therefore } \\
\text { reception into memory) is } \\
\text { disabled }\end{array}\) \\
The machine refers to this setting before each fax \\
reception. If the amount of remaining memory is \\
below this threshold, the machine cannot receive \\
any fax messages. \\
If this setting is kept at 0, the machine will detect \\
ringing signals and go into receive mode even if
\end{tabular}\(\}\)\begin{tabular}{l} 
there is no memory available. This will result in \\
communication failure.
\end{tabular}
\begin{tabular}{|c|l|l|}
\hline \multicolumn{3}{|c|}{ Communication Switch 0E (SP No. 1-104-015) } \\
\hline No & \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{|c|}{ Comments } \\
\hline \(0-7\) & \begin{tabular}{l} 
Minimum interval between \\
automatic dialing attempts
\end{tabular} & \begin{tabular}{l} 
06 to FF (Hex), unit \(=2 \mathrm{~s}\) \\
\((\) e.g., 06(H) \(=12 \mathrm{~s})\) \\
This value is the minimum time that the machine \\
waits before it dials the next destination.
\end{tabular} \\
\hline
\end{tabular}

Communication Switch 0F - Not used (do not change the settings.)
\begin{tabular}{|c|l|c|}
\hline \multicolumn{3}{|c|}{ Communication Switch 10 (SP No. 1-104-017) } \\
\hline No & \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{c|}{ Comments } \\
\hline \(0-7\) & \begin{tabular}{l} 
Memory transmission: \\
Maximum number of dialing \\
attempts to the same \\
destination
\end{tabular} & \(01-\) FE (Hex) times \\
\hline
\end{tabular}

Communication Switch 11 - Not used (do not change the settings.)

Communication Switch 12 (SP No. 1-104-019)
\begin{tabular}{|c|l|l|}
\hline No & \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{c|}{ Comments } \\
\hline \(0-7\) & \begin{tabular}{l} 
Memory transmission: Interval \\
between dialing attempts to the \\
same destination
\end{tabular} & \(01-\) FF (Hex) minutes \\
\hline
\end{tabular}

Communication Switch 13 - Not used (do not change the settings.)

\section*{Bit Switches - 3}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|r|}{Communication Switch 14 (SP No. 1-104-021)} \\
\hline No & \multicolumn{3}{|r|}{Function} & Comments \\
\hline 0 & \multicolumn{3}{|l|}{Inch-to-mm conversion during transmission 0 : Disabled, 1: Enabled} & \begin{tabular}{l}
0: In immediate transmission, data scanned in inch format are transmitted without conversion. \\
In memory transmission, data stored in the SAF memory in mm format are transmitted without conversion. \\
Note: When storing the scanned data into SAF memory, the fax unit always converts the data into mm format. \\
1: The machine converts the scanned data or stored data in the SAF memory to the format which was specified in the set-up protocol (DIS/NSF) before transmission.
\end{tabular} \\
\hline 1-5 & \multicolumn{3}{|l|}{Not used} & Do not change the factory settings. \\
\hline \multirow{6}{*}{6-7} & \multicolumn{3}{|l|}{Available unit of resolution in which fax messages are received} & \multirow{6}{*}{\begin{tabular}{l}
For the best performance, do not change the factory settings. \\
The setting determined by these bits is informed to the transmitting terminal in the pre-message protocol exchange (in the DIS/NSF frames).
\end{tabular}} \\
\hline & Bit 7 & Bit 6 & Unit & \\
\hline & 0 & 0 & mm & \\
\hline & 0 & 1 & inch & \\
\hline & 1 & 0 & mm and inch & \\
\hline & 1 & 1 & Not used & \\
\hline \multicolumn{5}{|l|}{Communication Switch 15 - Not used (do not change the settings)} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|c|}{ Communication Switch 16 (SP No. 1-104-023) } \\
\hline No & \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{c|}{ Comments } \\
\hline 0 & Not used & Do not change the settings. \\
\hline 1 & \begin{tabular}{l} 
Optional G3 unit (G3-2) \\
0: Not installed \\
1: Installed
\end{tabular} & \begin{tabular}{l} 
Change this bit to 1 when installing the first \\
optional G3 unit.
\end{tabular} \\
\hline 2 & Not used & \begin{tabular}{l} 
Select PSTN connection \\
0: Off \\
1: On
\end{tabular} \\
\hline Onis switch enables the G3-2. \\
0: Off, no connection \\
1: Recognizes and enables G3-2. \\
This switch can be used only after G3-2 has been \\
installed.
\end{tabular}
```

Bit Switches - 3

```
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{Communication Switch 17 (SP No. 1-104-024)} \\
\hline No & Function & Comments \\
\hline 0 & \begin{tabular}{l}
SEP reception \\
0 : Disabled \\
1: Enabled
\end{tabular} & 0: Polling transmission to another maker's machine using the SEP (Selective Polling) signal is disabled. \\
\hline 1 & \begin{tabular}{l}
SUB reception \\
0 : Disabled \\
1: Enabled
\end{tabular} & 0: Confidential reception to another maker's machine using the SUB (Sub-address) signal is disabled. \\
\hline 2 & \begin{tabular}{l}
PWD reception \\
0 : Disabled \\
1: Enabled
\end{tabular} & 0: Disables features that require PWD (Password) signal reception. \\
\hline 3-4 & Not used & Do not change the settings. \\
\hline 5 & \begin{tabular}{l}
PSTN dial-in routing \\
0: Off \\
1: On
\end{tabular} & Enables or disables the dial-in routing for PSTN connection. \\
\hline 6 & Not used & Do not change the settings. \\
\hline 7 & \begin{tabular}{l}
Action when there is no box with an F-code that matches the received SUB code \\
0 : Disconnect the line \\
1: Receive the message (using normal reception mode)
\end{tabular} & Change this setting when the customer requires. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|c|}{ Communication Switch 18 (SP No. 1-104-025) } \\
\hline No & \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{c|}{ Comments } \\
\hline 0-4 & Not used & \begin{tabular}{l} 
IP-Fax dial-in routing selection \\
0: Off \\
1: On
\end{tabular} \\
\hline 6 & \begin{tabular}{l} 
PSTN 2 dial-in routing \\
0: Off \\
1: On
\end{tabular} & \begin{tabular}{l} 
1: Transfers received data to each IP-Fax dial-in \\
number. \\
The IP-Fax dial-in number is a 4 digit-number.
\end{tabular} \\
\hline 7 & \begin{tabular}{l} 
PSTN 3 dial-in routing \\
0: Off \\
1: On
\end{tabular} & \begin{tabular}{l} 
Enables or disables the dial-in routing for PSTN 2 \\
connection.
\end{tabular} \\
\hline
\end{tabular}

Communication Switch 19 - Not used (do not change the settings)
Communication Switch 1A - Not used (do not change the settings)

Communication Switch 1B (SP No. 1-104-028)
\begin{tabular}{|c|c|c|}
\hline No & Function & Comments \\
\hline 0-7 & \begin{tabular}{l}
Extension access code (0 to 7) to turn V. 8 protocol On/Off 0: On \\
1: Off
\end{tabular} & If the PABX does not support \(\mathrm{V} .8 / \mathrm{V} .34\) protocol procedure, set this bit to "1" to disable V. 8 . Example: If " 0 " is the PSTN access code, set bit 0 to 1 . When the machine detects " 0 " as the first dialed number, it automatically disables V. 8 protocol. (Alternatively, if " 3 " is the PSTN access code, set bit 3 to 1.) \\
\hline
\end{tabular}

\section*{Bit Switches - 3}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|c|}{ Communication Switch 1C (SP No. 1-104-029) } \\
\hline No & \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{|c|}{ Comments } \\
\hline 0-1 & \begin{tabular}{l} 
Extension access code (8 and \\
9) to turn V.8 protocol On/Off \\
\(0:\) On \\
\(1: ~ O f f\)
\end{tabular} & \begin{tabular}{l} 
Refer to communication switch 1B. \\
Example: If "8" is the PSTN access code, set bit 0 \\
to 1. When the machine detects "8" as the first \\
dialed number, it automatically disables V.8 \\
protocol. (If "9" is the PSTN access code, use bit \\
1.\()\)
\end{tabular} \\
\hline \(2-7\) & Not used & Do not change the settings.
\end{tabular}

Communication Switch 1D - Not used (do not change the settings)
Communication Switch 1E - Not used (do not change the settings)

Communication Switch 1F - Not used (do not change the settings)

\subsection*{4.6 BIT SWITCHES - 4}
\(\sqrt{ } \sqrt{ }\) Note
- Do not adjust a bit switch or use a setting that is described as "Not used", as this may cause the machine to malfunction or to operate in a manner that is not accepted by local regulations. Such bits are for use only in other areas, such as Japan.

Default settings for bit switches are not listed in this manual. Refer to the System Parameter List printed by the machine.

\subsection*{4.6.1 G3 SWITCHES}

```

Bit Switches - 4

```
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|c|}{ G3 Switch 00 (SP No. 1-105-001) } \\
\hline No & \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{c|}{ Comments } \\
\hline \(3-5\) & Not used & \begin{tabular}{l} 
Do not change the settings. \\
G3 mode selection for the direct \\
connection \\
0: Off \\
\(1:\) On
\end{tabular} \\
\hline 7 & Not used & \begin{tabular}{l} 
1: G3 communication through the direct line \\
is enabled.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|c|}{ G3 Switch 01 (SP No. 1-105-002) } \\
\hline No & \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{c|}{ Comments } \\
\hline 0 & Not used & Do not change the settings. \\
\hline 1-3 & Not used & Do not change the settings. \\
\hline 4 & \begin{tabular}{l} 
DIS frame length \\
\(0: 10\) bytes 1: 4 bytes
\end{tabular} & \begin{tabular}{l} 
1: The bytes in the DIS frame after the 4th byte \\
will not be transmitted (set to 1 if there are \\
communication problems with PC-based faxes \\
which cannot receive the extended DIS frames).
\end{tabular} \\
\hline 5 & Not used & \begin{tabular}{l} 
Forbid CED/AMsam output \\
\(0: ~ O f f\) \\
\(1: ~ O n ~(F o r b i d ~ o u t p u t) ~\)
\end{tabular}
\end{tabular} \begin{tabular}{l} 
Do not change the setting. \\
\hline unless communication problem is caused by a \\
CED or ANSam transmission.
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|c|}{ G3 Switch 02 (SP No. 1-105-003) } \\
\hline No & \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{c|}{ Comments } \\
\hline 0 & \begin{tabular}{l} 
G3 protocol mode used \\
0: Standard and non-standard \\
1: Standard only
\end{tabular} & \begin{tabular}{l} 
Change this bit to 1 only when the other end can \\
only communicate with machines that send \\
T.30-standard frames only. \\
1: Disables NSF/NSS signals (these are used in \\
non-standard mode communication)
\end{tabular} \\
\hline 5 & \begin{tabular}{l} 
Use of modem rate history for \\
transmission using \\
Quick/Speed Dials \\
0: Disabled \\
1: Enabled
\end{tabular} & \begin{tabular}{l} 
0: Communications using Quick/Speed Dials \\
always start from the highest modem rate. \\
1: The machine refers to the modem rate history \\
for communications with the same machine when \\
determining the most suitable rate for the current \\
communication.
\end{tabular} \\
\hline 6 & Not Used & \begin{tabular}{l} 
Do not change the settings.
\end{tabular} \\
\hline 7 & \begin{tabular}{l} 
Short preamble \\
0: Disabled 1: Enabled
\end{tabular} & \begin{tabular}{l} 
Do not change the settings. \\
Manual for details about Short Preamble.
\end{tabular} \\
\hline
\end{tabular}
```

Bit Switches - 4

```
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{G3 Switch 03 (SP No. 1-105-004)} \\
\hline No & Function & Comments \\
\hline 0 & \begin{tabular}{l}
DIS detection number (Echo countermeasure) \\
0: 1 \\
1: 2
\end{tabular} & \begin{tabular}{l}
0 : The machine will hang up if it receives the same DIS frame twice. \\
1: Before sending DCS, the machine will wait for the second DIS which is caused by echo on the line.
\end{tabular} \\
\hline 1 & Not Used & Do not change the settings. \\
\hline 2 & \begin{tabular}{l}
V. 8 protocol \\
0: Disabled \\
1: Enabled
\end{tabular} & \begin{tabular}{l}
0 : V.8/V. 34 communications will not be possible. \\
Note \\
- Do not set to 0 unless the line condition is always bad enough to slow down the data rate to 14.4 kbps or lower.
\end{tabular} \\
\hline 3 & \begin{tabular}{l}
ECM frame size \\
0: 256 bytes \\
1: 64 bytes
\end{tabular} & Keep this bit at "0" in most cases. \\
\hline 4 & \begin{tabular}{l}
CTC transmission conditions \\
0: After one PPR signal received \\
1: After four PPR signals received (ITU-T standard)
\end{tabular} & \begin{tabular}{l}
0 : When using ECM in non-standard (NSF/NSS) mode, the machine sends a CTC to drop back the modem rate after receiving a PPR, if the following condition is met in communications at 14.4, 12.0, 9.6, and 7.2 kbps .
\[
\sqrt{\mathrm{N} \text { Transmit } \leq \underset{\text { ctc_formula }}{\mathrm{N} \text { Resend }}}
\] \\
NTransmit- Number of transmitted frames \\
NResend- Number of frames to be retransmitted \\
1: When using ECM, the machine sends a CTC to drop back the modem rate after receiving four PPRs. \\
PPR, CTC: These are ECM protocol signals. \\
This bit is not effective in V. 34 communications.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|c|}{ G3 Switch 03 (SP No. 1-105-004) } \\
\hline No & \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{c|}{ Comments } \\
\hline 5 & \begin{tabular}{l} 
Modem rate used for the next \\
page after receiving a negative \\
code (RTN or PIN) \\
0: No change 1: Fallback
\end{tabular} & \begin{tabular}{l} 
1: The machine's tx modem rate will fall back \\
before sending the next page if a negative code is \\
received. This bit is ignored if ECM is being used.
\end{tabular} \\
\hline 6 & Not used & \begin{tabular}{l} 
Select detection of reverse \\
polarity in ringing \\
0: Off \\
1: On
\end{tabular} \\
\hline \begin{tabular}{l} 
This switch is used to prevent reverse polarity in \\
ringing on the phone line (applied to PSTN-G3 \\
ringing). Do not change this setting
\end{tabular} \\
\hline 0: No detection (Outside Japan) \\
1: Detection (Inside Japan only)
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|c|}{ G3 Switch 04 (SP No. 1-105-005) }
\end{tabular}\(|\)\begin{tabular}{l}
\multicolumn{1}{|c|}{ Comments } \\
\hline No
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{G3 Switch 05 (SP No. 1-105-006)} \\
\hline No & \multicolumn{5}{|c|}{Function} & Comments \\
\hline \multirow{17}{*}{0-3} & \multicolumn{5}{|l|}{Initial Tx modem rate (kbps)} & \multirow{17}{*}{\begin{tabular}{l}
These bits set the initial starting modem rate for transmission. \\
Use the dedicated transmission parameters if you need to change this for specific receivers. \\
If a modem rate 14.4 kbps or slower is selected, V. 8 protocol should be disabled manually. \\
Cross reference \\
V. 8 protocol on/off - G3 switch 03, bit 2
\end{tabular}} \\
\hline & Bit 3 & Bit 2 & Bit 1 & Bit 0 & kbps & \\
\hline & 0 & 0 & 0 & 1 & 2.4 & \\
\hline & 0 & 0 & 1 & 0 & 4.8 & \\
\hline & 0 & 0 & 1 & 1 & 7.2 & \\
\hline & 0 & 1 & 0 & 0 & 9.6 & \\
\hline & 0 & 1 & 0 & 1 & 12.0 & \\
\hline & 0 & 1 & 1 & 0 & 14.4 & \\
\hline & 0 & 1 & 1 & 1 & 16.8 & \\
\hline & 1 & 0 & 0 & 0 & 19.2 & \\
\hline & 1 & 0 & 0 & 1 & 21.6 & \\
\hline & 1 & 0 & 1 & 0 & 24.0 & \\
\hline & 1 & 0 & 1 & 1 & 26.4 & \\
\hline & 1 & 1 & 0 & 0 & 28.8 & \\
\hline & 1 & 1 & 0 & 1 & 31.2 & \\
\hline & 0 & 0 & 1 & 1 & 33.6 & \\
\hline & \multicolumn{5}{|l|}{Other settings - Not used} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{G3 Switch 05 (SP No. 1-105-006)} \\
\hline No & \multicolumn{3}{|c|}{Function} & Comments \\
\hline \multirow{6}{*}{4-5} & \multicolumn{3}{|l|}{Initial modem type for 9.6 k or 7.2 kbps .} & \multirow{6}{*}{These bits set the initial modem type for 9.6 and 7.2 kbps , if the initial modem rate is set at these speeds.} \\
\hline & Bit 5 & Bit 4 & Setting & \\
\hline & 0 & 0 & V. 29 & \\
\hline & 0 & 1 & V. 17 & \\
\hline & 1 & 0 & V. 34 & \\
\hline & 1 & 1 & Not used & \\
\hline 6-7 & \multicolumn{3}{|l|}{Not used} & Do not change the settings. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{G3 Switch 06 (SP No. 1-105-007)} \\
\hline No & \multicolumn{5}{|c|}{Function} & Comments \\
\hline \multicolumn{6}{|c|}{Initial Rx modem rate(kbps)} & \multirow[b]{8}{*}{\begin{tabular}{l}
These bits set the initial starting modem rate for reception. \\
Use a lower setting if high speeds pose problems during reception.
\end{tabular}} \\
\hline \multirow{16}{*}{0-3} & Bit 3 & Bit 2 & Bit 1 & Bit 0 & kbps & \\
\hline & 0 & 0 & 0 & 1 & 2.4 & \\
\hline & 0 & 0 & 1 & 0 & 4.8 & \\
\hline & 0 & 0 & 1 & 1 & 7.2 & \\
\hline & 0 & 1 & 0 & 0 & 9.6 & \\
\hline & 0 & 1 & 0 & 1 & 12.0 & \\
\hline & 0 & 1 & 1 & 0 & 14.4 & \\
\hline & 0 & 1 & 1 & 1 & 16.8 & If a modem rate 14.4 kbps or slower is \\
\hline & 1 & 0 & 0 & 0 & 19.2 & disabled manually. \\
\hline & 1 & 0 & 0 & 1 & 21.6 & Cross reference \\
\hline & 1 & 0 & 1 & 0 & 24.0 & \\
\hline & 1 & 0 & 1 & 1 & 26.4 & \\
\hline & 1 & 1 & 0 & 0 & 28.8 & \\
\hline & 1 & 1 & 0 & 1 & 31.2 & \\
\hline & 1 & 1 & 1 & 0 & 33.6 & \\
\hline & \multicolumn{5}{|l|}{Other settings - Not used} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|l|}
\hline \multicolumn{5}{|c|}{ G3 Switch 06 (SP No. 1-105-007) } \\
\hline No & \multicolumn{4}{|c|}{ Function } & \multicolumn{1}{c|}{ Comments } \\
\hline \multirow{6}{*}{\begin{tabular}{l} 
Modem types available for reception \\
The setting of these bits is used to inform the transmitting terminal of the available \\
modem type for the machine in receive mode. \\
If V.34 is not selected, V.8 protocol must be disabled manually. \\
Cross reference \\
V.8 protocol on/off - G3 switch 03, bit 2
\end{tabular}} \\
\hline & Bit 7 & Bit 6 & Bit 5 & Bit 4 & \\
\cline { 2 - 6 } & 0 & 0 & 0 & 1 & V.27ter \\
\hline & 0 & 0 & 1 & 0 & V.27ter, V.29 \\
\hline & 0 & 0 & 1 & 1 & V.27ter, V.29, V.33 \\
\hline & 0 & 1 & 0 & 0 & V.27ter, V.29, V.17/V.33 \\
\hline & 0 & 1 & 0 & 1 & V.27ter, V.29, V.17/V33, V.34 \\
\hline & & \\
\hline
\end{tabular}

\section*{Bit Switches - 4}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{G3 Switch 07 (SP No. 1-105-008)} \\
\hline No & \multicolumn{3}{|c|}{Function} & Comments \\
\hline \multirow{7}{*}{0-1} & \multicolumn{3}{|l|}{PSTN cable equalizer (tx mode: Internal)} & \multirow[t]{7}{*}{\begin{tabular}{l}
Use a higher setting if there is signal loss at higher frequencies because of the length of wire between the modem and the telephone exchange. \\
Use the dedicated transmission parameters for specific receivers. \\
Also, try using the cable equalizer if one or more of the following symptoms occurs. \\
Communication error \\
Modem rate fallback occurs frequently.
\(\square\) \\
- This setting is not effective in V. 34 communications.
\end{tabular}} \\
\hline & Bit 1 & Bit 0 & Setting & \\
\hline & 0 & 0 & None & \\
\hline & 0 & 1 & Low & \\
\hline & 1 & 0 & Medium & \\
\hline & 1 & 1 & High & \\
\hline & & & & \\
\hline \multirow{7}{*}{2-3} & \multicolumn{3}{|l|}{\begin{tabular}{l}
PSTN cable equalizer \\
(rx mode: Internal)
\end{tabular}} & \multirow[t]{7}{*}{\begin{tabular}{l}
Use a higher setting if there is signal loss at higher frequencies because of the length of wire between the modem and the telephone exchange. \\
Also, try using the cable equalizer if one or more of the following symptoms occurs. \\
Communication error with error codes such as 0-20, 0-23, etc. \\
Modem rate fallback occurs frequently.
\(\square\) \\
- This setting is not effective in V. 34 communications.
\end{tabular}} \\
\hline & Bit 3 & Bit & Setting & \\
\hline & 0 & & None & \\
\hline & 0 & & Low & \\
\hline & 1 & & Medium & \\
\hline & 1 & & High & \\
\hline & & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|c|}{ G3 Switch 07 (SP No. 1-105-008) } \\
\hline No & \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{c|}{ Comments } \\
\hline 4 & \begin{tabular}{l} 
PSTN cable equalizer \\
(V.8/V.17 rx mode: External) \\
0: Disabled \\
1: Enabled
\end{tabular} & Keep this bit at "1". \\
\hline 5 & Not used & \begin{tabular}{l} 
Parameter selection for the dial tone \\
detection \\
0: Normal parameter \\
1: Specific parameter
\end{tabular} \\
\hline 6 & \begin{tabular}{l} 
0: This uses a fixed table in ROM for the \\
1: This uses a SRAM value that can be \\
adjusted for the dial tone detection. \\
Select this if the dial tone cannot be \\
detected when "Normal parameter: 0" is \\
selected.
\end{tabular} \\
\hline 7 & Not used & Do not change the settings. \\
\hline
\end{tabular}

G3 Switch 08 - Not used (do not change the settings)

G3 Switch 09 - Not used (do not change the settings)

\section*{Bit Switches - 4}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{G3 Switch OA (SP No. 1-105-011)} \\
\hline No & \multicolumn{3}{|c|}{Function} & Comments \\
\hline \multirow{6}{*}{0-1} & \multicolumn{3}{|l|}{Maximum allowable carrier drop during image data reception} & \multirow{6}{*}{\begin{tabular}{l}
These bits set the acceptable modem carrier drop time. \\
Try a longer setting if error code 0-22 is frequent.
\end{tabular}} \\
\hline & Bit 1 & Bit 0 & Value (ms) & \\
\hline & 0 & 0 & 200 & \\
\hline & 0 & 1 & 400 & \\
\hline & 1 & 0 & 800 & \\
\hline & 1 & 1 & Not used & \\
\hline 2 & \multicolumn{3}{|l|}{\begin{tabular}{l}
Select cancellation of high-speed \(R X\) \\
if carrier signal lost while receiving \\
0: Off \\
1: On
\end{tabular}} & This switch setting determines if high-speed receiving ends if the carrier signal is lost when receiving during non-ECM mode \\
\hline 3 & \multicolumn{3}{|l|}{Not used} & Do not change the settings \\
\hline 4 & \multicolumn{3}{|l|}{Maximum allowable frame interval during image data reception.
\[
0: 5 \mathrm{~s} 1: 13 \mathrm{~s}
\]} & \begin{tabular}{l}
This bit set the maximum interval between EOL (end-of-line) signals and the maximum interval between ECM frames from the other end. \\
Try using a longer setting if error code \(0-21\) is frequent.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|c|}{ G3 Switch 0A (SP No. 1-105-011) } \\
\hline No & \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{c|}{ Comments } \\
\hline 5 & Not used & \begin{tabular}{l} 
Do not change the settings. \\
When the sending terminal is controlled \\
by computer, there may be a delay in \\
receiving page data after the local \\
machine accepts set-up data and sends \\
CFR. This is outside the T.30
\end{tabular} \\
\hline 6 & \begin{tabular}{l} 
Reconstruction time for the first line in \\
receive mode \\
\(0: 6 \mathrm{~s} \mathrm{1:12} \mathrm{~s}\) \\
recommendation. But, if this delay \\
occurs, set this bit to 1 to give the \\
sending machine more time to send data. \\
Refer to error code 0-20. \\
ITU-T T.30 recommendation: The first line \\
should come within 5 s of CFR.
\end{tabular} \\
\hline 7 & Not used & Do not change the settings. \\
\hline
\end{tabular}

G3 Switch OB Not used (do not change the settings).
G3 Switch 0C Not used (do not change the settings).

\section*{Bit Switches - 4}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{G3 Switch 0E (SP No. 1-105-015)} \\
\hline No & Function & Comments \\
\hline \multirow{3}{*}{0-7} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Set CNG send time interval \\
Some machines on the receiving side may not be able to automatically switch the 3 -second CNG interval.
\end{tabular}} \\
\hline & High order bit & \(3000-2250 \mathrm{~ms}\) : \(3000-50 \times \mathrm{Nms}\)
\[
\begin{aligned}
& 3000-50 \times \text { Nms } 0 F(3000 \mathrm{~ms}) \leq \mathrm{N} \leq \mathrm{FF}(2250 \\
& \mathrm{ms})
\end{aligned}
\] \\
\hline & Low order bit & \[
\begin{aligned}
& 00-0 \mathrm{E}(3000-3700 \mathrm{~ms}: 3000+50 \times \mathrm{Nms} \\
& 3000-50 \times \mathrm{Nms} 0 \mathrm{~F}(3000 \mathrm{~ms}) \leq \mathrm{N} \leq 0 \mathrm{~F}(3700 \\
& \mathrm{ms})
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|c|}{ G3 Switch OF (SP No. 1-105-016) } \\
\hline No & \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{c|}{ Comments } \\
\hline 0 & \begin{tabular}{l} 
Alarm when an error occurred \\
in Phase C or later \\
0: Disabled \\
1: Enabled
\end{tabular} & \begin{tabular}{l} 
If the customer wants to hear an alarm after each \\
error communication, change this bit to "1".
\end{tabular} \\
\hline 1 & \begin{tabular}{l} 
Alarm when the handset is \\
off-hook at the end of \\
communication \\
0: Disabled \\
1: Enabled
\end{tabular} & \begin{tabular}{l} 
If the customer wants to hear an alarm if the \\
handset is off-hook at the end of fax \\
communication, change this bit to "1".
\end{tabular} \\
\hline \(2-3\) & \begin{tabular}{l} 
Not used
\end{tabular} & \begin{tabular}{l} 
Sidaa manual calibration \\
setting \\
\(0: ~ O f f\) \\
\(1: ~ O n ~\)
\end{tabular}
\end{tabular}

\subsection*{4.7 BIT SWITCHES -5}
\(\downarrow\) Note
- Do not adjust a bit switch or use a setting that is described as "Not used", as this may cause the machine to malfunction or to operate in a manner that is not accepted by local regulations. Such bits are for use only in other areas, such as Japan.

Default settings for bit switches are not listed in this manual. Refer to the System Parameter List printed by the machine.

\subsection*{4.7.1 G3-2 AND G3-3 SWITCHES}

These switches require an optional G3 interface unit.
G3-2 and -3 switches are the same as for G3-1 switches.

\subsection*{4.7.2 G4 INTERNAL SWITCHES}

The G4 internal switches (SW00 to 1F) are displayed but do not change these settings.

\subsection*{4.7.3 G4 PARAMETER SWITCHES}

The G4 parameter switches (SW00 to OF) are displayed but do not change these settings.

\subsection*{4.8 BIT SWITCHES - 6}
- Do not adjust a bit switch or use a setting that is described as "Not used", as this may cause the machine to malfunction or to operate in a manner that is not accepted by local regulations. Such bits are for use only in other areas, such as Japan.

Default settings for bit switches are not listed in this manual. Refer to the System Parameter List printed by the machine.

\subsection*{4.8.1 IP FAX SWITCHES}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|c|}{ IP Fax Switch 00 (SP No. 1-111-001) } \\
\hline No. & \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{c|}{ Comments } \\
\hline 0 & Not used & Do not change this setting. \\
\hline 1 & \begin{tabular}{l} 
IP Fax Transport \\
\(0:\) TCP, 1: UDP
\end{tabular} & Selects TCP or UDP protocol for IP-Fax \\
\hline 2 & \begin{tabular}{l} 
IP Fax single port selection \\
0: OFF, 1: ON (enable)
\end{tabular} & Selects single data port. \\
\hline 3 & \begin{tabular}{l} 
IP Fax double ports (single data \\
port) selection \\
0: OFF, 1: ON (enable)
\end{tabular} & Selects whether IP-Fax uses a double port. \\
\hline 4 & \begin{tabular}{l} 
IP Fax Gatekeeper \\
0: OFF, 1: ON (enable)
\end{tabular} & Enables/disables the gatekeeper for IP-Fax. \\
\hline 5 & \begin{tabular}{l} 
IP Fax T30 bit signal reverse \\
0: LSB first, 1: MSB first
\end{tabular} & Reverses the T30 bit signal. \\
\hline 6 & \begin{tabular}{l} 
IP Fax max bit rate setting \\
0: Not affected, 1: Affected
\end{tabular} & \begin{tabular}{l} 
When "0" is selected, the max bit rate does \\
not affect the value of the DIS/DCS. \\
When "1" is selected, the max bit rate \\
affects the value of the DIS/DCS.
\end{tabular} \\
\hline
\end{tabular}

Bit Switches - 6
IP Fax Switch 00 (SP No. 1-111-001)
\begin{tabular}{|l|l|l|}
\hline No. & \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{c|}{ Comments } \\
\hline 7 & & \begin{tabular}{l} 
When "0" is selected, fax data is received \\
without checking the telephone number. \\
When "1" is selected, fax data is received \\
IP Fax received telephone number \\
confirmation \\
0: No confirmation, 1: Confirmation when confirming that the telephone \\
number from the sender matches the \\
registered telephone number in this \\
machine. If this confirmation fails, the line is \\
disconnected.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{IP Fax Switch 01 (SP No. 1-111-002)} \\
\hline No. & \multicolumn{3}{|c|}{Function} & \multicolumn{2}{|c|}{Comments} \\
\hline \multirow{6}{*}{0-3} & \multicolumn{5}{|l|}{\begin{tabular}{l}
IP Fax delay level setting \\
Selects the acceptable delay level. \\
Level 0 is the highest quality \\
Default is " 0000 " (level 0 ).
\end{tabular}} \\
\hline & Bit 3 & Bit 2 & Bit 1 & Bit 0 & \\
\hline & 0 & 0 & 0 & 0 & Level 0 \\
\hline & 0 & 0 & 0 & 1 & Level 1 \\
\hline & 0 & 0 & 1 & 0 & Level 2 \\
\hline & 0 & 0 & 1 & 1 & Level 3 \\
\hline 4-7 & \multicolumn{3}{|l|}{IP Fax preamble wait time setting} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Selects the preamble wait time. \\
[ 00 to 0f] \\
There are 16 values in this 4-bit binary switch combination. \\
Waiting time: set value level x 100 ms Max: Of ( 1500 ms ) Min: 00 (No wait time) The default is " 0000 " \((00 \mathrm{H})\).
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|c|}{ IP Fax Switch 02 (SP No. 1-111-003) } \\
\hline No. & \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{c|}{ Comments } \\
\hline 0 & \begin{tabular}{l} 
IP Fax bit signal reverse setting \\
0: Maker code setting \\
1: Internal bit switch setting
\end{tabular} & \begin{tabular}{l} 
When "0" is selected, the bit signal reverse \\
method is decided by the maker code. \\
When "1" is selected, the bit signal reverse \\
method is decided by the internal bit switch. \\
When communicating between IP Fax \\
devices, LSB first is selected.)
\end{tabular} \\
\hline 1 & \begin{tabular}{l} 
IP Fax transmission speed setting \\
0: Modem speed \\
1: No limitation
\end{tabular} & \begin{tabular}{l} 
Selects the transmit speed for IP Fax \\
communication.
\end{tabular} \\
\hline SIP transport setting \\
0: TCP \\
1: UDP & \begin{tabular}{l} 
CCM connection \\
0: No CCM connection \\
1: CCM connection
\end{tabular} & \begin{tabular}{l} 
This bit switch sets the transport that has \\
priority for receiving IP Fax data. \\
This function is activated only when the
\end{tabular} \\
sender has both TCP and UDP.
\end{tabular}
\begin{tabular}{|c|l|l|}
\hline \multicolumn{3}{|c|}{ IP Fax Switch 02 (SP No. 1-111-003) } \\
\hline No. & \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{c|}{ Comments } \\
\hline 5 & \begin{tabular}{l} 
ECM communication setting \\
0: No limit for image compression \\
1: Limit for image compression
\end{tabular} & \begin{tabular}{l} 
0: This does not limit the type of the image \\
compression with ECM communication. \\
1: When the other end machine is Ciscco, \\
this permits the image compression other \\
than JBIG or MMR with ECM \\
communication.
\end{tabular} \\
\hline \(6-7\) & Not used & Do not change these settings. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{IP Fax Switch 03 (SP No. 1-111-004)} \\
\hline No. & Function & Comments \\
\hline 0 & Effective field limitation for G3 standard function information 0: OFF, 1: 4byte (DIS) & Limits the effective field for standard G3 function information. \\
\hline 1 & \begin{tabular}{l}
Switching between G3 standard and G3 non standard \\
0 : Enable switching \\
1: G3 standard only
\end{tabular} & Enables/disables switching between G3 standard and G3 non-standard. \\
\hline 2 & \begin{tabular}{l}
Al modem rate function \\
0: OFF, 1: ON (enable)
\end{tabular} & Enables/disables the AI modem rate. \\
\hline 3 & \begin{tabular}{l}
ECM frame size selection at transmitting \\
0: 256byte, 1: 64byte
\end{tabular} & Selects the ECM frame size for sending. \\
\hline 4 & \begin{tabular}{l}
DIS detection times for echo prevention \\
0: 1 time, 1: 2 times
\end{tabular} & Sets the number of times for DIS to detect echoes. \\
\hline 5 & \begin{tabular}{l}
CTC transmission selection \\
0: PPRx1 \\
1: PPRx4
\end{tabular} & \begin{tabular}{l}
When " 0 " is selected, the transmission condition is decided by error frame numbers. \\
When " 1 " is selected, the transmission condition is based on the ITU-T method.
\end{tabular} \\
\hline 6 & \begin{tabular}{l}
Shift down setting at receiving negative code \\
0: OFF, 1: ON
\end{tabular} & Selects whether to shift down when negative codes are received. \\
\hline 7 & Not used & Do not change this setting. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|c|}{ IP Fax Switch 04 (SP No. 1-111-005) } \\
\hline No. & \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{c|}{ Comments } \\
\hline \(0-3\) & TCF error threshold & \begin{tabular}{l} 
Sets the TCF error threshold level. [00 to 0f] \\
The default is "1111" (0fH).
\end{tabular} \\
\hline \(4-7\) & Not used & Do not change these settings. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{IP Fax Switch 05 (SP No. 1-111-006)} \\
\hline No. & \multicolumn{5}{|c|}{Function} & Comments \\
\hline \multirow{16}{*}{0-3} & \multicolumn{5}{|l|}{Modem bit rate setting for transmission (kbps)} & \multirow{16}{*}{Sets the modem bit rate for transmission. The default is "0110" ( 14.4 K bps ).} \\
\hline & Bit 3 & Bit 2 & Bit 1 & Bit 0 & kbps & \\
\hline & 0 & 0 & 0 & 1 & 2.4 & \\
\hline & 0 & 0 & 1 & 1 & 4.8 & \\
\hline & 0 & 0 & 1 & 1 & 7.2 & \\
\hline & 0 & 1 & 0 & 0 & 9.6 & \\
\hline & 0 & 1 & 0 & 1 & 12.0 & \\
\hline & 0 & 1 & 1 & 0 & 14.4 & \\
\hline & 0 & 1 & 1 & 1 & 16.8 & \\
\hline & 1 & 0 & 0 & 0 & 19.2 & \\
\hline & 1 & 0 & 0 & 1 & 21.6 & \\
\hline & 1 & 0 & 1 & 0 & 24.0 & \\
\hline & 1 & 0 & 1 & 1 & 26.4 & \\
\hline & 1 & 1 & 0 & 0 & 28.8 & \\
\hline & 1 & 1 & 0 & 1 & 31.2 & \\
\hline & 1 & 1 & 1 & 0 & 33.6 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{IP Fax Switch 05 (SP No. 1-111-006)} \\
\hline No. & \multicolumn{3}{|c|}{Function} & Comments \\
\hline \multirow{6}{*}{4-5} & \multicolumn{3}{|l|}{Modem setting for transmission} & \multirow{6}{*}{\begin{tabular}{l}
Sets the modem type for transmission. \\
The default is "00" (V29).
\end{tabular}} \\
\hline & Bit 5 & Bit 4 & Types & \\
\hline & 0 & 0 & V29 & \\
\hline & 0 & 1 & V17 & \\
\hline & 1 & 0 & V34 & \\
\hline & 1 & 1 & Not used & \\
\hline 6-7 & Not used & & & Do not change these settings. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{IP Fax Switch 06 (SP No. 1-111-007)} \\
\hline No. & \multicolumn{3}{|c|}{Function} & \multicolumn{2}{|r|}{Comments} \\
\hline 0-3 & \multicolumn{5}{|l|}{\begin{tabular}{l}
Modem bit rate setting for reception \\
Sets the modem bit rate for reception. The default is " 0110 " ( 14.4 K bps).
\end{tabular}} \\
\hline \multirow{7}{*}{4-7} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Modem setting for reception \\
Sets the modem type for reception. The default is "0100" (V27ter, V29, V17).
\end{tabular}} \\
\hline & Bit 7 & Bit 6 & Bit 5 & Bit 4 & Types \\
\hline & 0 & 0 & 0 & 1 & V.27ter \\
\hline & 0 & 0 & 1 & 0 & V.27ter, V. 29 \\
\hline & 0 & 0 & 1 & 1 & V.27ter, V.29, V. 33 \\
\hline & 0 & 1 & 0 & 0 & V.27ter, V.29, V.17/V. 33 \\
\hline & \multicolumn{5}{|l|}{Other settings - Not used} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|c|}{ IP Fax Switch 07 (SP No. 1-111-008) } \\
\hline No. & \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{c|}{ Comments } \\
\hline 0 & \begin{tabular}{l} 
TSI information \\
0: Not added, 1: Added
\end{tabular} & \begin{tabular}{l} 
Adds or does not add TSI information to \\
NSS(S).
\end{tabular} \\
\hline 1 & \begin{tabular}{l} 
DCN transmission setting at T1 \\
timeout \\
\(0:\) Not transmitted \\
1: Transmitted
\end{tabular} & \begin{tabular}{l} 
Transmits or does not transmit DCN at T1 \\
timeout.
\end{tabular} \\
\hline 2 & \begin{tabular}{l} 
Not used \\
Hang up setting at DIS reception \\
disabled \\
0: No hang up \\
1: Hang up after transmitting DCN
\end{tabular} & \begin{tabular}{l} 
Sets whether the machine disconnects after \\
DIS reception.
\end{tabular} \\
\hline 4 & \begin{tabular}{l} 
Number of times for training \\
0: 1 time, 1: 2 times
\end{tabular} & \begin{tabular}{l} 
Selects the number of times training is done \\
at the same bit rate.
\end{tabular} \\
\hline 5 & \begin{tabular}{l} 
Space CSI transmission setting at \\
no CSI registration \\
0: Not transmitted \\
1: Transmitted
\end{tabular} & \begin{tabular}{l} 
When "0" is selected, frame data is enabled. \\
When "1" is selected, the transmitted data is
\end{tabular} \\
all spaces. \\
\hline \(6-7\) & Not used & Do not change these settings. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{IP Fax Switch 08 (SP No. 1-111-009)} \\
\hline No. & \multicolumn{3}{|c|}{Function} & Comments \\
\hline \multirow{6}{*}{0-1} & \multicolumn{3}{|l|}{T1 timer adjustment} & \multirow{6}{*}{\begin{tabular}{l}
Adjusts the T1 timer. \\
The default is " 00 " ( 35 seconds).
\end{tabular}} \\
\hline & Bit 1 & Bit 0 & & \\
\hline & 0 & 0 & 35 s & \\
\hline & 0 & 1 & 40 s & \\
\hline & 1 & 0 & 50 s & \\
\hline & 1 & 1 & 60 s & \\
\hline \multirow{6}{*}{2-3} & \multicolumn{3}{|l|}{T4 timer adjustment} & \multirow{6}{*}{\begin{tabular}{l}
Adjust the T4 timer. \\
The default is " 00 " ( 3 seconds).
\end{tabular}} \\
\hline & Bit 3 & Bit 2 & & \\
\hline & 0 & 0 & 3 s & \\
\hline & 0 & 1 & 3.5 s & \\
\hline & 1 & 0 & 4 s & \\
\hline & 1 & 1 & 5 s & \\
\hline \multirow{6}{*}{4-5} & \multicolumn{3}{|l|}{T0 timer adjustment} & \multirow{6}{*}{\begin{tabular}{l}
Adjusts the fail safe timer. This timer sets the interval between "setup" data transmission and T. 38 phase decision. If your destination return is late on the network or G3 fax return is late, adjust the longer interval timer. \\
The default is " 00 " ( 75 seconds).
\end{tabular}} \\
\hline & Bit 5 & Bit 4 & & \\
\hline & 0 & 0 & 75 s & \\
\hline & 0 & 1 & 120 s & \\
\hline & 1 & 0 & 180 s & \\
\hline & 1 & 1 & 240 s & \\
\hline 6-7 & \multicolumn{3}{|l|}{Not used} & Do not change these settings. \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|}
\hline \multicolumn{3}{|c|}{ IP Fax Switch 09 (SP No. 1-111-010) } \\
\hline No. & \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{c|}{ Comments } \\
\hline 0 & \begin{tabular}{l} 
Network I/F setting for SIP \\
connection \\
\(0:\) IPv4 \\
1: IPv6.
\end{tabular} & \begin{tabular}{l} 
Selects the connection type (IPV4 or IPV6) \\
to connect to the SIP server.
\end{tabular} \\
\hline 1 & \begin{tabular}{l} 
Network I/F setting for Fax \\
communication \\
0: Same setting as SIP server \\
connection \\
1: Automatic setting
\end{tabular} & \begin{tabular}{l} 
0: The I/F setting for fax communication \\
follows the setting for SIP server \\
connection. \\
1: The negotiation between the SIP server \\
and the device decides whether IPv4 or
\end{tabular} \\
\hline 2 & \begin{tabular}{l} 
Record-route setting \\
0: Disable \\
1: Enable
\end{tabular} & \begin{tabular}{l} 
IPv ised for the I/F setting for fax \\
communication.
\end{tabular} \\
\hline 3-7 & Not used. & \begin{tabular}{l} 
0: Disables the record-route function of the \\
SIP server. \\
1: Enables the record-route function of the \\
SIP server.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{4.9 NCU PARAMETERS}

The following tables give the RAM addresses and the parameter calculation units that the machine uses for ringing signal detection and automatic dialing. The factory settings for each country are also given. Most of these must be changed by RAM read/write (SP2-102), but some can be changed using NCU Parameter programming (SP2-103, 104 and 105); if SP2-103, 104 and 105 can be used, this will be indicated in the Remarks column. The RAM is programmed in hex code unless (BCD) is included in the Unit column.
- The following addresses describe settings for the standard NCU.
- Change the fourth digit from " 5 " to "6" (e.g. 680500 to 680600 ) for the settings for the first optional G3 interface unit and from "5" to "7" (e.g. 680700) for the settings for the second optional G3 interface unit.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Address & \multicolumn{3}{|c|}{Function} & Unit & \multicolumn{2}{|l|}{Remarks} \\
\hline \multirow{11}{*}{680500} & \multicolumn{3}{|l|}{Country/Area code for NCU parameters} & & & \\
\hline & \multicolumn{6}{|l|}{Use the Hex value to program the country/area code directly into this address, or use the decimal value to program it using SP2-103-001} \\
\hline & Country/Area & Decimal & Hex & Country/Area & Decimal & Hex \\
\hline & France & 00 & 00 & Hong Kong & 20 & 14 \\
\hline & Germany & 01 & 01 & South Africa & 21 & 15 \\
\hline & UK & 02 & 02 & Australia & 22 & 16 \\
\hline & Italy & 03 & 03 & New Zealand & 23 & 17 \\
\hline & Austria & 04 & 04 & S'pore & 24 & 18 \\
\hline & Belgium & 05 & 05 & Malaysia & 25 & 19 \\
\hline & Denmark & 06 & 06 & China & 26 & 1A \\
\hline & Finland & 07 & 07 & Taiwan & 27 & 1B \\
\hline
\end{tabular}

NCU Parameters


NCU Parameters
\begin{tabular}{|c|c|c|c|}
\hline Address & Function & Unit & Remarks \\
\hline 68050A & PSTN dial tone reset time (HIGH) & & \multirow[t]{3}{*}{\begin{tabular}{l}
the pause time (address 68050D / 68050E). \\
Italy: See Note 2.
\end{tabular}} \\
\hline 68050B & PSTN dial tone continuous tone time & & \\
\hline 68050C & PSTN dial tone permissible drop time & & \\
\hline 68050D & PSTN wait interval (LOW) & & \\
\hline 68050E & PSTN wait interval (HIGH) & & \\
\hline 68050F & PSTN ring-back tone detection time & 20 ms & Detection is disabled if this contains FF. \\
\hline 680510 & PSTN ring-back tone off detection time & 20 ms & \\
\hline 680511 & PSTN detection time for silent period after ring-back tone detected (LOW) & 20 ms & \\
\hline 680512 & PSTN detection time for silent period after ring-back tone detected (HIGH) & 20 ms & \\
\hline 680513 & PSTN busy tone frequency upper limit (high byte) & \multirow{2}{*}{Hz (BCD)} & \multirow[t]{2}{*}{If both addresses contain \(\mathrm{FF}(\mathrm{H})\), tone detection is disabled.} \\
\hline 680514 & PSTN busy tone frequency upper limit (low byte) & & \\
\hline 680515 & PSTN busy tone frequency lower limit (high byte) & \multirow{2}{*}{Hz (BCD)} & \multirow[t]{2}{*}{If both addresses contain \(\mathrm{FF}(\mathrm{H})\), tone detection is disabled.} \\
\hline 680516 & PSTN busy tone frequency lower limit (low byte) & & \\
\hline 680517 & PABX dial tone frequency upper limit (high byte) & \multirow{2}{*}{Hz (BCD)} & \multirow[t]{2}{*}{If both addresses contain \(\mathrm{FF}(\mathrm{H})\), tone detection is disabled.} \\
\hline 680518 & PABX dial tone frequency upper limit (low byte) & & \\
\hline 680519 & PABX dial tone frequency lower limit (high byte) & Hz (BCD) & If both addresses contain \(\mathrm{FF}(\mathrm{H})\), tone detection is \\
\hline
\end{tabular}

NCU Parameters
\begin{tabular}{|c|c|c|c|}
\hline Address & Function & Unit & Remarks \\
\hline 68051A & PABX dial tone frequency lower limit (low byte) & & disabled. \\
\hline 68051B & PABX dial tone detection time & \multirow{7}{*}{20 ms} & \multirow{5}{*}{If 68051 B contains FF, the machine pauses for the pause time (680520 / 680521).} \\
\hline 68051C & PABX dial tone reset time (LOW) & & \\
\hline 68051D & PABX dial tone reset time (HIGH) & & \\
\hline 68051E & PABX dial tone continuous tone time & & \\
\hline 68051F & PABX dial tone permissible drop time & & \\
\hline 680520 & PABX wait interval (LOW) & & \\
\hline 680521 & PABX wait interval (HIGH) & & \\
\hline 680522 & PABX ringback tone detection time & 20 ms & If both addresses contain \\
\hline 680523 & PABX ringback tone off detection time & 20 ms & disabled. \\
\hline 680524 & PABX detection time for silent period after ringback tone detected (LOW) & 20 ms & \multirow[t]{2}{*}{If both addresses contain \(\mathrm{FF}(\mathrm{H})\), tone detection is disabled.} \\
\hline 680525 & PABX detection time for silent period after ringback tone detected (HIGH) & 20 ms & \\
\hline 680526 & PABX busy tone frequency upper limit (high byte) & \multirow{2}{*}{Hz (BCD)} & \multirow[t]{2}{*}{If both addresses contain \(\mathrm{FF}(\mathrm{H})\), tone detection is disabled.} \\
\hline 680527 & PABX busy tone frequency upper limit (low byte) & & \\
\hline 680528 & PABX busy tone frequency lower limit (high byte) & \multirow{2}{*}{Hz (BCD)} & \multirow[t]{2}{*}{If both addresses contain \(\mathrm{FF}(\mathrm{H})\), tone detection is disabled.} \\
\hline 680529 & PABX busy tone frequency lower limit (low byte) & & \\
\hline 68052A & Busy tone ON time: range 1 & 20 ms & \\
\hline
\end{tabular}

NCU Parameters


NCU Parameters
\begin{tabular}{|c|c|c|c|}
\hline Address & Function & Unit & Remarks \\
\hline 680536 & International dial tone frequency lower limit (high byte) & \multirow{2}{*}{Hz (BCD)} & \multirow[t]{2}{*}{If both addresses contain \(\mathrm{FF}(\mathrm{H})\), tone detection is disabled.} \\
\hline 680537 & International dial tone frequency lower limit (low byte) & & \\
\hline 680538 & International dial tone detection time & \multirow{7}{*}{20 ms} & \multirow{5}{*}{\begin{tabular}{l}
If 680538 contains FF , the machine pauses for the pause time (68053D / 68053E). \\
Belgium: See Note 2.
\end{tabular}} \\
\hline 680539 & International dial tone reset time (LOW) & & \\
\hline 68053A & International dial tone reset time (HIGH) & & \\
\hline 68053B & International dial tone continuous tone time & & \\
\hline 68053C & International dial tone permissible drop time & & \\
\hline 68053D & International dial wait interval (LOW) & & \\
\hline 68053E & International dial wait interval (HIGH) & & \\
\hline 68053F & Country dial tone upper frequency limit (HIGH) & \multirow{4}{*}{Hz (BCD)} & \multirow[t]{2}{*}{If both addresses contain \(\mathrm{FF}(\mathrm{H})\), tone detection is disabled.} \\
\hline 680540 & Country dial tone upper frequency limit (LOW) & & \\
\hline 680541 & Country dial tone lower frequency limit (HIGH) & & \multirow[t]{2}{*}{If both addresses contain \(\mathrm{FF}(\mathrm{H})\), tone detection is disabled.} \\
\hline 680542 & Country dial tone lower frequency limit (LOW) & & \\
\hline
\end{tabular}

NCU Parameters


NCU Parameters
\begin{tabular}{|c|c|c|c|}
\hline Address & Function & Unit & Remarks \\
\hline 68054F & Time waited when a pause is entered at the operation panel & & SP2-103-017 (parameter 16). See Note 3. \\
\hline 680550 & DTMF tone on time & & SP2-103-018 (parameter 17). \\
\hline 680551 & DTMF tone off time & & SP2-103-019 (parameter 18). \\
\hline 680552 & Tone attenuation level of DTMF signals while dialing & \[
\begin{array}{ll}
-\mathrm{N} \times 0.5 & -3.5 \\
\mathrm{dBm} &
\end{array}
\] & \begin{tabular}{l}
SP2-103-020 (parameter 19). \\
See Note 5.
\end{tabular} \\
\hline 680553 & Tone attenuation value difference between high frequency tone and low frequency tone in DTMF signals & -dBm x 0.5 & \begin{tabular}{l}
SP2-103-021 (parameter 20). \\
The setting must be less than -5 dBm , and should not exceed the setting at 680552h above. \\
See Note 5.
\end{tabular} \\
\hline 680554 & PSTN: DTMF tone attenuation level after dialling & \[
\begin{array}{lll}
-\mathrm{N} \times 0.5 & -3.5 \\
\mathrm{dBm} &
\end{array}
\] & \begin{tabular}{l}
SP2-103-022 (parameter \\
21). See Note 5.
\end{tabular} \\
\hline 680555 & ISDN: DTMF tone attenuation level after dialling & -dBm x 0.5 & See Note 5 \\
\hline 680556 & Not used & & Do not change the settings. \\
\hline 680557 & Time between 68054Dh (NCU parameter 14) and 68054Eh (NCU parameter 15) & 1 ms & This parameter takes effect when the country code is set to France. \\
\hline 680558 & Not used & & Do not change the setting. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Address & Function & \multicolumn{2}{|l|}{Unit} & \multicolumn{2}{|l|}{Remarks} \\
\hline 680559 & Grounding time (ground start mode) & \multicolumn{2}{|l|}{20 ms} & \multicolumn{2}{|l|}{The Gs relay is closed for this interval.} \\
\hline 68055A & Break time (flash start mode) & \multicolumn{2}{|l|}{\(1 \mathrm{~ms} \quad{ }^{\text {a }}\)} & \multicolumn{2}{|l|}{The OHDI relay is open for this interval.} \\
\hline 68055B & International dial access code (High) & \multirow[t]{2}{*}{BCD} & \multicolumn{3}{|l|}{\begin{tabular}{l}
For a code of 100: \\
68055B - F1
\end{tabular}} \\
\hline 68055C & International dial access code (Low) & & \multicolumn{3}{|l|}{68055C - 00} \\
\hline 68055D & PSTN access pause time & 20 ms &  & e is w use in access conta se tim 6805 set a n in the & \begin{tabular}{l}
for \\
after the \\
e. If this \\
FF[H], \\
red in \\
is used. \\
er more
\end{tabular} \\
\hline \multirow{6}{*}{68055E} & \multirow{6}{*}{Progress tone detection level, and cadence detection enable flags} & Bit 7 & Bit 6 & Bit 5 & dBm \\
\hline & & 0 & 0 & 0 & -25.0 \\
\hline & & 0 & 0 & 1 & -35.0 \\
\hline & & 0 & 1 & 0 & -30.0 \\
\hline & & 1 & 0 & 0 & -40.0 \\
\hline & & \multicolumn{4}{|l|}{Bits 2, 0 - See Note 2.} \\
\hline \[
\begin{aligned}
& 68055 \mathrm{~F} \\
& \text { to } \\
& 680564
\end{aligned}
\] & Not used & & \multicolumn{3}{|l|}{Do not change the settings.} \\
\hline
\end{tabular}

NCU Parameters
\begin{tabular}{|c|c|c|c|}
\hline Address & Function & Unit & Remarks \\
\hline 680565 & Long distance call prefix (HIGH) & \(B C D\) & \multirow[t]{2}{*}{For a code of 0 :
\[
\begin{aligned}
& 680565-\text { FF } \\
& 680566 \text { - FF }
\end{aligned}
\]} \\
\hline 680566 & Long distance call prefix (LOW) & BCD & \\
\hline \begin{tabular}{l}
680567 \\
to \\
680571
\end{tabular} & Not used & & Do not change the settings. \\
\hline 680572 & \begin{tabular}{l}
Acceptable ringing signal \\
frequency: range 1, upper limit
\end{tabular} & \multirow{4}{*}{1000/ N (Hz).} & SP2-103-003 (parameter
02). \\
\hline 680573 & Acceptable ringing signal frequency: range 1 , lower limit & & SP2-103-004 (parameter 03). \\
\hline 680574 & Acceptable ringing signal frequency: range 2, upper limit & & SP2-103-005 (parameter
04). \\
\hline 680575 & Acceptable ringing signal frequency: range 2 , lower limit & & SP2-103-006 (parameter 05). \\
\hline 680576 & Number of rings until a call is detected & 1 & \begin{tabular}{l}
SP2-103-007 (parameter 06). \\
The setting must not be zero.
\end{tabular} \\
\hline 680577 & Minimum required length of the first ring & 20 ms & \begin{tabular}{l}
See Note 4. \\
SP2-103-008 (parameter 07).
\end{tabular} \\
\hline 680578 & Minimum required length of the second and subsequent rings & 20 ms & SP2-103-009 (parameter 08). \\
\hline 680579 & Ringing signal detection reset time (LOW) & \multirow{2}{*}{20 ms} & SP2-103-010 (parameter 09). \\
\hline 68057A & Ringing signal detection reset time (HIGH) & & SP2-103-011 (parameter
10). \\
\hline
\end{tabular}

NCU Parameters
\begin{tabular}{|l|l|l|l|}
\hline Address & \multicolumn{2}{|c|}{ Function } & Unit \\
\hline \begin{tabular}{l} 
68057B \\
to \\
680580
\end{tabular} & Not used & \multicolumn{1}{c|}{ Remarks } \\
\hline \multirow{5}{*}{\begin{tabular}{l} 
Interval between dialing the last \\
digit and switching the Oh relay \\
over to the external telephone \\
when dialing from the operation \\
panel in handset mode.
\end{tabular}} & 20 ms & Do not change the \\
settings.
\end{tabular}

NCU Parameters
\begin{tabular}{|c|c|c|c|}
\hline Address & Function & Unit & Remarks \\
\hline 6805A1 & Acceptable CED detection frequency upper limit (high byte) & \multirow{2}{*}{\(B C D(H z)\)} & \multirow[t]{2}{*}{If both addresses contain \(\mathrm{FF}(\mathrm{H})\), tone detection is disabled.} \\
\hline 6805A2 & Acceptable CED detection frequency upper limit (low byte) & & \\
\hline 6805A3 & Acceptable CED detection frequency lower limit (high byte) & \multirow{2}{*}{BCD (Hz)} & \multirow[t]{2}{*}{If both addresses contain \(\operatorname{FF}(\mathrm{H})\), tone detection is disabled.} \\
\hline 6805A4 & Acceptable CED detection frequency lower limit (low byte) & & \\
\hline 6805A5 & CED detection time & \[
\begin{array}{|l}
20 \mathrm{~ms} \\
\pm 20 \mathrm{~ms}
\end{array}
\] & Factory setting: 200 ms \\
\hline 6805A6 & Acceptable CNG detection frequency upper limit (high byte) & \multirow{2}{*}{\(B C D(H z)\)} & \multirow[t]{2}{*}{If both addresses contain \(\mathrm{FF}(\mathrm{H})\), tone detection is disabled.} \\
\hline 6805A7 & Acceptable CNG detection frequency upper limit (low byte) & & \\
\hline 6805A8 & Acceptable CNG detection frequency lower limit (high byte) & \multirow{2}{*}{\(B C D(H z)\)} & \multirow[t]{2}{*}{If both addresses contain \(\mathrm{FF}(\mathrm{H})\), tone detection is disabled.} \\
\hline 6805A9 & Acceptable CNG detection frequency lower limit (low byte) & & \\
\hline 6805AA & Not used & & Do not change the setting. \\
\hline 6805AB & CNG on time & 20 ms & Factory setting: 500 ms \\
\hline 6805AC & CNG off time & 20 ms & Factory setting: 3000 ms \\
\hline
\end{tabular}

NCU Parameters
\begin{tabular}{|l|l|l|l|}
\hline Address & \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{|c|}{ Unit } & \multicolumn{1}{c|}{ Remarks } \\
\hline 6805AD & \begin{tabular}{l} 
Number of CNG cycles required \\
for detection
\end{tabular} & & \begin{tabular}{l} 
The data is coded in the \\
same way as address \\
680533.
\end{tabular} \\
\hline 6805AE & Not used & \begin{tabular}{l} 
Do not change the \\
settings.
\end{tabular} \\
\hline 6805AF & \begin{tabular}{l} 
Acceptable AI short protocol \\
tone (800Hz) detection \\
frequency upper limit (high byte)
\end{tabular} & Hz (BCD) & \begin{tabular}{l} 
FF(H), tone detection is \\
disabled.
\end{tabular} \\
\hline 6805B0 & \begin{tabular}{l} 
Acceptable AI short protocol \\
tone (800Hz) detection \\
frequency upper limit (low byte)
\end{tabular} & \begin{tabular}{l} 
Acceptable AI short protocol \\
tone (800Hz) detection \\
frequency lower limit (high byte)
\end{tabular} & Hz(BCD)
\end{tabular}

NCU Parameters
\begin{tabular}{|c|c|c|c|}
\hline Address & Function & Unit & Remarks \\
\hline 6805B7 & PABX: Tx level from the modem & - dBm & \\
\hline 6805B8 & PABX: 1100 Hz tone transmission level & \multicolumn{2}{|l|}{- N 6805B7-0.5N 6805B8 (dB)} \\
\hline 6805B9 & PABX: 2100 Hz tone transmission level & \multicolumn{2}{|l|}{- N 6805B7-0.5N 6805B9 (dB)} \\
\hline 6805BD & Modem turn-on level (incoming signal detection level) & \[
\begin{aligned}
& -37-0.5 \mathrm{~N} \\
& (\mathrm{dBm})
\end{aligned}
\] & \\
\hline  & Not used & & Do not change the settings. \\
\hline 6805C7 & \multicolumn{3}{|l|}{\begin{tabular}{l}
Bits 0 to 3 - Not used. \\
Bit 4 - V. 34 protocol dump-0: Simple, 1: Detailed (default) Bits 5 to 7 - Not used.
\end{tabular}} \\
\hline 6805C8 to 6805D9 & Not used & & Do not change the settings. \\
\hline 6805DA & T. 30 T1 timer & 1 s & \\
\hline 6805E0 bit 3 & Maximum wait time for post message & \[
\begin{aligned}
& 0: 12 \mathrm{~s} \\
& 1: 30 \mathrm{~s}
\end{aligned}
\] & \begin{tabular}{l}
1: Maximum wait time for post message (EOP/EOM/MPS) can be changed to 30 s . \\
Change this bit to "1" if communication errors occur frequently during V. 17 reception.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Address & \multicolumn{5}{|c|}{Function} & & Unit & Remarks \\
\hline \multirow{8}{*}{6805E3} & \multicolumn{5}{|l|}{Voltage setting to detect off-hook for voltage/DP detection for an externally connected line.} & \multicolumn{2}{|l|}{\begin{tabular}{l}
0 : Auto \\
1: Fixed V
\end{tabular}} & \multirow[t]{2}{*}{Do not change these settings} \\
\hline & \multicolumn{7}{|l|}{Here is a summary of the fixed voltage settings (1: Fixed) for an externally connected line.} & \\
\hline & Bit 7 & Bit 6 & \multicolumn{2}{|l|}{Bit 5} & \multicolumn{2}{|l|}{Bit 4} & & \\
\hline & 0 & 0 & \multicolumn{2}{|l|}{0} & 0 & \multicolumn{2}{|r|}{Not used} & \\
\hline & 0 & 0 & \multicolumn{2}{|l|}{0} & 1 & \multicolumn{2}{|c|}{2.75 V} & \\
\hline & 0 & 0 & \multicolumn{2}{|l|}{1} & 0 & \multicolumn{2}{|c|}{5.5 V} & \\
\hline & 1 & 0 & \multicolumn{2}{|l|}{0} & 0 & \multicolumn{2}{|c|}{22 V} & \\
\hline & 1 & 1 & \multicolumn{2}{|l|}{1} & 1 & \multicolumn{2}{|r|}{41.25 V} & \\
\hline \multirow{4}{*}{6805E4} & \multicolumn{3}{|l|}{\multirow{4}{*}{Bit 1 sets the level of the call signal, Bit 3 sets the call signal impedance}} & \multirow{2}{*}{Bit 1} & \multicolumn{2}{|l|}{0} & RT=0 (Low) & \\
\hline & & & & & 1 & & RT=1 (High & \\
\hline & & & & & 0 & & RZ=0 (High) & \\
\hline & & & & Bit 3 & 1 & & \begin{tabular}{l}
\[
R Z=1
\] \\
(Composite)
\end{tabular} & \\
\hline
\end{tabular}

NCU Parameters
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Address & \multicolumn{5}{|c|}{Function} & Unit & Remarks \\
\hline \multirow{11}{*}{6805E5} & \multicolumn{3}{|l|}{\multirow[t]{4}{*}{Bit 0 sets the ring detection method, Bit 1 sets the ring detection method when fixed.}} & \multirow{2}{*}{Bit 0} & 0 & RT=0 (Low) & \multirow{4}{*}{If any setting is changed, select a setting that is higher than the default setting.} \\
\hline & & & & & 1 & RT=1 (High & \\
\hline & & & & \multirow{2}{*}{Bit 1} & 0 & Use RDTP & \\
\hline & & & & & 1 & Use RDTN & \\
\hline & \multicolumn{6}{|l|}{Here is a summary of the voltages for the detection of off-hook for DP detection.} & \\
\hline & Bit 7 & Bit 6 & Bit 5 & \multicolumn{2}{|r|}{Bit 4} & & \\
\hline & 0 & 0 & 0 & \multicolumn{2}{|c|}{0} & Not used & \\
\hline & 0 & 0 & 0 & \multicolumn{2}{|c|}{1} & 2.75 V & \\
\hline & 0 & 0 & 1 & \multicolumn{2}{|c|}{0} & 5.5 V & \\
\hline & 1 & 0 & 0 & \multicolumn{2}{|c|}{0} & 22 V & \\
\hline & 1 & 1 & 1 & \multicolumn{2}{|c|}{1} & 41.25 V & \\
\hline
\end{tabular}

\section*{Notes}
1. If a setting is not required, store FF in the address.
2. Italy and Belgium only

RAM address 68055E: the lower four bits have the following meaning.
Bit 2-1: International dial tone cadence detection enabled (Belgium)
Bit 1 - Not used
Bit 0-1: PSTN dial tone cadence detection enabled (Italy)
If bit 0 or bit 2 is set to 1 , the functions of the following RAM addresses are changed.
680508 (if bit \(0=1\) ) or 680538 (if bit \(2=1\) ): tolerance for on or off state
duration (\%), and number of cycles required for detection, coded as in address
680533.

68050B (if bit \(0=1\) ) or 68053B (if bit \(2=1\) ): on time, hex code (unit \(=20 \mathrm{~ms}\) )
68050C (if bit \(0=1\) ) or 68053C (if bit \(2=1\) ): off time, hex code (unit \(=20 \mathrm{~ms}\) )
3. Pulse dial parameters (addresses 68054A to 68054F) are the values for 10 pps. If 20 pps is used, the machine automatically compensates.
4. The first ring may not be detected until 1 to 2.5 wavelengths after the time specified by this parameter.
5. The calculated level must be between 0 and 10.

The attenuation levels calculated from RAM data are:
High frequency tone: \(-0.5 \times\) N680552/680554-3.5dBm
\(-0.5 \times \mathrm{N} 680555 \mathrm{dBm}\)
Low frequency tone: \(-0.5 \times(\mathrm{N} 680552 / 680554+\mathrm{N} 680553)-3.5 \mathrm{dBm}\)
\(-0.5 \times(\mathrm{N} 680555+\mathrm{N} 680553) \mathrm{dBm}\)
N680552, for example, means the value stored in address 680552(H)
6. Ds and Di relay timing

68054A: Europe - Between Ds opening and Di opening, France - Between Ds closing and Di opening
68054D: Europe - Between Ds closing and Di closing, France - Between Ds opening and Di closing
7. Tone signals which frequency is lower than 1500 Hz (e.g., 800 Hz tone for Al short protocol) refer to the setting at 6805B5h. Tones which frequency is higher than 1500 Hz refer to the setting at 6805B6h.
8. 68054A, 68054D, 68054E: The actual inter-digit pause (pulse dial mode) is the sum of the period specified by the RAM addresses 68054A, 68054D, and 68054E.

\subsection*{4.10 DEDICATED TRANSMISSION PARAMETERS}

There are two sets of transmission parameters: Fax and E-mail
Each Quick Dial Key and Speed Dial Code has eight bytes of programmable parameters allocated to it. If transmissions to a particular machine often experience problems, store that terminal's fax number as a Quick Dial or Speed Dial, and adjust the parameters allocated to that number.

The programming procedure will be explained first. Then, the eight bytes will be described.

\subsection*{4.10.1 PROGRAMMING PROCEDURE}
1. Set the bit 0 of System Bit Switch 00 to 1.
2. Enter Address Book Management mode ([User Tools]> System Settings> Key Operator> Address Book Management).
3. Select the address book that you want to program.
4. For the fax parameter, select "Fax Dest.", for the E-mail parameter, select "E-mail", then press "Start". Make sure that the LED of the Start button lights green.
5. The settings for the switch 00 are now displayed. Press the bit number that you wish to change.
6. To scroll through the parameter switches, either:
7. Do one of the following:

Select the next switch: press "Next" or

Select the previous switch: "Prev." until the correct switch is displayed. Then go back to step 6.
8. After the setting is changed, press "OK".
9. After finishing, reset bit 0 of System Bit Switch 00 to 0 .

\subsection*{4.10.2 PARAMETERS}

\section*{Fax Parameters}

The initial settings of the following fax parameters are all \(F F(H)\). This means that all the parameters are disabled.
\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ Switch \(\mathbf{0 0}\)} \\
\hline \multicolumn{1}{|c|}{ Function and Comments } \\
\hline ITU-T T1 time (for PSTN G3 mode) \\
If the connection time to a particular terminal is longer than the NCU parameter setting, \\
adjust this byte. The T1 time is the value stored in this byte (in hex code), multiplied by 1 \\
second. \\
Range: 0 to 120 s (00h to 78h) \\
FFh - The local NCU parameter factory setting is used. \\
Do not program a value between 79 h and FEh.
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Switch 01} \\
\hline No & \multicolumn{6}{|c|}{Function} & Function \\
\hline & \multicolumn{6}{|l|}{Tx level} & \multirow{10}{*}{\begin{tabular}{l}
If communication with a particular remote terminal often contains errors, the signal level may be inappropriate. Adjust the Tx level for communications with that terminal until the results are better. \\
If the setting is "Disabled", the NCU parameter 01 setting is used. \\
- Do not use settings other than listed on the left.
\end{tabular}} \\
\hline \multirow{9}{*}{0} & Bit 4 & Bit 3 & Bit 2 & Bit 1 & Bit 0 & & \\
\hline & 0 & 0 & 0 & 0 & 0 & 0 & \\
\hline & 0 & 0 & 0 & 0 & 1 & -1 & \\
\hline & 0 & 0 & 0 & 1 & 0 & -2 & \\
\hline & 0 & 0 & 0 & 1 & 1 & -3 & \\
\hline & 0 & 0 & 1 & 0 & 0 & -4 & \\
\hline & & & and & o on u & til . . . & & \\
\hline & 0 & 1 & 1 & 1 & 1 & -15 & \\
\hline & \multicolumn{6}{|l|}{If all five bits are at 1 , the setting is "Disabled".} & \\
\hline & \multicolumn{6}{|l|}{Cable equalizer} & \multirow[t]{2}{*}{Use a higher setting if there is signal loss at higher frequencies because of} \\
\hline 5
to & Bit 7 & Bit 6 & & it 5 & & & \\
\hline
\end{tabular}

Dedicated Transmission Parameters
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Switch 01} \\
\hline No & \multicolumn{4}{|c|}{Function} & Function \\
\hline \multirow[t]{6}{*}{7} & 0 & 0 & 0 & None & \multirow[t]{6}{*}{\begin{tabular}{l}
the length of wire between the modem and the telephone exchange when calling the number stored in this Quick/Speed Dial. \\
Also, try using the cable equalizer if one or more of the following symptoms occurs. \\
- Communication error with error codes such as \(0-20,0-23\), etc. \\
- Modem rate fallback occurs frequently. \\
- Do not use settings other than listed on the left. \\
- If the setting is "Disabled", the bit switch setting is used.
\end{tabular}} \\
\hline & 0 & 0 & 1 & Low & \\
\hline & 0 & 1 & 0 & Medium & \\
\hline & 0 & 1 & 1 & High & \\
\hline & 1 & 1 & 1 & Disabled & \\
\hline & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Switch 02} \\
\hline No & \multicolumn{5}{|c|}{Function} & Comments \\
\hline \multirow{7}{*}{3} & \multicolumn{5}{|l|}{Initial Tx modem rate (kbps)} & \multirow[b]{7}{*}{\begin{tabular}{l}
If training with a particular remote terminal always takes too long, the initial modem rate may be too high. Reduce the initial Tx modem rate using these bits. \\
For the settings 14.4 or kbps slower, Switch 04 bit 4 must be changed to 0 .
\(\square\) \\
- Other settings: Not used If the setting is "Disabled", the bit switch setting is used.
\end{tabular}} \\
\hline & Bit 3 & Bit 2 & Bit 1 & Bit 0 & & \\
\hline & 0 & 0 & 0 & 0 & Not used & \\
\hline & 0 & 0 & 0 & 1 & 2.4 & \\
\hline & 0 & 0 & 1 & 0 & 4.8 & \\
\hline & 0 & 0 & 1 & 1 & 7.2 & \\
\hline & 0 & 1 & 0 & 0 & 9.6 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Switch 02} \\
\hline No & \multicolumn{5}{|c|}{Function} & & Comments \\
\hline \multirow[t]{10}{*}{} & 0 & 1 & 0 & 1 & 12.0 & & \\
\hline & 0 & 1 & 1 & 0 & 14.4 & & \\
\hline & 0 & 1 & 1 & 1 & 16.8 & & \\
\hline & 1 & 0 & 0 & 0 & 19.2 & & \\
\hline & 1 & 0 & 0 & 1 & 21.6 & & \\
\hline & 1 & 0 & 1 & 0 & 24.0 & & \\
\hline & 1 & 0 & 1 & 1 & 26.4 & & \\
\hline & 1 & 1 & 0 & 0 & 28.8 & & \\
\hline & 1 & 1 & 0 & 1 & 31.2 & & \\
\hline & \multicolumn{5}{|l|}{\begin{tabular}{l}
If all bits are at " 1 ", the setting is "Disabled" \\
Note \\
- Other settings:
\end{tabular}} & & \\
\hline 4-7 & \multicolumn{5}{|l|}{Not used} & & the settings. \\
\hline
\end{tabular}


Dedicated Transmission Parameters
\begin{tabular}{|c|c|c|c|l|}
\hline \multicolumn{4}{|c|}{ Switch 03 } \\
\hline No & \multicolumn{3}{|c|}{ Function } & \multicolumn{1}{c|}{ Comments }
\end{tabular} \begin{tabular}{l} 
Compression modes available in transmit \\
mode \\
0: MH only \\
1: Disabled
\end{tabular}\(\quad\)\begin{tabular}{l} 
This bit determines the capabilities \\
that are informed to the other \\
terminal during transmission. \\
If the setting is "Disabled", the bit \\
switch setting is used.
\end{tabular}
\begin{tabular}{|l|}
\hline Switch 04 - Not used (do not change the settings) \\
\hline Switch 05 - Not used (do not change the settings) \\
\hline Switch 06 - Not used (do not change the settings) \\
\hline Switch 07 - Not used (do not change the settings) \\
\hline Switch 08 - Not used (do not change the settings) \\
\hline Switch 09 - Not used (do not change the settings) \\
\hline
\end{tabular}

\section*{E-mail Parameters}

The initial settings of the following e-mail parameters are all " 0 " (all parameters disabled).
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|l|}{ Switch 00 } \\
\hline No & \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{c|}{ Comments } \\
\hline 0 & \(\begin{array}{l}\text { HM Compression mode } \\
\text { for e-mail attachments } \\
\text { 0: Off } \\
\text { 1: On }\end{array}\) & \(\begin{array}{l}\text { Switches HM compression on and off for files } \\
\text { attached to e-mails for sending. }\end{array}\) \\
\hline 1 & \(\begin{array}{l}\text { HR Compression mode } \\
\text { for e-mail attachments } \\
\text { 0: Off } \\
\text { 1: On }\end{array}\) & \(\begin{array}{l}\text { Switches HR compression on and off for files } \\
\text { attached to e-mails for sending. }\end{array}\) \\
\hline 2 & \(\begin{array}{l}\text { MMR Compression mode } \\
\text { for e-mail attachments } \\
\text { 0: Off } \\
\text { 1: On }\end{array}\) & \(\begin{array}{l}\text { Switches MMR compression on and off for files } \\
\text { attached to e-mails for sending. }\end{array}\) \\
\hline \(3-6\) & Not used & \(\begin{array}{l}\text { Designates the bits to } \\
\text { reference for } \\
\text { compression method of } \\
\text { e-mail attachments } \\
\text { 0: Registered (Bit 0 to 6) } \\
\text { 1: No registration. }\end{array}\)
\end{tabular} \(\left.\begin{array}{l}\text { The "0" selection (default) references the settings for } \\
\text { Bits 00, 01, 02 above. The "1" selection ignores the }\end{array}\right\}\)\begin{tabular}{l} 
se not change these settings. \\
\hline 7
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|l|}{ Switch 01 } \\
\hline No & \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{c|}{ Comments } \\
\hline 0 & \begin{tabular}{l} 
Original width of e-mail \\
attachment: A4 \\
0: Off \\
1: On
\end{tabular} & \begin{tabular}{l} 
Sets the original width of the e-mail attachment as \\
A4.
\end{tabular} \\
\hline 1 & \begin{tabular}{l} 
Original width of e-mail \\
attachment: B4 \\
0: Off \\
1: On
\end{tabular} & \begin{tabular}{l} 
Sets the original width of the e-mail attachment as \\
B4.
\end{tabular} \\
\hline 2 & \begin{tabular}{l} 
Original width of e-mail \\
0: Off \\
1: On
\end{tabular} & \begin{tabular}{l} 
Sets the original width of the e-mail attachment as \\
A3.
\end{tabular} \\
\hline 3-6 & \begin{tabular}{l} 
Not used
\end{tabular} & \begin{tabular}{l} 
Designates the bits to \\
reference for original size \\
of e-mail attachments \\
0: Registered (Bit 0 to 6) \\
1: No registration.
\end{tabular} \\
\hline \begin{tabular}{l} 
The "0" selection (default) references the settings for \\
Bits 00, 01, 02 above. The "1" selection ignores the \\
selections of Bits 00, 01, 02.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{Switch 02} \\
\hline No & Function & Comments \\
\hline 0 & \begin{tabular}{l}
Line resolution of e-mail attachment: \(200 \times 100\) \\
0 : Off \\
1: On
\end{tabular} & Sets the line resolution of the e-mail attachment as
\[
200 \times 100 \text {. }
\] \\
\hline 1 & \begin{tabular}{l}
Line resolution of e-mail attachment: \(200 \times 200\) \\
0: Off \\
1: On
\end{tabular} & Sets the line resolution of the e-mail attachment as
\[
200 \times 200 .
\] \\
\hline 2 & \begin{tabular}{l}
Line resolution of e-mail attachment: \(200 \times 400\) \\
0 : Off \\
1: On
\end{tabular} & Sets the line resolution of the e-mail attachment as
\[
200 \times 400 .
\] \\
\hline 3 & Not used & Do not change these settings. \\
\hline 4 & \begin{tabular}{l}
Line resolution of e-mail attachment: \(400 \times 400\) \\
0: Off \\
1: On
\end{tabular} & Sets the line resolution of the e-mail attachment as
\[
400 \times 400 \text {. }
\] \\
\hline 5-6 & Not used & Do not change these settings. \\
\hline 7 & \begin{tabular}{l}
Designates the bits to reference for original size of e-mail attachments \\
0: Registered (Bit 0 to 6) \\
1: No registration.
\end{tabular} & The " 0 " selection (default) references the settings for Bits 00, 01, 02, 04 above. The "1" selection ignores the selections of Bits 00, 01, 02, 04 . \\
\hline
\end{tabular}

Switch 03 - Not used (do not change the settings)
Switch 04 - Not used (do not change the settings)
Switch 05 - Not used (do not change the settings)

Switch 06 - Not used (do not change the settings)
Switch 07 - Not used (do not change the settings)

Switch 08 - Not used (do not change the settings)
Switch 09 - Not used (do not change the settings)

\subsection*{4.11 SERVICE RAM ADDRESSES}

\section*{\(\downarrow\) Note}
- Do not change the settings which are marked as "Not used" or "Read only." 680001 to 680004(H) - ROM version (Read only)
- 680001(H) - Revision number (BCD)
- 680002(H) - Year (BCD)
- 680003(H) - Month (BCD)
- 680004(H) - Day (BCD)

680006 to 680015(H) - Machine's serial number (16 digits - ASCII)
680018(H) - Total program checksum (low)
680019(H) - Total program checksum (high)
680020 to \(68003 F(H)\) - System bit switches
680050 to \(68005 \mathrm{~F}(\mathrm{H})\) - Printer bit switches
680060 to \(68007 \mathrm{~F}(\mathrm{H})\) - Communication bit switches
680080 to \(68008 F(\mathrm{H})\) - G3 bit switches
680090 to \(68009 \mathrm{~F}(\mathrm{H})\) - G3-2 bit switches
6800A0 to 6800AF(H) - G3-3 bit switches
6800D0(H) - User parameter switch 00 (SWUER_00): Not used
6800D1(H) - User parameter switch 01 (SWUSR_01): Not used
6800D2(H) - User parameter switch 02 (SWUSR_02)
- Bit 0: Forwarding mark printing on forwarded messages, 0: Disabled, 1: Enabled
- Bit 1: Center mark printing on received copies (this switch is not printed on the user parameter list), 0: Disabled, 1: Enabled
- Bit 2: Reception time printing (this switch is not printed on the user parameter list), 0:

Disabled, 1: Enabled
- Bit 3: TSI print on received messages, 0: Disabled, 1: Enabled
- Bit 4: Checkered mark printing (this switch is not printed on the user parameter list), 0 :

Disabled, 1: Enabled
- Bit 5: Not used
- Bit 6: Not used
- Bit 7: Not used

6800D3(H) - User parameter switch 03 (SWUSR_03: Automatic report printout)
- Bit 0: Transmission result report (memory transmissions), 0: Off, 1: On
- Bit 1: Not used
- Bit 2: Memory storage report, 0: Off, 1: On
- Bit 3: Polling reserve report (polling reception), 0: Off, 1: On
- Bit 4: Polling result report (polling reception), 0: Off, 1: On
- Bit 5: Transmission result report (immediate transmissions), 0: Off, 1: On
- Bit 6: Polling clear report, 0: Off, 1: On
- Bit 7: Journal, 0: Off, 1: On

6800D4(H) - User parameter switch 04 (SWUSR_04: Automatic report printout)
- Bit 0: Automatic confidential reception report output, 0: Off, 1: On
- Bit 1: Automatic communication failure report and transfer result report output, 0: Off, 1: On
- Bits 2 to 3 : Not used
- Bit 4: Indicates the parties, 0: Not indicated, 1: Indicated
- Bit 5: Include sender's name on reports, 0: Off, 1: On
- Bit 6: Not used
- Bit 7: Inclusion of a sample image on reports, 0: Off, 1: On

6800D5(H) - User parameter switch 05 (SWUSR_05)
- Bit 0: Substitute reception when the base copier is in an SC condition, 0: Enabled, 1: Disabled
- Bits 1 and 2: Condition for substitute rx when the machine cannot print messages (Paper end, toner end, jam, and during night mode)
\begin{tabular}{|l|l|l|}
\hline Bit 2 & Bit 1 & Setting \\
\hline 0 & 0 & The machine receives all the fax messages. \\
\hline 0 & 1 & The machine receives fax messages with RTI or CSI. \\
\hline 1 & 0 & \begin{tabular}{l} 
The machine receives fax messages with the same ID \\
code.
\end{tabular} \\
\hline 1 & 1 & The machine does not receive anything. \\
\hline
\end{tabular}
- Bit 3: Not used
- Bit 4: Not used
- Bit 5: Just size printing, 0: Off, 1: On
- Bit 6: Not used
- Bit 7: Add paper display when a cassette is empty. 0: Off, 1: On

6800D6(H) - User parameter switch 06 (SWUSR_06)
- Bits 0 to 5 : Not used
- Bit 6: Scan sequence in Book transmission, 0: Left page then right page, 1: Right page then left page
- Bit 7: Not used

6800D7(H) - User parameter switch 07 (SWUSR_07)
- Bits 0 and 1: Not used
- Bit 2: Parallel memory transmission, 0: Off, 1: On
- Bits 3 to 7 : Not used

6800D8(H) - User parameter switch 08 (SWUSR_08)
- Bits 0 and 1: Not used
- Bit 2: Authorized reception

0 : Only faxes from senders whose RTIs/CSIs are specified for this feature are accepted.
1: Only faxes from senders whose RTIs/CSIs are not specified for this feature are accepted.
- Bits 3 to 7 : Not used

6800D9(H) - User parameter switch 09 (SWUSR_09): Not used

6800DA(H) - User parameter switch 10 (SWUSR_OA)
- Bit 0: Not used
- Bit 1: 2 into 1, 0: Off, 1: On
- Bit 2: Not used
- Bit 3: Page reduction, 0: Off, 1: On
- Bit 4: Not used
- Bit 5: Reception file printout, 0: Disabled, 1: Enabled
- Bit 6: Use both e-mail notification and printed reports to confirm the transmission results, 0: Off, 1: On
- Bit 7: Not used

6800DB(H) - User parameter switch 11 (SWUSR_OB)
- Bit 0: Not used
- Bit 1: Not used
- Bits 2 to 5 : Not used
- Bit 6: Printout of messages received while acting as a forwarding station, 0: Off, 1: On
- Bit 7: Polling Standby duration, 0: Once, 1: No limit

6800DC(H) - User parameter switch 12 (SWUSR_0C): Not used
6800DD(H) - User parameter switch 13 (SWUSR_OD): Not used
6800DE(H) - User parameter switch 14 (SWUSR_0E)
- Bit 0: Message printout while the machine is in Night Printing mode, 0: On, 1: Off
- Bit 1: Maximum document length detection

0: Double letter, 1: Longer than double-letter (well log) - up to \(1,200 \mathrm{~mm}\)
- Bit 2: Batch transmission, 0: Off, 1: On
- Bit 3: Fax mode settings, such as resolution, before a mode key (Copy, Fax, Printer, or Scanner) is pressed, 0: Not cleared, 1: Cleared
- Bits 4 to 6: Not used
- Bit 7: Manual service call (sends the system parameter list to the service station), 0: Off, 1: On

\section*{Service RAM Addresses}

6800DF(H) - User parameter switch 15 (SWUSR_OF)
\(\downarrow\) Note
- This switch is not printed on the user parameter list.

Bits 0, 1 and 2: Cassette for fax printout
\begin{tabular}{|l|l|l|l|}
\hline Bit 2 & Bit 1 & Bit 0 & Setting \\
\hline 0 & 0 & 1 & 1st paper feed station \\
\hline 0 & 1 & 0 & 2nd paper feed station \\
\hline 0 & 1 & 1 & 3rd paper feed station \\
\hline 1 & 0 & 0 & 4th paper feed station \\
\hline 1 & 0 & 1 & LCT \\
\hline
\end{tabular}

Other settings: Not used
- Bits 3 and 4: Not used
- Bit 5: Using the cassette specified by bits 0,1 and 2 above only, 0: On, 1: Off
- Bits 6 and 7: Not used

6800E0(H) - User parameter switch 16 (SWUSR_10)

\section*{Note}
- This switch is not printed on the user parameter list.
- Bits 0 and 1: Not used
- Bit 2: Paper size selection priority for an A4 size fax message when A4/LT size paper is not available, 0: A3 has priority, 1: B4 has priority
- Bits 3 to 7: Not used

6800E1(H) - User parameter switch 17 (SWUSR_11)
- Bit 0: IFAX Group Destination Selection/Release Method
\begin{tabular}{|l|l|}
\hline 0 & Priority Select Mode \\
\hline & \begin{tabular}{l} 
Select the priority destination according to input mode. The Group button \\
reflects either email or fax input mode. Released as soon as the entry mode is \\
selected, regardless of the current entry mode.
\end{tabular} \\
\hline 1 & All Select Mode \\
\hline & \begin{tabular}{l} 
Acquires all registered members regardless of entry mode. If both email and \\
fax are registered, both are selected. The Group button reflects either email or \\
fax input mode. All registered members are released, regardless of the entry \\
mode. If both email/fax are registered, both are released.
\end{tabular} \\
\hline
\end{tabular}
- Bit 1: Not used
- Bit 2: Inclusion of the "Add" button when a sequence of Quick/Speed dials is selected for broadcasting, 0:Not needed, 1: Needed
- Bits 3 to 6: Not used
- Bit 7: Press "Start" key without an original when using the on hook dial or the external telephone
0 : Displays "Cannot detect original size"
1: Receives fax messages.
6800E2(H) - User parameter switch 18 (SWUSR_12)
- Bit 0: TTI date, 0: Off, 1: On
- Bit 1: TTI sender, 0: Off, 1: On
- Bit 2: TTI file number, 0: Off, 1: On
- Bit 3: TTI page number, 0: Off, 1: On
- Bit 4 to 7: Not used

\section*{Service RAM Addresses}

6800E3(H) - User parameter switch 19 (SWUSR_13)
- Bit 0 : Offset sort function for the fax (only using the shift tray on the 1,000 sheet finisher), 0: Disabled, 1: Enabled
- Bit 1: Journal format

0 : The Journal is separated into transmissions and receptions
1: The Journal is separated into G3-1, G3-2, and G3-3 communications
- Bit 2: Action when the paper cassette that was selected by the specified cassette selection feature becomes empty.
(This switch is not printed on the user parameter list.)
0 : The machine will not print any received files until paper is added.
1: The machine will use other cassettes to print received files that are not specified by this feature.
- Bit 3: \(90^{\circ}\) image rotation during B5 portrait Tx, 0: Off, 1: On (This switch is not printed on the user parameter list.)
- Bit 4: Reduction of sample images on reports to \(50 \%\) in the main scan and sub-scan directions. (This switch is not printed on the user parameter list.)
0 : Technician adjustment (printer switch 0 E bits 3 and 4)
1: \(50 \%\) reduction
- Bit 5: Use of A5 size paper for reports (This switch is not printed on the user parameter list.)
0 : Off, 1: On
- Bits 6 and 7: Not used

6800E4(H) - User parameter switch 20 (SWUSR_14
- Bit 0: Automatic printing of the LAN fax result report, 0: Off, 1: On
- Bit 1: Not used
- Bits 2 to 5: Store documents in memory which could not be printed from PC fax (LAN fax) driver
\begin{tabular}{|l|l|l|l|l|}
\hline Bit 5 & Bit 4 & Bit 3 & Bit 2 & Setting (minutes) \\
\hline 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 1 & 1 \\
\hline\(\ldots\) and so on, until \(\ldots\) \\
\hline 1 & 1 & 1 & 0 & 14 \\
\hline 1 & 1 & 1 & 1 & 15 \\
\hline
\end{tabular}
- Bits 6 and 7: Not used.

6800E5(H) - User parameter switch 21 (SWUSR_15
- Bit 0: Print results of sending reception notice request message, 0: Disabled (print only when error occurs), 1: Enabled
- Bit 1: Respond to e-mail reception acknowledgment request, 0: Disabled, 1: Enabled
- Bit 2: Not used
- Bit 3: File format for forwarded folders, 0: TIFF, 1:PDF
- Bit 4: Transmit Journal by E-mail, 0: Disabled, 1: Enabled
- Bit 5: Not used
- Bit 6: Network error display, 0: Displayed, 1: Not displayed
- Bit 7: Transmit error mail notification, 0: Enabled, 1: Disabled

6800E6(H) - User parameter switch 22 (SWUSR_16)

\section*{\(\downarrow\) Note}
- This switch is not printed on the user parameter list.
- Bit 0: Dial tone detection (PSTN 1), 0: Disabled, 1: Enabled
- Bit 1: Dial tone detection (PSTN 2), 0: Disabled, 1: Enabled
- Bit 2: Dial tone detection (PSTN 3), 0: Disabled, 1: Enabled
- Bits 3 to 7: Not used

\section*{Service RAM Addresses}

6800E7(H) - User parameter switch 23 (SWUSR_17) : Not used
6800E8(H) - User parameter switch 24 (SWUSR_18)
- Bits 0 and 1: File retention time (Cross reference: System switch 02 bit 4)
\begin{tabular}{|l|l|l|}
\hline Bit 1 & Bit 0 & Setting \\
\hline 0 & 0 & File retention impossible \\
\hline 0 & 1 & 24 hours \\
\hline 1 & 0 & File retention impossible \\
\hline 1 & 1 & 72 hours \\
\hline
\end{tabular}
- Bits 2 to 7: Not used

6800E9(H) - User parameter switch 25 (SWUSR_19)
- Bit 0 and 1: Not used
- Bit 2: Not used
- Bit 3: Not used
- Bit 4: RDS operation

0: Not acceptable
1: Acceptable for the limit specified by system switch 03

- This bit is only effective when RDS operation can be selected by the user (see system switch 02).
- Bits 5 to 7: Not used

6800EA(H) to \(6800 \mathrm{EF}(\mathrm{H})\) - User parameter switches 26 to 31 (SWUSR_1A to 1F): Not used

6800F0(H) - User parameter switch 32 (SWUSR_20)
- Bit 0 : Quotation priority for a destination when there is no destination of the specified type

0 : Paper output priority
Priority order
1. IP-fax destination, 2. Fax Number, 3. E-mail address, 4. Folder

1: Electric output order
Priority order
1. E-mail address, 2. Folder, 3. IP-fax destination, 4. Fax number
- Bits 1 to 7: Not used

6800F1(H) - User parameter switch 33 (SWUSR_21): Not used
6800F2(H) - User parameter switch 34 (SWUSR_22)
- Bit 0: Gatekeeper server used with IP-Fax, 0: Disabled, 1: Enabled
- Bit 1: SIP server used with IP-Fax, 0: Disabled, 1: Enabled

680100 to \(68010 \mathrm{~F}(\mathrm{H})\) - G4 Parameter Switches - Not used
680110 to \(68012 \mathrm{~F}(\mathrm{H})\) - G4 Internal Switches - Not used
680170 to \(68017 \mathrm{~F}(\mathrm{H})\) - IFAX Switches
680180 to \(68018 \mathrm{~F}(\mathrm{H})\) - IP-FAX Switches
680190 to 6801AF(H) - Service station's fax number (SP3-101)
6801B0 to 6801B9(H) - Own fax PABX extension number
6801BA to 6801C3(H) - Own fax number (PSTN)
6801C4 to 6801D7(H) - Own fax number (ISDN G4) - Not used
6801D8 to 6801E3(H) - The first subscriber number (ISDN G3) - Not used
6801E4 to 6801EF(H) - The second subscriber number (ISDN G3) - Not used
6801F0 to 6801FB(H) - The first subscriber number (ISDN G4) - Not used
6801FC to 680207(H) - The second subscriber number (ISDN G4) - Not used
680208 to \(68021 \mathrm{~B}(\mathrm{H})\) - PSTN-1 RTI (Max. 20 characters - ASCII) - See the following note.
68021C to 68022F(H) - PSTN-2 RTI (Max. 20 characters - ASCII) - See the following note.
680230 to \(\mathbf{6 8 0 2 4 6 ( H ) ~ - ~ P S T N - 3 ~ R T I ~ ( M a x . ~} 20\) characters - ASCII) - See the following note.
680247 to \(\mathbf{6 8 0 2 8 6 ( H ) ~ - ~ T T I ~} 1\) (Max. 64 characters - ASCII) - See the following note.
680287 to 6802C6(H) - TTI 2 (Max. 64 characters - ASCII) - See the following note.
6802 C 7 to \(\mathbf{6 8 0 3 0 6 ( H )}\) - TTI 3 (Max. 64 characters - ASCII) - See the following note.
680307 to 68031A(H) - PSTN-1 CSI (Max. 20 characters - ASCII)
68031B to 68032E(H) - PSTN-2 CSI (Max. 20 characters - ASCII)
68032F to 680342(H) - PSTN-3 CSI (Max. 20 characters - ASCII)
680343(H) - Number of PSTN-1 CSI characters (Hex)

Service RAM Addresses
680344(H) - Number of PSTN-2 CSI characters (Hex)
680345(H) - Number of PSTN-3 CSI characters (Hex)-
- If the number of characters is less than the maximum ( 20 for RTI, 64 for TTI), add a stop code \((00[\mathrm{H}])\) after the last character.
680380 to \(\mathbf{6 8 0 3 8 7}(\mathrm{H})\) - Last power off time (Read only)
- \(680380(\mathrm{H})-01(\mathrm{H})-24\)-hour clock, \(00(\mathrm{H})\) - 12-hour clock (AM), 02(H) - 12-hour clock (PM)
- 680381(H) - Year (BCD)
- 680382(H) - Month (BCD)
- 680383(H) - Day (BCD)
- 680384(H) - Hour
- 680385(H) - Minute
- 680386(H) - Second
- 680387(H) - 00: Monday, 01: Tuesday, 02: Wednesday, . . . and so on until . . ., 06: Sunday
680394(H) - Optional equipment (Read only - Do not change the settings)
- Bit 0: Page Memory, 0: Not installed, 1: Installed
- Bit 1: SAF Memory, 0: Not installed, 1: Installed
- Bits 2 to 7: Not used

680395(H) - Optional equipment (Read only - Do not change the settings)
- Bits 0 to 3: Not used
- Bit 4: G3-2, 0: Not installed, 1: Installed
- Bit 5: G3-3, 0: Not installed, 1: Installed
- Bit 6 and 7: Not used

680406 to 68040A - Option G3 board (G3-2) ROM information (Read only)
- 680406(H) - Suffix (BCD)
- 680407(H) - Version (BCD)
- 680408(H) - Year (BCD)
- 680409(H) - Month (BCD)
- 68040A(H) - Day (BCD)

68040B to 68040F - Option G3 board (G3-3) ROM information (Read only)
- 68040B(H) - Suffix (BCD)
- 68040C(H) - Version (BCD)
- 68040D(H) - Year (BCD)
- 68040E(H) - Month (BCD)
- 68040F(H) - Day (BCD)

680410(H) - G3-1 Modem ROM version (Read only)
680412(H) - G3-2 Modem ROM version (Read only)
680414(H) - G3-3 Modem ROM version (Read only)
680420(H) - Number of multiple sets print (Read only)
680476(H) - Time for economy transmission (hour in 24h clock format - BCD)
680477(H) - Time for economy transmission (minute - BCD)
680492(H) - Transmission monitor volume, 00-07(H)
680493(H) - Reception monitor volume, 00-07(H)
680494(H) - On-hook monitor volume, 00-07(H)
680495(H) - Dialing monitor volume, 00-07(H)
680496(H) - Buzzer volume, 00-07(H)
680497(H) - Beeper volume, 00-07(H)
69ED04 to 69F003(H) - SIP server address (Read only)
- 69ED04(H) - Proxy server - Main (Max. 128 characters - ASCII)
- 69ED84(H) - Proxy server - Sub (Max. 128 characters - ASCII)
- 69EE04(H) - Redirect server - Main (Max. 128 characters - ASCII)
- 69EE84(H) - Redirect server - Sub (Max. 128 characters - ASCII)
- 69EF04(H) - Registrar server - Main (Max. 128 characters - ASCII)
- 69EF84(H) - Registrar server - Sub (Max. 128 characters - ASCII)

69F004(H) - Gatekeeper server address - Main (Max. 128 characters - ASCII)
69F084(H) - Gatekeeper server address - Sub (Max. 128 characters - ASCII)
69F104(H) - Alias Number (Max. 128 characters - ASCII)
69F184(H) - SIP user name (Max. 128 characters - ASCII)
69F204(H) - Gateway address information (Max. 128 characters - ASCII)
6AODC0(H) - Stand-by port number for H. 232 connection
6A0DC2(H) - Stand-by port number for SIP connection
6A0DC4(H) - RAS port number
6A0DC6(H) - Gatekeeper port number
6A0DC8(H) - Port number of data waiting for T. 38
6A0DCA(H) - Port number of SIP server
6A0DCC(H) - Priority for SIP and H.323, 0: H.323, 1: SIP
6A0DCD(H) - SIP function, 0: Disabled, 1: Enabled
6A0DCE(H) - H. 323 function, 0: Disabled, 1: Enabled
6BEBFE(H) - Dial tone detection frequency - Upper limit (High)
Defaults: NA: 06, EU: 06, ASIA: 06

Service RAM Addresses
6BEBFF(H) - Dial tone detection frequency - Upper Limit (Low)
Defaults: NA: 50, EU: 50, ASIA: 50
6BEC00(H) - Dial tone detection frequency - Lower Limit (High)
Defaults: NA: 03, EU: 02, ASIA: 02
6BEC01(H) - Dial tone detection frequency - Lower Limit (Low)
Defaults: NA: 60, EU: 90, ASIA: 90
6BEC02(H) - Dial tone detection waiting time ( 20 ms )
Defaults: NA: 64, EU 64, ASIA: 64
6BEC03 to 6BEC04 - Dial tone detection monitoring time ( 20 ms )
Defaults
\begin{tabular}{|l|l|l|}
\hline Area & 6BEC03 & 6BEC04 \\
\hline NA & F4 & 01 \\
\hline EU & F4 & 01 \\
\hline ASIA & F4 & 01 \\
\hline
\end{tabular}

6BEC05(H) - Dial tone detect judge time ( 20 ms )
Defaults: NA: 64, EU: 1B, ASIA: 32
6BEC06(H) - Dial tone disconnect permission time ( 20 ms )
Defaults: NA: 11, EU: OF, ASIA: 11

\section*{5. DETAILED SECTION DESCRIPTIONS}

\subsection*{5.1 OVERVIEW}


The basic fax unit consists of two PCBs: an FCU and an MBU.
The FCU controls all the fax communications and fax features, in cooperation with the controller board. The MBU contains the ROM and SRAM. Also, the FCU has an NCU circuit.

Fax Options:
- Extra G3 Interface option: This provides one more analog line interface. This allows full dual access. Two extra G3 interface options can be installed.
- Memory Expansion: This expands the SAF memory and the page memory (used for image rotation); without this expansion, the page memory is not big enough for image rotation at 400 dpi , so transmission at 400 dpi is not possible.

Boards

\subsection*{5.2 BOARDS}

\subsection*{5.2.1 FCU}


The FCU (Facsimile Control Unit) controls fax communications, the video interface to the base copier's engine, and all the fax options.

\section*{FACE3 (Fax Application Control Engine)}
- CPU
- Data compression and reconstruction (DCR)
- DMA control
- Clock generation
- DRAM backup control

\section*{Modem (FAME)}
- V.34, V33, V17, V.29, V.27ter, V.21, and V. 8

\section*{DRAM}
- The 16 MB of DRAM is shared as follows.
- SAF memory: 4MB
- Working memory: 4MB
- Page memory: 8MB
- The SAF memory is backed up by a rechargeable battery.

\section*{Memory Back-up}
- A rechargeable battery backs up the SAF memory (DRAM) for 1 hour.

\subsection*{5.2.2 MBU}

On this board, the flash ROM contains the FCU firmware, and the SRAM contains the system data and user parameters. Even if the FCU is changed, the system data and user parameters are kept on the MBU board.

ROM
- 3MB flash ROMs for system software storage
- \(2 \mathrm{MB}(16\) bit \(\times 1 \mathrm{MB})+1 \mathrm{MB}(16\) bit \(\times 512 \mathrm{~K})\)

SRAM
- The 256 KB SRAM for system and user parameter storage is backed up by a lithium battery.

\section*{Memory Back-up}
- A lithium battery backs up the system parameters and programmed items in the SRAM, in case the base copier's main switch is turned off.

\section*{Switches}
\begin{tabular}{|c|c|}
\hline Item & \multicolumn{1}{c|}{ Description } \\
\hline SW1 & Switches the SRAM backup battery on/off. \\
\hline
\end{tabular}

\subsection*{5.2.3 SG3 BOARD}


The SG3 board allows up to three simultaneous communications when used in combination with the FCU and optional G3 boards. The NCU is on the same board as the common SG-3 board. This makes the total board structure smaller. But, the specifications of the SG3 board do not change.

\section*{NCCP (New Communication Control Processor)}
- Controls the SG3 board.
- CPU (RU30)
- DPRAM (Dual Port RAM): Handshaking with the FCU is done through this block.
- DMA controller
- JBIG
- DSP V34 modem (RL5T892): Includes the DTMF Receiver function
- DCR for MH, MR, MMR, and JBIG compression and decompression

\section*{FROM}
- 1Mbyte flash ROM for SG3 software storage and modem software storage SDRAM
- 4Mbyte DRAM shared between ECM buffer, line buffer, and working memory AFE (Analog Front End)
- Analog processing

CODEC (COder-DECoder)
- \(\quad A / D \& D / A\) conversions for modem

REG
- Generates +3.3 V from the +5 V from the FCU

\subsection*{5.3 VIDEO DATA PATH}

\subsection*{5.3.1 TRANSMISSION}


\section*{Memory Transmission and Parallel Memory Transmission}

The base copier's scanner scans the original at the selected resolution in inch format. The IPU processes the data and transfers it to the FCU.

\section*{Note}
- When scanning a fax original, the IPU uses the MTF, independent dot erase and thresholding parameter settings programmed in the fax unit's scanner bit switches, not the copier's SP modes.

Then, the FCU converts the data to mm format, and compresses the data in MMR or raw format to store it in the SAF memory. If image rotation will be done, the image is rotated in page memory before compression.

At the time of transmission, the FCU decompresses the stored data, then re-compresses and/or reduces the data if necessary for transmission. The NCU transmits the data to the line.

\section*{Immediate Transmission}

The base copier's scanner scans the original at the resolution agreed with the receiving terminal. The IPU video processes the data and transfers it to the FCU.

\section*{\(\sqrt{ }\) Note}
- When scanning a fax original, the IPU uses the MTF, independent dot erase and thresholding parameter settings programmed in the fax unit's scanner bit switches, not the copier's SP modes.

Then the FCU stores the data in page memory, and compresses the data for transmission. The NCU transmits the data to the line.

\section*{JBIG Transmission}

Memory transmission: If the receiver has JBIG compression, the data goes from the DCR to the QM-Coder. Then the NCU transmits the data to the line. When an optional G3 unit (SG3) is installed and PSTN2 is selected as the line type, JBIG compression is available, but only for the PSTN-2 line.

Immediate transmission: If the receiver has JBIG compression, the data goes from the page memory to the QM-Coder. Then the NCU transmits the data to the line. When an optional G3 unit (SG3) is installed and PSTN2 is selected as the line type, JBIG compression is available, but only for the PSTN-2 line.

\section*{Adjustments}
- Priority for the line used for G3 transmissions (PSTN 1/PSTN 2 or 3): System switch 16 bit 1

\subsection*{5.3.2 RECEPTION}


First, the FCU stores the incoming data from either an analog line to the SAF memory. (The data goes to the FACE3 at the same time, and is checked for error lines/frames.)
The FCU then decompresses the data and transfers it to page memory. If image rotation will be done, the image is rotated in the page memory. The data is transferred to the IPU. If the optional G3 unit is installed, the line that the message comes in on depends on the telephone number dialled by the other party (the optional G3 unit has a different telephone number from the main fax board).

\section*{JBIG Reception}

When data compressed with JBIG comes in on PSTN-1 (the standard analog line), the data is sent to the QM-CODER for decompression. Then the data is stored in the page memory, and transferred to the IPU.

When data compressed with JBIG comes in on PSTN-2 (optional extra analog line), the data is sent to the QM-CODER on the SG3 board for decompression.

\subsection*{5.4 FAX COMMUNICATION FEATURES}

\subsection*{5.4.1 MULTI-PORT}

When the optional extra G3 Interface Unit is installed, communication can take place at the same time through the two or three lines at once.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Option } & \multicolumn{1}{|c|}{ Available Line Type } & \multicolumn{1}{c|}{\begin{tabular}{c} 
Available protocol \\
Combinations
\end{tabular}} \\
\hline Standard only & PSTN & G3 \\
\hline Extra G3 Interface Unit (single) & PSTN + PSTN & G3 + G3 \\
\hline \begin{tabular}{l} 
Extra G3 Interface Unit \\
(double)
\end{tabular} & PSTN + PSTN +PSTN & G3 + G3 +G3 \\
\hline
\end{tabular}

\subsection*{5.4.2 DOCUMENT SERVER}


The base copier's scanner scans the original at the selected resolution. The IPU video processes the data and transfers it to the controller board.

\section*{Fax Communication Features}

Then the controller stores the data in the page memory for the copier function, and compresses the data in MMR (by software) to store it in the HDD. If image rotation will be done, the image is rotated in the page memory before compression.

For transmission, the stored image data is transferred to the FCU. The FCU decompresses the image data, then recompresses and/or reduces the data if necessary for transmission. The NCU transmits the data to the line.

The documents can be stored in the HDD (Document Server) from the fax application. The stored documents in the document sever can be used for the fax transmission in many times. More than one document and the scanned document can be combined into one file and then the file can be transmitted.
- When using the document server, the SAF memory is not used.
- The document is compressed with MMR and stored.
- Up to 9,000 pages can be stored (1 file: Up to 1,000 pages) from the fax application.
- Only stored documents from the fax application can be transmitted.
- Scanned documents are given a name automatically, such as "FAX001". But it is possible to change the file name, user name and password.
- Up to 30 files can be selected at once.

\section*{\(\downarrow\) Note}
- The compression method of the fax application is different from the copy application. The storing time is longer than the copier storing.
- When selecting "Print 1st page", the stored document will be reduced to A 4 size.

\subsection*{5.4.3 INTERNET MAIL COMMUNICATION}

\section*{Mail Transmission}

\section*{T. 37 simple and full modes}

This machine supports T. 37 full mode. (ITU-RFC232). The difference between T .37 simple mode and full mode is as follows.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{c|}{ T.37 Simple Mode } & \multicolumn{1}{c|}{ T.37 Full Mode } \\
\hline Resolution & \begin{tabular}{l}
\(200 \times 100\) \\
\(200 \times 200\)
\end{tabular} & \begin{tabular}{l}
\(200 \times 100\) \\
\(200 \times 200\) \\
\(200 \times 400\) \\
\(400 \times 400\) (if available)
\end{tabular} \\
\hline RX Paper Width & A4 & A4, B4, A3 \\
\hline RX Data Compression Method & MH & MH (default), MR, MMR, \\
\hline Signals & Image data \\
transmission only & \begin{tabular}{l} 
Image data transmission, \\
exchange of capability \\
information between the two \\
terminals, and \\
acknowledgement of receipt of \\
fax messages
\end{tabular} \\
\hline
\end{tabular}

\section*{Fax Communication Features}

\section*{Data Formats}

The scanned data is converted into a TIFF-F formatted file.
The fields of the e-mail and their contents are as follows:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Field } & \multicolumn{1}{c|}{ Content } \\
\hline From & Mail address of the sender \\
\hline Reply To & Destination requested for reply \\
\hline To & Mail address of the destination \\
\hline Bcc & Backup mail address \\
\hline Subject & From CSI or RTI (Fax Message No. xxxx) \\
\hline Content Type & \begin{tabular}{l} 
Multipart/mixed \\
Attached files: image/tiff
\end{tabular} \\
\hline Content Transfer Encoding & Base 64, 7-bit, 8-bit, Quoted Printable \\
\hline Message Body & \begin{tabular}{l} 
MIME-converted TIFF-F (MIME standards specify how \\
files are attached to e-mail messages)
\end{tabular} \\
\hline
\end{tabular}

\section*{Direct SMTP Transmission}

Internet Fax documents can be sent directly to their destinations without going through the SMTP server. (Internet Faxes normally transmit via the SMTP server.)

For example:
\begin{tabular}{|l|l|}
\hline e-mail address: & gts@ricoh.co.jp \\
\hline SMTP server address: & gts.abcd.com \\
\hline
\end{tabular}

In this case, this feature destination e-mail address (gts@ricoh.co.jp) is read as the SMTP server address "gts.abcd.com", and the transmissions bypass the SMTP server.

\section*{Selectable Options}

These options are available for selection:
- With the default settings, the scan resolution can be either standard or detail. Inch-mm conversion before TX depends on IFAX SW01 Bit 7. Detail resolution will be used if Super Fine resolution is selected, unless Fine resolution is enabled with IFAX SW01.
- The requirements for originals (document size, scan width, and memory capacity) are the same as for G3 fax memory TX.
- The default compression is TIFF-F format.
- IFAX SWOO: Acceptable paper widths for sending
- IFAX SW09: Maximum number of attempts to the same destination

\section*{Secure Internet Transmission}

SMTP Authentication:
- User Tools> System Settings> File Transfer> SMTP Authentication POP Before SMTP:
- User Tools> System Settings> File Transfer> POP Before SMTP

\section*{Mail Reception}

\section*{Three Types}

This machine supports three types of e-mail reception:
- POP3 (Post Office Protocol Ver. 3.)
- IMAP4 (Internet Messaging Access Protocol)
- SMTP (Simple Mail Transfer Protocol)
\(\downarrow\) Note
- For details: Core Technology Manual - Facsimile Processes - Faxing from a PC Internet/LAN Fax Boards - Mail Reception

\section*{POP3/IMAP4 Mail Reception Procedure}

The machine automatically picks up e-mail from the server at an interval which is adjustable in the range 2 to 1440 min . in 1-minute steps:
- User Tools> System Settings> File Transfer> E-mail Reception Interval

\section*{Fax Communication Features}

\section*{SMTP Reception}
1. The IFAX must be registered as an SMTP server in the MX record of the DNS server, and the address of the received mail must specify the IFAX.
2. To enable SMTP reception: User Tools> System Settings> File Transfer> Reception Protocol
- Even if the MX record on the DNS server includes the IFAX, mail cannot be received with SMTP until SMTP reception is enabled:
- However, if SMTP reception is selected and the machine is not registered in the MX record of the DNS server, then either IMAP4 or POP3 is used, depending on the setting: User Tools> System Settings> File Transfer> Reception Protocol

\section*{Mail Delivery Conditions: Transferring Mail Received With SMTP}
1. The machine must be set up for SMTP mail delivery:
- User Tools> Facsimile Features> E-mail Settings> SMTP RX File Delivery Settings
2. If the user wishes to limit this feature so that the machine will only deliver mail from designated senders, the machine's "Auth. E-mail RX" feature must be set (User Tools> Facsimile Features> E-mail Settings> SMTP RX File Delivery Settings).
3. If the "SMTP RX File Delivery Setting" is set to 0 to prohibit SMTP receiving, and if there is mail designated for delivery, then the machine responds with an error. (User Tools> Facsimile Features> E-mail Settings> SMTP RX File Delivery Settings)
4. If the quick dial, speed dial, or group dial entry is incorrect, the mail transmission is lost, and the IFAX issues an error to the SMTP server and outputs an error report.

\section*{Auth. E-mail RX}

In order to limit access to mail delivery with IFAX, the addresses of senders must be limited using the Access Limit Entry. Only one entry can be registered.

\section*{1. Access Limit Entry}

For example, to limit access to @IFAX.ricoh.co.jp:
\begin{tabular}{|l|l|}
\hline gts@IFAX.ricoh.co.jp & Matches and is delivered. \\
\hline gts@IFAX.abcde.co.jp & Does not match and is not delivered. \\
\hline IFAX@ricoh.co.jp & Does not match and is not delivered. \\
\hline
\end{tabular}
1. Conditions
- The length of the Access Limit Entry is limited to 127 characters.
- If the Access Limit Entry address and the mail address of the incoming mail do not match, the incoming mail is discarded and not delivered, and the SMTP server responds with an error. However, in this case an error report is not output.
- If the Access Limit Entry address is not registered, and if the incoming mail specifies a delivery destination, then the mail is delivered unconditionally.

\section*{Handling Mail Reception Errors}

\section*{Abnormal files}

When an error of this type occurs, the machine stops receiving and commands the server to erase the message. Then the machine prints an error report and sends information about the error by e-mail to the sender address (specified in the "From" or "Reply-to" field of the message). If there is an incomplete received message in the machine memory, it will be erased.

The machine prints an error message when it fails to send the receive error notification after a certain number of attempts.

The following types of files are judged to be abnormal if one or more of the following are detected:
1. Unsupported MIME headers.

Supported types of MIME header
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Header } & \multicolumn{1}{c|}{ Supported Types } \\
\hline Content-Type & Multipart/mixed, text/plain, message/ffc822 Image/tiff \\
\hline Charset & \begin{tabular}{l} 
US-ASCII, ISO 8859 X. Other types cannot be \\
handled, and some garbage may appear in the data.
\end{tabular} \\
\hline \begin{tabular}{l} 
Content-Transfer- \\
Encoding
\end{tabular} & Base 64, 7-bit, 8-bit, Quoted Printable \\
\hline
\end{tabular}
2. MIME decoding errors
3. File format not recognized as TIFF-F format
4. Resolution, document size, or compression type cannot be accepted

\section*{Fax Communication Features}

\section*{Remaining SAF capacity error}

The machine calls the server but does not receive e-mail if the remaining SAF capacity is less than a certain value (the value depends on IFAX Switch 08. The e-mail will be received when the SAF capacity increases (for example, after substitute reception files have been printed). The error handling method for this type of error is the same as for "Abnormal files".

If the capacity of the SAF memory drops to zero during reception, the machine operates in the same way as when receiving an abnormal file (refer to "Abnormal files" above).

\section*{Secure Internet Reception}

To enable password encryption and higher level security: User Tools> System Settings> File Transfer> POP3/IMAP4 Settings> Encryption (set to "On")

\section*{Transfer Request: Request By Mail}

For details: Core Technology Manual - Facsimile Processes - Faxing from a PC Internet/LAN Fax Boards - Transfer Request
The fields of the e-mail and their contents are as follows:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Field } & \multicolumn{1}{c|}{ Content } \\
\hline From & E-mail address of the requesting terminal \\
\hline To & Destination address (Transfer Station address) \\
\hline Bcc & Backup mail address \\
\hline Subject & From TSI (Fax Message No. xxxx) \\
\hline Content-Type & \begin{tabular}{l} 
Multipart/mixed \\
Text/Plain (for a text part), image/tiff (for attached files)
\end{tabular} \\
\hline Content-Transfer-Encoding & Base 64, 7-Bit, 8-bit, Quoted Printable \\
\hline Mail body (text part) & \begin{tabular}{l} 
RELAY-ID-: xxxx (xxxx: 4 digits for an ID code) \\
RELAY: \#01\#*X\#*01....
\end{tabular} \\
\hline Message body & MIME-converted TIFF-F. \\
\hline
\end{tabular}

\section*{E-Mail Options (Sub TX Mode)}

The following features are available as options for mail sending: entering a subject, designating the level of importance, confirming reception of the mail.

\section*{Subject and Level of Importance}

You can enter a subject message with: Sub TX Mode> E-mail Options
The Subject entry for the mail being sent is limited to 64 characters. The subject can also be prefixed with an "Urgent" or "High" notation.
- How the Subject Differs According to Mail Type -
\begin{tabular}{|c|c|c|c|c|}
\hline Mail Type & Item 1 & & Item 2 & Item 3 \\
\hline \begin{tabular}{l}
Subject \\
Entry
\end{tabular} & --- & \multicolumn{2}{|l|}{Entry Condition} & \multirow{5}{*}{\begin{tabular}{l}
Fax Message No. \\
File No.
\end{tabular}} \\
\hline \multirow{4}{*}{No Subject Entry} & & \multicolumn{2}{|l|}{1. "CSI" ("RTI")} & \\
\hline & & 2. "RTI" & CSI not registered & \\
\hline & & 3. "CSI" & RTI not registered & \\
\hline & & 4. None & \begin{tabular}{l}
CSI, RTI not \\
registered
\end{tabular} & \\
\hline \multirow{4}{*}{Confirmation of Reception} & \multirow{4}{*}{From} & \multicolumn{2}{|l|}{1. "CSI" ("RTI")} & \multirow[t]{2}{*}{\begin{tabular}{l}
Normal: \\
Return Receipt \\
(dispatched). \\
You can select \\
"displayed" with IFAX \\
SW02 Bits 2 and 3.
\end{tabular}} \\
\hline & & 2. "RTI" & CSI not registered & \\
\hline & & 3. "CSI" & RTI not registered & \multirow[t]{2}{*}{\begin{tabular}{l}
Error: \\
Return Receipt (processed/error)
\end{tabular}} \\
\hline & & 4. None & CSI, RTI not registered & \\
\hline Mail delivery, memory transfer, SMTP & From & RTI or CSI of the station designated for delivery & Mail delivery & Fax Message No. + File Number \\
\hline
\end{tabular}

Fax Communication Features
\begin{tabular}{|c|c|c|c|c|}
\hline Mail Type & Item 1 & \multicolumn{2}{|r|}{Item 2} & Item 3 \\
\hline \multirow[t]{3}{*}{receiving and delivery} & & RTI or CSI of sender & Mail sending from G3 memory & \\
\hline & & Mail address of sender & Memory sending & \\
\hline & & Mail address of sender & SMTP receiving and delivery (Off Ramp Gateway) & \\
\hline Mail error notification & --- & \multicolumn{3}{|l|}{Error Message No. xxxx From CSI (RTI)} \\
\hline
\end{tabular}

Items 1, 2, and 3 in the table above are in the Subject.
- Subjects Displayed on the PC -


\section*{E-mail Messages}

After entering the subject, you can enter a message with: Sub TX Mode> E-mail Options An e-mail message (up to 5 lines) can be pre-registered with: User Tools> System
Settings> File Transfer> Program/Change/Delete E-mail Message
- Limitations on Entries -
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Item } & \multicolumn{1}{c|}{ Maximum } \\
\hline Number of Lines & 5 lines \\
\hline Line Length & 80 characters \\
\hline Name Length & 20 characters \\
\hline
\end{tabular}

\section*{Message Disposition Notification (MDN)}

For details: Core Technology Manual - Facsimile Processes - Faxing from a PC Internet/LAN Fax Boards - E-mail Options

The network system administrator can confirm whether a sent mail has been received correctly or not. This confirmation is done in four steps.
1. Send request for confirmation of mail reception. To enable or disable this request (known as MDN): Sub TX Mode> E-mail Options
1. Mail reception (receive confirmation request)
2. Send confirmation of mail reception
3. Receive confirmation of mail reception

The other party's machine will not respond to the request unless the two conditions below are met:
- The other party's machine must be set up to respond to the confirmation request.
- The other party's machine must support MDN (Message Disposition Notification).
- Setting up the Receiving Party -

The receiving party will respond to the confirmation request if:
1. The "Disposition Notification To" field is in the received mail header (automatically inserted in the 4th line in the upper table on the previous page, if MDN is enabled), and
2. Sending the disposition notification must be enabled (User Parameter Setting SW21 (15 [H]) Bit 1 for this model). The content of the response is as follows:
\begin{tabular}{|l|l|}
\hline Normal reception: & "Return Receipt (dispatched)" in the Subject line \\
\hline IFAX SW02 (Bit 2, 3) & "Return Receipt (displayed)" in the Subject line \\
\hline Error: & "Return Receipt (processed/error)" in the Subject line \\
\hline
\end{tabular}

\section*{Fax Communication Features}

\section*{Handling Reports}
- Sending a Request for a Return Receipt by Mail -

After the mail sender transmits a request for a return receipt, the mail sender's journal is annotated with two hyphens (--) in the Result column and a "Q" in the Mode column.
- Mail Receipt (Request for Receipt Confirmation) and Sending Mail Receipt Response -

After the mail receiver sends a response to the request for a return receipt, the mail receiver's journal is annotated with two hyphens (--) in the Result column and an "A" in the Mode column.
- Receiving the Return Receipt Mail -
- After the mail sender receives a return receipt, the information in the mail sender's journal about the receipt request is replaced, i.e. the journal is annotated with "OK" in the Result column.
- When the return receipt reports an error, the journal is annotated with an " \(E\) " in the Result column.
- The arrival of the return receipt is not recorded in the journal as a separate communication. Its arrival is only reported by the presence of "OK" or "E" in the Result column.
- If the mail address used by the sender specifies a mailing list (i.e., a Group destination; the machine sends the mail to more than one location. See "How to set up Mail Delivery"), the Result column of the Journal is updated every time a return receipt is received. For example, if the mailing list was to 5 destinations, the Result column indicates the result of the communication with the 5th destination only. The results of the communications to the first 4 destinations are not shown.

\section*{Exceptions:}

If one of the communications had an error, the Result column will indicate \(E\), even if subsequent communications were OK.

If two of the communications had an error, the Journal will indicate the destination for the first error only.
- Report Sample -
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline DATE & TIME & ADDRESS & MODE & & TIME & PAGE & RESULT \\
\hline \multirow[t]{4}{*}{MAY. 5} & 10:15 & fuser_01 & Mail & SM & 0'09" & 2 & -- \\
\hline & 10:16 & fuser_01 & Mail & SMQ & 0'05" & 1 & -- \\
\hline & 10:17 & s_tadash & Mail & SMQ & 0'09" & 2 & OK \\
\hline & 10:19 & m_masata & . Mail & SMA & 0'05" & 1 & -- \\
\hline
\end{tabular}
b771d506

\subsection*{5.5 IP-FAX}

\subsection*{5.5.1 WHAT IS IP-FAX?}

For details: Core Technology Manual - Facsimile Processes - Faxing from a PC Internet/LAN Fax Boards - IP-FAX

\subsection*{5.5.2 T. 38 PACKET FORMAT}

TCP is selected by default for this machine, but you can change this to UDP with IPFAX SW 00 Bit 1.

\section*{UDP Related Switches}


\subsection*{5.5.3 SETTINGS}

User parameter switch 34 (22[H]), bit 0
IP-Fax Gate Keeper usage, 0: No, 1: Yes
IP Fax Switches: Various IP-FAX settings (see the bit switch table)

\section*{6. SPECIFICATIONS}

\subsection*{6.1 GENERAL SPECIFICATIONS}
\begin{tabular}{|c|c|}
\hline Type: & Desktop type transceiver \\
\hline Circuit: & \[
\begin{aligned}
& \text { PSTN (max. 3ch.) } \\
& \text { PBX }
\end{aligned}
\] \\
\hline Connection: & Direct couple \\
\hline Original Size: & \begin{tabular}{l}
Book (Face down) \\
- Maximum Length: 432 mm [17 ins] \\
- Maximum Width: 297 mm [11.7 ins] \\
ARDF (Face up) \\
Single-sided document \\
- Length: 128-1200 mm [5.0-47.2 ins] \\
- Width: 105-297 mm [4.1-11.7 inch] \\
Double-sided document \\
- Length: 128-432 mm [5.0-17 inch] \\
- Width: 105-297 mm [4.1-11.7 inch]
\end{tabular} \\
\hline Scanning Method: & Flat bed, with CCD \\
\hline Resolution: & \begin{tabular}{l}
G3 \\
- \(8 \times 3.85\) lines \(/ \mathrm{mm}\) (Standard) \\
- \(8 \times 7.7\) lines \(/ \mathrm{mm}\) (Detail) \\
- \(8 \times 15.4\) line \(/ \mathrm{mm}\) (Fine) Note1 \\
- \(16 \times 15.4\) line/mm (Super Fine) See Note. \\
- \(200 \times 100\) dpi (Standard) \\
- \(200 \times 200\) dpi (Detail) \\
- \(400 \times 400\) dpi (Super Fine) Note - Optional Expansion Memory required.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Transmission Time: & G3: 3 s at 28800 bps ; Measured with G3 ECM using memory for an ITU-T \#1 test document (Slerexe letter) at standard resolution \\
\hline Data Compression: & MH, MR, MMR JBIG \\
\hline Protocol: & Group 3 with ECM \\
\hline Modulation: & V.34, V.33, V. 17 (TCM), V. 29 (QAM), V.27ter (PHM), V.8, V. 21 (FM) \\
\hline Data Rate: & G3: 33600/31200/28800/26400/24000/21600/ 19200/16800/14400/12000/9600/7200/4800/2400 bps Automatic fallback \\
\hline I/O Rate: & \begin{tabular}{l}
With ECM: \(0 \mathrm{~ms} / \mathrm{line}\) \\
Without ECM: \(2.5,5,10,20\), or \(40 \mathrm{~ms} / \mathrm{line}\)
\end{tabular} \\
\hline Memory Capacity: & \begin{tabular}{l}
ECM: 128 KB \\
SAF \\
- Standard: 4 MB \\
- With optional Expansion Memory: 28 MB ( \(4 \mathrm{MB}+24 \mathrm{MB}\) ) \\
Page Memory \\
- Standard: 4 MB (Print: 2 MB + Scanner: 2 MB) \\
- With optional Expansion Memory: \(12 \mathrm{MB}(4 \mathrm{MB}+8 \mathrm{MB})\) \\
(Print 8 MB + Scanner: 4 MB)
\end{tabular} \\
\hline
\end{tabular}

\subsection*{6.2 CAPABILITIES OF PROGRAMMABLE ITEMS}

The following table shows how the capabilities of each programmable item will change after the optional Fax Function Upgrade Unit is installed.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Item } & Standard \\
\hline Quick Dial & 2000 \\
\hline Groups & 100 \\
\hline Destination per Group & 500 \\
\hline Destinations dialed from the ten-key pad overall & 500 \\
\hline Programs & 100 \\
\hline Auto Document & 6 \\
\hline Communication records for Journal stored in the memory & 200 \\
\hline Specific Senders & 30 \\
\hline
\end{tabular}

The following table shows how the capabilities of the document memory will change after the optional Fax Function Upgrade Unit and the Expansion Memory are installed.
\begin{tabular}{|l|c|c|}
\hline & \begin{tabular}{c} 
Without the Expansion \\
Memory
\end{tabular} & With the Expansion Memory \\
\hline \begin{tabular}{l} 
Memory Transmission \\
files
\end{tabular} & 400 & 400 \\
\hline \begin{tabular}{l} 
Maximum number of \\
pages for memory \\
transmission
\end{tabular} & 1000 & 1000 \\
\hline \begin{tabular}{l} 
Memory capacity for \\
memory transmission \\
(see the Note below)
\end{tabular} & 320 & 2240 \\
\hline
\end{tabular}
- Measured using an ITU-T \#1 test document (Slerexe letter) at standard resolution, with auto image density mode, and in Text mode.

\subsection*{6.3 IFAX SPECIFICATIONS}

\section*{Connectivity}

Local area network
Ethernet 100base-Tx/10base-T
IEEE1394 (IP over 1394)
IEEE802.11a/g (wireless LAN)

\section*{Resolution}

Main scan: \(400 \mathrm{dpi}, 200 \mathrm{dpi}\)
Sub scan: 400 dpi, 200 dpi, 100 dpi
Note: To use 400 dpi, IFAX SW01 Bit 4 must be set to "1".

Transmission Time
1 s (through a LAN to the server)
Conditions:
- ITU-T \#1 test document (Slerexe Letter)
- MTF correction: OFF
- TTI: None
- Resolution: \(200 \times 100\) dpi
- Communication speed: 10 Mbps
- Correspondent device: E-mail server
- Line conditions: No terminal access

\section*{Document Size}

Maximum message width is A4/LT.
Note: To use B4 and A3 width, IFAX SW00
Bit 1 (B4) and/or Bit 2 (A3) must be set to "1".

E-mail File Format
Single/multi-part
MIME conversion
Image: TIFF-F (MH, MR, MMR)

\section*{Protocol}

Transmission: SMTP, TCP/IP
Reception: POP3, SMTP, IMAP4, TCP/IP
Data rate
\(100 \mathrm{Mbps}(100 \mathrm{base}-\mathrm{Tx})\)
10 Mbps (10base-T)
Authentication method
SMTP-AUTH
POP before SMTP
A-POP

\section*{Remark}

The machine must be set up as an e-mail client before installation. Any client PCs connected to the machine through a LAN must also be e-mail clients, or some features will not work (e.g. Autorouting).

\subsection*{6.4 IP-FAX SPECIFICATIONS}
\begin{tabular}{|c|c|}
\hline Network: & LAN: Ethernet/10base-T, 100base-TX IEEE1394 (IP over 1394), IEEE802.11a/g (wireless LAN) \\
\hline Scan line density: & \begin{tabular}{l}
\(8 \times 3.85\) lines \(/ \mathrm{mm}, 200 \times 100 \mathrm{dpi}\) (standard character), \(8 \times 7.7 \mathrm{lines} / \mathrm{mm}, 200 \times 200 \mathrm{dpi}\) (detail character), \\
\(8 \times 15.4 \mathrm{lines} / \mathrm{mm}\) (fine character: optional expansion memory required), \\
\(16 \times 15.4\) lines \(/ \mathrm{mm}, 400 \times 400 \mathrm{dpi}\) (super fine character: optional expansion memory required)
\end{tabular} \\
\hline Original size: & Maximum A3 or 11"x 17" (DLT) \\
\hline Maximum scanning size: & \begin{tabular}{l}
Standard: A3, 297mm x 432mm \\
Irregular: \(297 \mathrm{~mm} \times 1200 \mathrm{~mm}\)
\end{tabular} \\
\hline Transmission protocol: & Recommended: T. 38 Annex protocol, TCP, UDP/IP communication \\
\hline Compatible machines: & IP-Fax compatible machines \\
\hline IP-Fax transmission: & \begin{tabular}{l}
Specify IP address and send fax to an IP-Fax compatible fax through a network. \\
Also capable of sending fax from a G3 fax connected to the public telephone lines via a VoIP gateway.
\end{tabular} \\
\hline IP-Fax reception: & \begin{tabular}{l}
Receive a fax sent from an IP-Fax compatible fax through a network. \\
Also capable of receiving fax from a G3 fax connected the public telephone lines via a VoIP gateway.
\end{tabular} \\
\hline
\end{tabular}

Fax Unit Configuration

\subsection*{6.5 FAX UNIT CONFIGURATION}

\begin{tabular}{|c|c|c|c|}
\hline Component & Code & No. & Remarks \\
\hline FCU & \multirow[t]{3}{*}{\begin{tabular}{l}
D361 \\
(D017/D018/ \\
D019/D020) \\
D510 \\
(D084/D085)
\end{tabular}} & 6 & \multirow{3}{*}{Included with fax unit} \\
\hline MBU & & 7 & \\
\hline Speaker & & 1 & \\
\hline CCU I/F Board & \multirow{2}{*}{D361} & 3 & \multirow{2}{*}{Included with optional G3 unit.} \\
\hline G3 Board & & 4 & \\
\hline G3 Board & D361 & 5 & Included with optional G3 unit. \\
\hline Expansion Memory & G578 & 2 & Common with D017 Series \\
\hline Handset Type 1018 & B433 & - & USA only. Common with D017 Series \\
\hline
\end{tabular}

\section*{ARDF DF3030}

\section*{D366}
\begin{tabular}{|c|c|ll|}
\hline \multicolumn{4}{|l|}{ ARDF DF3030 REVISION HISTORY } \\
\hline Page & Date & & Added/Updated/New \\
\hline & & None & \\
\hline
\end{tabular}

\section*{ARDF DF3030 D366}

\section*{TABLE OF CONTENTS}
1. REPLACEMENT AND ADJUSTMENT ..... 1
1.1 COVERS AND TRAY ..... 1
1.1.1 REAR COVER ..... 1
1.1.2 FRONT COVER AND ORIGINAL TRAY ..... 1
1.2 DOCUMENT FEED COMPONENTS ..... 2
1.2.1 ORIGINAL FEED UNIT ..... 2
1.2.2 PICK-UP ROLLER ..... 2
1.2.3 FEED BELT ..... 3
1.2.4 SEPARATION ROLLER. ..... 4
1.3 ELECTRICAL COMPONENTS ..... 5
1.3.1 ARDF DRIVE BOARD AND DF POSITION SENSOR ..... 5
1.3.2 ORIGINAL LENGTH SENSORS AND TRAILING EDGE SENSOR ..... 5
1.3.3 ORIGINAL SET SENSOR ..... 6
1.3.4 ORIGINAL SIZE SENSORS AND SKEW CORRECTION SENSOR ..... 6
1.3.5 STAMP SOLENOID AND ORIGINAL EXIT SENSOR ..... 7
1.4 ORIGINAL FEED DRIVE ..... 8
1.4.1 FEED MOTOR ..... 8
1.4.2 PICK-UP SOLENOID ..... 8
1.4.3 INVERTER SOLENOID ..... 9
1.4.4 FEED CLUTCH ..... 10
1.4.5 TRANSPORT MOTOR. ..... 11
2. DETAILED DESCRIPTIONS ..... 12
2.1 COMPONENT LAYOUT ..... 12
2.1.1 MECHANICAL COMPONENT LAYOUT ..... 12
2.1.2 ELECTRICAL COMPONENT LAYOUT ..... 13
2.1.3 DRIVE LAYOUT ..... 16
2.2 BASIC OPERATION ..... 17
2.2.1 ORIGINAL SET AND SIZE DETECTION ..... 17
2.2.2 MIXED ORIGINAL SIZE MODE ..... 18
2.2.3 PICK-UP AND SEPARATION ..... 20
2.2.4 SKEW CORRECTION ..... 21
2.2.5 ORIGINAL TRANSPORT AND EXIT ..... 22
2.2.6 CONDITIONS FOR JAM DETECTION ..... 23
3. SERVICE TABLES ..... 25
3.1 DIP SWITCHES ..... 25

\section*{Read This First}

\section*{Safety and Symbols}

\section*{Replacement Procedure Safety}

\section*{©CAUTION}
- Turn off the main power switch and unplug the machine before beginning any of the replacement procedures in this manual.

\section*{Symbols Used in this Manual}

This manual uses the following symbols.
: See or Refer to
: Screws
태): Connector
(3): Clip ring

G: E-ring

\section*{1. REPLACEMENT AND ADJUSTMENT}

\subsection*{1.1 COVERS AND TRAY}

\subsection*{1.1.1 REAR COVER}

1. Open the left cover \([\mathrm{A}]\)
2. Open the original tray \([\mathrm{B}]\).
3. Rear cover \([C]\left(\begin{array}{l}\text { ( }\end{array} \times 1\right.\), hook \(\times 6\) )

\subsection*{1.1.2 FRONT COVER AND ORIGINAL TRAY}

1. Open the left cover.
2. Rear cover (Rear Cover")
3. Front cover \([\mathrm{A}](\mathrm{E} \times 1)\)
\(\qquad\)
- Keep the original tray open when you remove the front cover.
4. Original tray \([\mathrm{B}](3) \times 1,5 \times 1)\)

\subsection*{1.2 DOCUMENT FEED COMPONENTS}

\subsection*{1.2.1 ORIGINAL FEED UNIT}

1. Open the left cover.
2. Original feed unit \([A]\).

\subsection*{1.2.2 PICK-UP ROLLER}

1. Open the left cover.
2. Original feed unit (
3. Pick-up roller [A] (3) \(\times 1\) )

\subsection*{1.2.3 FEED BELT}

1. Open the left cover.
2. Original feed unit (Original Feed Unit")
3. Feed belt cover [A] (spring \(\times 1\) )

\section*{\(\downarrow\) Nole}
- When reassembling the feed belt cover, make sure that the projection \([B]\) of the feed belt cover is on the guide plate rear [C].

4. Belt tension unit [D]

Document Feed Components

5. Feed belt [E]

\subsection*{1.2.4 SEPARATION ROLLER}

1. Open the left cover.
2. Separation roller cover [A].
3. Separation roller \([B]\left(\begin{array}{l}(1)\end{array}\right.\)

\subsection*{1.3 ELECTRICAL COMPONENTS}

\subsection*{1.3.1 ARDF DRIVE BOARD AND DF POSITION SENSOR}

1. Rear cover (see "Rear Cover")
2. ARDF drive board \([\mathrm{A}]\left(\mathrm{B}^{2} \times 3\right.\), all F )
3. DF position sensor with bracket \([B]\left(\xi^{*} \times 1, ~=1\right)\)
4. DF position sensor [C] (hook \(\times 2\) )

\subsection*{1.3.2 ORIGINAL LENGTH SENSORS AND TRAILING EDGE SENSOR}

1. Original Tray (see "Front Cover and Original Tray")
2. Tray cover \([A]\left(\begin{array}{l}(1)\end{array}\right)\)
3. Original trailing edge sensor \([B]\left(\sum^{1} \times 1\right)\)
4. Original length sensors \([C](\mathrm{C})=1\) each \()\)

\subsection*{1.3.3 ORIGINAL SET SENSOR}

1. Open the left cover.
2. Original feed unit (see the "Original Feed Unit")
3. Original Tray (see the "Original Tray")
4. Original feed-in guide plate \([\mathrm{A}]\left(\mathbb{E}^{?} \times 3\right)\).
5. Original set sensor bracket \([B]\left(\begin{array}{l}(8)\end{array}\right.\)
6. Original set sensor [C]

\subsection*{1.3.4 ORIGINAL SIZE SENSORS AND SKEW CORRECTION SENSOR}

1. Original feed-in guide plate (see "Original Set Sensor")
2. Original turn guide plate \([A]\) (hook \(\times 1\) ).
3. Original width sensors \([B]\left({ }^{5}\right) x 1\) each) and skew correction sensor [C] with bracket
\[
(\hat{B} \times 1, \ldots \times 1)
\]

\subsection*{1.3.5 STAMP SOLENOID AND ORIGINAL EXIT SENSOR}

1. Open the ARDF.
2. Remove the left edge of the platen sheet.
3. Release the hook [A].
4. Open the original exit guide plate \([B]\)
5. Stamp solenoid [C] ( \(\mathrm{G} \times 1, \mathrm{E} \times 1\) )
6. Original exit sensor [D] ( \({ }^{2}\) ) \(\times 1\), hook \(\times 1\) )

\subsection*{1.4 ORIGINAL FEED DRIVE}

\subsection*{1.4.1 FEED MOTOR}

1. Rear cover (see "Rear Cover")
2. Feed motor with bracket \([A]\left(\hat{\theta}^{2} \times 2, ~=1\right) \times 1\), spring \(\left.\times 1\right)\)
3. Feed motor \([B]\left(\theta^{*} \times 2\right)\)

\subsection*{1.4.2 PICK-UP SOLENOID}

1. Rear cover (see "Rear Cover")
2. Harness guide \([\mathrm{A}](\mathrm{all} \mathrm{H}=\mathrm{s})\)

3. Pick-up solenoid \(\left.[B]()^{( } \times 2, ~=1\right)\)

\subsection*{1.4.3 INVERTER SOLENOID}

1. Rear cover (see "Rear Cover")
2. Harness guide (see "Pick-up Solenoid")


Original Feed Drive

\subsection*{1.4.4 FEED CLUTCH}

1. Rear cover (see "Rear Cover")
2. Harness guide (see "Pick-up Solenoid")
3. Bracket \(\left.[A]()^{9} \times 2,3\right) \times 3,6 \times 1\), bushing \(\times 1\), spring \(\left.\times 1\right)\)

4. Slide the bracket.
5. Feed clutch \(\left.[B]\left({ }^{2}\right) \times 1\right)\)

\subsection*{1.4.5 TRANSPORT MOTOR}

1. Rear cover (see "Rear Cover")
2. Harness guide (see "Pick-up Solenoid")
3. Left cover sensor with bracket \([A]\left(\theta^{2} \times 1, ~(H)=1\right)\)
4. Transport motor with bracket \([B]\left(\mathcal{G}^{2} \times 2,{ }^{2}=1\right.\), spring \(\left.\times 1\right)\)
5. Transport motor [C] ( \(\mathrm{G} \times 2\) )

\section*{2. DETAILED DESCRIPTIONS}

\subsection*{2.1 COMPONENT LAYOUT}

\subsection*{2.1.1 MECHANICAL COMPONENT LAYOUT}


\footnotetext{
1. Separation Roller
2. Paper Feed Belt
3. Pick-up Roller
4. Original Trailing Edge Sensor
5. Original Tray
6. Original Length Sensor 1
7. Original Length Sensor 2
8. Original Length Sensor 3
9. Inverter Roller
}
10. Junction Gate
11. Exit Roller
12. Original Exit Sensor
13. Transport Roller
14. Registration Roller
15. Registration Sensor
16. Skew Correction Roller
17. Skew Correction Sensor

\subsection*{2.1.2 ELECTRICAL COMPONENT LAYOUT}

\section*{Sensors}


1. Original Width Sensor
2. Skew Correction Sensor
3. Registration Sensor
4. Cover Sensor
5. Original Set Sensor
6. Exit Sensor
7. Original Sensor
8. Original Length Sensor
9. DF Position Sensor

Component Layout

\section*{Drive Components}

1. Transport Motor
2. Feed Clutch
3. Pick-up Solenoid
4. Inverter Solenoid
5. Feed Motor
6. Main Board

\section*{Electrical Component Descriptions}
\begin{tabular}{|c|l|l|c|}
\hline Symbol & \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Function } & Index No. \\
\hline Motors & \multicolumn{3}{|c|}{} \\
\hline M1 & Feed & \begin{tabular}{l} 
Drives the feed belt, separation, pick-up, and \\
reverse table rollers.
\end{tabular} & 5 \\
\hline M2 & Transport & Drives the transport and exit rollers & 1 \\
\hline & & & 2 \\
\hline Sensors & Skew Correction & \begin{tabular}{l} 
Detects the leading edge of the original to \\
turn off the DF feed and transport motors.
\end{tabular} & 2 \\
\hline S8 & RF Position & Detects whether the DF is lifted or not. & 3 \\
\hline S10 & Cover Sensor & \begin{tabular}{l} 
Detects the original exposure timing, and \\
checks for original misfeeds. \\
Setects whether the feed-in cover is opened
\end{tabular} & 4 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline S1 & \begin{tabular}{l}
Original Width \\
Sensor-S
\end{tabular} & Detects the original width - S . & 1 \\
\hline S2 & \begin{tabular}{l}
Original Width \\
Sensor - M
\end{tabular} & Detects the original width - M. & 1 \\
\hline S3 & \begin{tabular}{l}
Original Width \\
Sensor - L
\end{tabular} & Detects the original width - L. & 1 \\
\hline S4 & \begin{tabular}{l}
Original Width \\
Sensor - LL
\end{tabular} & Detects the original width - LL. & 1 \\
\hline S14 & Original Length S & Detects the original length - S. & 8 \\
\hline S13 & Original Length M & Detects the original length - M. & 8 \\
\hline S12 & Original Length L & Detects the original length - L. & 8 \\
\hline S7 & Original Set & Detects if an original is on the feed table. & 5 \\
\hline S6 & Original Exit & \begin{tabular}{l}
Detects the leading edge of the original to turn on the junction gate solenoid and checks for original misfeeds. \\
Detects the trailing edge of the original to turn off the transport and feed motor and junction gate solenoid. \\
In single-sided mode, used to detect original misfeeds.
\end{tabular} & 6 \\
\hline S11 & Original & Detects the trailing edge of the last original to stop copy paper feed and to turn off the transport motor, and checks for original misfeeds. & 7 \\
\hline \multicolumn{4}{|l|}{Solenoids} \\
\hline SOL1 & Pick-up & Controls the up-down movement of the original table. & 3 \\
\hline SOL2 & Stamp & Energizes the stamper to mark the original. & \\
\hline SOL3 & Junction Gate & Opens and closes the junction gate. & 4 \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{Magnetic Clutches} \\
\hline MC1 & Feed & Drives the feed belt, separation, pick-up, and skew correction rollers & 5 \\
\hline & & & \\
\hline
\end{tabular}

Component Layout
\begin{tabular}{|l|l|l|c|}
\hline \multicolumn{5}{|l|}{ PCBs } & PCB1 & Main & \begin{tabular}{l} 
Interfaces the sensor signals with the copier, \\
and transfers the magnetic clutch, solenoid \\
and motor drive signals from the copier.
\end{tabular} & 6 \\
\hline & & & \\
\hline
\end{tabular}

\subsection*{2.1.3 DRIVE LAYOUT}

1. Feed Motor
2. Pick-up Roller
3. Separation Roller
4. Feed Belt
5. Skew Correction Roller
6. Feed Clutch
7. Transport Motor
8. Exit Roller
9. Registration Roller
- Feed Motor: Drives the feed belt, separation, pick-up, and skew correction rollers.
- Transport Motor: Drives the registration and exit rollers.

\subsection*{2.2 BASIC OPERATION}

\subsection*{2.2.1 ORIGINAL SET AND SIZE DETECTION}


The original set sensor [A] detects if the original is set or not. The original sensor [B] detects if the original is on the original tray or not (this lets the machine know as early as possible, whether there is another original on the tray).

The original size detection mechanism consists of the four original width sensors ([F]: Width Sensor S, [G]: Width Sensor M, [H] Width Sensor L, [I]: Width Sensor LL) and three original length sensors ([C]: Length Sensor S, [D]: Length Sensor M, [E]: Length Sensor L). Based on the combined output of the length sensors and the width sensors, the machine can detect the size of the original. This integrated detection mechanism is detailed in the table below.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Size} & \multicolumn{4}{|c|}{Width Sensor} & \multicolumn{3}{|l|}{Length Sensor} & \multicolumn{2}{|r|}{Area} \\
\hline & S & M & L & LL & S & M & L & LT & A/B \\
\hline A3/SEF (297 x 420) & ON & O & O \\
\hline B4/SEF (257 x 364) & ON & ON & - & - & ON & ON & ON & - & 0 \\
\hline A4/SEF (210 x 297) & ON & - & - & - & ON & ON & - & O & 0 \\
\hline A4/LEF (297 x 210) & ON & ON & ON & ON & - & - & - & O & 0 \\
\hline B5/SEF (182 x 257) & - & - & - & - & ON & - & - & - & O \\
\hline B5/LEF (257 x 182) & ON & ON & - & - & - & - & - & - & 0 \\
\hline A5/SEF (148 x 210) & - & - & - & - & - & - & - & - & O \\
\hline A5/LEF (210 x 148) & ON & - & - & - & - & - & - & - & 0 \\
\hline \(11 " \times 17\) "/SEF (DLT) & ON & ON & ON & - & ON & ON & ON & \(\mathrm{O}^{1}\) & \(\mathrm{O}^{5}\) \\
\hline
\end{tabular}

Basic Operation
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 11 " x 15"/SEF & ON & ON & ON & & ON & ON & ON & \(\bullet^{1}\) & - \\
\hline 10" x 14"/SEF & ON & ON & - & - & ON & ON & ON & 0 & - \\
\hline 8.5 " \(\times 14\) "/SEF (LG) & ON & - & - & & ON & ON & ON & \(\mathrm{O}^{2}\) & - \\
\hline 8.5 " \(\times 13^{\prime \prime} /\) SEF (F4) & ON & - & - & - & ON & ON & ON & \(\bullet^{2}\) & 0 \\
\hline 8.25 " \(\times 13\) "/SEF & ON & & & & ON & ON & ON & - & - \\
\hline 8" \(\times 13\) "/SEF (F) & ON & - & - & - & ON & ON & ON & - & - \\
\hline 8.5" \(\times 11^{\prime \prime} /\) SEF (LT) & ON & - & - & & ON & - & - & \(\mathrm{O}^{3}\) & \(\mathrm{O}^{6}\) \\
\hline 8.5" \(\times 11^{\prime \prime} /\) LEF (LT) & ON & ON & ON & - & - & - & - & \(\mathrm{O}^{4}\) & \(\mathrm{O}^{7}\) \\
\hline \[
\begin{aligned}
& 7.25 " \times 10.5 " / \text { SEF (US } \\
& \text { EXE) }
\end{aligned}
\] & ON & - & - & & ON & - & - & 0 & - \\
\hline \[
\begin{aligned}
& 10.5 " \times 7.25 " / S E F(U S \\
& \text { EXE) }
\end{aligned}
\] & ON & ON & ON & & - & - & - & \(\bullet^{4}\) & - \\
\hline 10" x 8"/SEF & ON & - & - & - & ON & - & - & \(\bullet^{3}\) & - \\
\hline 5.5 " \(\times 8.5\) "/SEF (HLT) & - & - & & - & - & - & - & 0 & \\
\hline 5.5" \(\times 8.5\) "/LEF (HLT) & ON & - & - & - & - & - & - & 0 & - \\
\hline \(267 \mathrm{~mm} \times 390 \mathrm{~mm}\) & ON & ON & ON & - & ON & ON & ON & - & \(\bullet^{5}\) \\
\hline \(195 \mathrm{~mm} \times 267 \mathrm{~mm}\) & ON & - & - & - & ON & - & - & - & \(\bullet^{6}\) \\
\hline \(267 \mathrm{~mm} \times 195 \mathrm{~mm}\) & ON & ON & ON & - & - & - & - & - & \({ }^{\bullet}\) \\
\hline
\end{tabular}

\section*{Symbol}

O: Yes (Default), ©: Yes (Can select this with SP mode), ON: Paper present, LT: North America, A/B: Europe, Asia
- For "O/Q" mark, which has superscripted number, it is possible to change the original detection size with SP6-016. For example, instead of LT \(\left(\mathrm{O}^{3}\right)\), the machine can be set up to detect \(10^{\prime \prime} \times 8\) "
- The F size can be selected with SP5-126. The default is \(8.5^{\prime \prime} \times 13^{\prime \prime}\)
- The machine cannot detect more than one size of original in the same job.

\subsection*{2.2.2 MIXED ORIGINAL SIZE MODE}

This section explains what happens when the user selects mixed original size mode. Because this ARDF is a sheet-through document feeder, the method for original document width detection is the same as when the originals are the same size, but the document length detection method is different. Therefore, the scanning speed is slightly slower.

\section*{Document length detection}

From when the skew correction sensor switches on until it switches off, the CPU counts the transport motor pulses. The number of pulses determines the length of the original.

\section*{Feed-in cycle}

When the original size for the copy modes listed below cannot be determined, the image cannot be correctly scaled (reduced or enlarged) or processed until the original's length has been accurately detected. The length must be determined before the image is scanned.
\begin{tabular}{|l|}
\hline Auto Reduce/Enlarge \\
\hline Centering \\
\hline Erase Center/Border \\
\hline Booklet \\
\hline Image Repeat \\
\hline
\end{tabular}

The originals follow this path:
1. Length detection \(\rightarrow\) Scanning glass \(\rightarrow\) Inverter table
2. Inverter table \(\rightarrow\) Scanning glass \(\rightarrow\) Inverter table (restores the original order)
3. Inverter table \(\rightarrow\) Scanning glass (image scanned) \(\rightarrow\) Exit tray

\section*{Normal feed-in}

In a copy mode other than those listed above, when the reduction/enlargement ratio has been determined, the originals are scanned normally. In order to store the scanned images, a large area of memory (the detected original width \(\times 432 \mathrm{~mm}\) length) is prepared. Next, only the portion of the image up to the detected original length is read from memory and printed.

\subsection*{2.2.3 PICK-UP AND SEPARATION}


The original is set with the image facing up. The original pushes actuator and the original set sensor is activated.

After pressing the start button, the feed clutch is activated and the original feed unit [A] moves down. At the same time, the pick-up solenoid is activated and the original table lifts until the original comes in contact with the pick-up roller [B]. The pick-up roller then feeds the top sheet of paper.
After being fed from feed belt [C], the topmost sheet is separated from the stack by the separation roller [D] and sent to the skew correction roller.

The mechanism is an FRR system, consisting of the original feed belt [C] and separation roller [D].

\subsection*{2.2.4 SKEW CORRECTION}


When an original is fed into the feeder, the feed motor [B] rotates forwards. At this time, the feed belt turns but the skew correction roller [C] does not. Because of this, when the leading edge of the paper gets to the skew correction roller, skew in the original is removed. A short time after the leading edge of the original turns on the skew correction sensor \([A]\), the feed motor \([B]\) turns off for 40 ms and rotates in reverse. At this time, the skew correction roller [C] and the feed belt both turn, and original feed continues.

The original is fed by the skew correction roller after the feed clutch [D] has turned off.

\subsection*{2.2.5 ORIGINAL TRANSPORT AND EXIT}

\section*{Single-Sided Originals}


The feed motor feeds the separated original to the skew correction roller [A] at maximum speed. After skew correction, the feed and transport motors feed the original through the scanning area at a lower speed (the scanning area contains the original exposure guide \([B]\) and DF exposure glass [C]). After scanning, the original is fed out by the transport roller [D] and exit roller [E].

\section*{Double-Sided Originals}


After skew correction, the feed and transport motors drive the skew correction roller [A], registration roller \([B]\), transport roller [C] and the exit roller [D]. The front side of the original is then scanned.

When the original exit sensor detects the leading edge of the original, the junction gate solenoid is activated and the junction gate [E] opens. The original is then transported
towards the inverter table.
Soon after the trailing edge of the original passes the exit sensor, the junction gate solenoid switches off and the junction gate [ \(E\) ] is closed. When the original has been fed onto the inverter table, the feed motor switches on in reverse. The original is then fed by the inverter roller [F], and then by the skew correction roller [A] and registration roller [B] to the scanning area (where the reverse side will be scanned).


The original is then sent to the inverter table again to be turned over. This is done so that the duplex copies will be properly stacked front side down in the exit tray [G] in the correct order.

\section*{Original Sensor}

During one-to-one copying, copy paper is fed to the skew correction roller in advance (while the original is still being scanned), to increase the copy speed. The original sensor monitors the stack of originals in the feeder, and detects when the trailing edge of the last page has been fed in. The main CPU then stops the copier from feeding an unwanted extra sheet of copy paper.

\subsection*{2.2.6 CONDITIONS FOR JAM DETECTION}
\begin{tabular}{|c|l|}
\hline Jam Mode & \multicolumn{1}{c|}{ Detection Timing } \\
\hline \multirow{4}{*}{ Initial } & \begin{tabular}{l} 
When turning on the machine, the skew correction sensor, registration \\
sensor or exit sensor detects an original.
\end{tabular} \\
\cline { 2 - 4 } & \begin{tabular}{l} 
When the cover is closed or DF is down, the skew correction sensor, \\
registration sensor or exit sensor detects an original.
\end{tabular} \\
\cline { 2 - 4 } & \begin{tabular}{l} 
When the cover is opened or DF is lifted up, the skew correction \\
sensor, registration sensor or exit sensor detects an original.
\end{tabular} \\
\hline
\end{tabular}

\section*{Basic Operation}
\begin{tabular}{|c|c|}
\hline \multirow{3}{*}{Sensor stays on too long} & The skew correction sensor does not turn off even if the original was fed by the maximum length of the original +150 mm after the skew correction sensor turned on. \\
\hline & The registration sensor does not turn off even if the original was fed by its length \(\times 1.5\) after the registration sensor turned on. \\
\hline & The exit sensor does not turn off even if the original was fed by its length \(\times 1.5\) after the exit sensor turned on. \\
\hline \multirow{3}{*}{Sensor does not come on} & The skew correction sensor does not turn on even if the original was fed by transport path length \(\times 1.5\). \\
\hline & The registration sensor does not turn on even if the original was fed by transport path length \(\times 1.5\) after the skew correction sensor turned on. \\
\hline & The exit sensor does not turn on even the original was fed by transport path length \(\times 1.5\) after the skew correction sensor turned on. \\
\hline
\end{tabular}

\section*{3. SERVICE TABLES}

\subsection*{3.1 DIP SWITCHES}
\begin{tabular}{|c|c|c|c|l|}
\hline \multicolumn{4}{|c|}{ DIP-SW } & \\
\hline \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) & \\
\hline 0 & 0 & 0 & 0 & Normal operating mode (Default) \\
\hline 0 & 0 & 0 & 1 & Free run: With original: One-sided mode: \(100 \%\) speed \\
\hline 0 & 0 & 1 & 0 & Free run: With original: Two-sided mode: \(100 \%\) speed \\
\hline 0 & 0 & 1 & 1 & Free run: No original: One-sided mode: \(100 \%\) speed \\
\hline 0 & 1 & 0 & 0 & Free run: No original: Two-sided mode: \(100 \%\) speed \\
\hline 0 & 1 & 0 & 1 & Free run: With original: One-sided mode: \(32 \%\) speed \\
\hline 0 & 1 & 1 & 0 & Free run: With original: Two-sided mode: \(32 \%\) speed \\
\hline 0 & 1 & 1 & 1 & Free run: With original: One-sided mode: \(70 \%\) speed \\
\hline 1 & 0 & 0 & 0 & Free run: With original: Two-sided mode: \(70 \%\) speed \\
\hline 1 & 0 & 0 & 1 & Free run: With original: One-sided mode: \(200 \%\) speed \\
\hline 1 & 0 & 1 & 0 & Free run: With original: Two-sided mode: \(200 \%\) speed \\
\hline 1 & 0 & 1 & 1 & Transport Motor On \\
\hline 1 & 1 & 0 & 0 & Feed Motor On \\
\hline 1 & 1 & 0 & 1 & Transport Motor On with random mode \\
\hline 1 & 1 & 1 & 0 & Feed Motor On with random mode \\
\hline 1 & 1 & 1 & 1 & \\
\hline
\end{tabular}

\section*{1-BIN TRAY BN3030}

\section*{D367}
\begin{tabular}{|c|c|l|}
\hline \multicolumn{4}{|l|}{ 1-BIN TRAY BN3030 REVISION HISTORY } \\
\hline Page & Date & \\
\hline & & None \\
\hline
\end{tabular}

\section*{1-BIN TRAY BN3030 D367 TABLE OF CONTENTS}
1. OVERALL INFORMATION ..... 1
1.1 SPECIFICATIONS ..... 1
1.2 MECHANICAL COMPONENT LAYOUT ..... 2
1.3 ELECTRICAL COMPONENT LAYOUT ..... 3
1.4 ELECTRICAL COMPONENT DESCRIPTION .....  3
2. DETAILED SECTION DESCRIPTIONS ..... 4
2.1 BASIC OPERATION ..... 4
3. REPLACEMENT AND ADJUSTMENT ..... 5
3.1 PAPER SENSOR REMOVAL ..... 5
1. OVERALL INFORMATION
1.1 SPECIFICATIONS
Paper Size: Standard Size: A5 Lengthwise to A3 HLT Lengthwise to DLT

    Non-standard Size:

        Paper Width: \(90 \sim 297 \mathrm{~mm}\)

        Paper Length: \(148 \sim 432 \mathrm{~mm}\)
Paper Weight: \(\quad 60 \sim 105 \mathrm{~g} / \mathrm{m}^{2}, 16 \sim 28 \mathrm{lbs}\).
Tray Capacity: \(\quad 125\) sheets ( \(80 \mathrm{~g} / \mathrm{m}^{2}, 20 \mathrm{lbs}\).)
Power Source: \(\quad 5\) VDC, 24 VDC (from the copier)
Power Consumption: 17 W
Weight: \(\quad 1.1 \mathrm{~kg}\)
Size (W x D x H): \(\quad 530 \mathrm{~mm} \times 410 \mathrm{~mm} \times 120 \mathrm{~mm}\)

\subsection*{1.2 MECHANICAL COMPONENT LAYOUT}

1. Exit Rollers
2. Junction Gate Gear
3. Drive Gear
4. Paper Tray
5. Paper Sensor
6. Junction Gate (Interchange Unit)

\subsection*{1.3 ELECTRICAL COMPONENT LAYOUT}

1. Paper Sensor
2. 1-bin Sorter Exit Tray LED (located in the copier)

\subsection*{1.4 ELECTRICAL COMPONENT DESCRIPTION}
\begin{tabular}{|c|c|c|c|}
\hline Symbol & Name & Function & Index No. \\
\hline \multicolumn{4}{|l|}{Sensors} \\
\hline S1 & Paper & Detects when there is paper on the tray. & 1 \\
\hline \multicolumn{4}{|l|}{LEDs} \\
\hline LED1 & 1 Bin Exit Tray & Indicates when there is paper in the tray. This sensor is located in the copier. & 2 \\
\hline & & & \\
\hline
\end{tabular}

\section*{2. DETAILED SECTION DESCRIPTIONS}

\subsection*{2.1 BASIC OPERATION}


At the appropriate time after the leading edge of the first sheet of copy paper reaches the copier's registration roller, the junction gate solenoid \([B]\) in the interchange unit turns on to switch the junction gate to direct the paper to the tray [C].
The junction gate solenoid turns off at the appropriate time after the paper is directed to the tray. The main motor in the copier stops after the final sheet passes through the paper sensor [E].
The paper sensor [E] turns on when there is paper in the tray, and the paper indicator [F] turns on.

The tray can be opened for easier jam removal by swinging the tray to the left.

\section*{3. REPLACEMENT AND ADJUSTMENT}

\subsection*{3.1 PAPER SENSOR REMOVAL}

1. Remove the 1-bin tray.
2. Remove the 1-bin sorter unit [A].
3. Remove the paper sensor [B] (1 connector).

\section*{BRIDGE UNIT BU3020 D368}
\begin{tabular}{|c|c|l|}
\hline \multicolumn{4}{|l|}{ BRIDGE UNIT BU3030 REVISION HISTORY } \\
\hline Page & Date & \multicolumn{1}{c|}{ Added/Updated/New } \\
\hline & & None \\
\hline
\end{tabular}

\section*{BRIDGE UNIT BU3020 D368 TABLE OF CONTENTS}
1. OVERALL MACHINE INFORMATION ..... 1
1.1 SPECIFICATIONS ..... 1
1.2 MECHANICAL COMPONENT LAYOUT ..... 2
1.3 ELECTRICAL COMPONENT LAYOUT ..... 3
1.4 ELECTRICAL COMPONENT DESCRIPTION ..... 4
1.5 DRIVE LAYOUT ..... 5
2. DETAILED DESCRIPTION ..... 6
2.1 JUNCTION GATE MECHANISM ..... 6
3. REPLACEMENT AND ADJUSTMENT ..... 7
3.1 BRIDGE UNIT DRIVE MOTOR REPLACEMENT ..... 7
3.2 TRAY EXIT SENSOR REPLACEMENT ..... 8
3.3 RELAY SENSOR REPLACEMENT ..... 8
1. OVERALL MACHINE INFORMATION
1.1 SPECIFICATIONS
\begin{tabular}{|c|c|}
\hline Paper Size: & \begin{tabular}{l}
Standard sizes \\
A6 lengthwise to A3 \\
HLT to DLT \\
Non-standard sizes \\
Width: 100 to 305 mm \\
Length: 148 to 432 mm
\end{tabular} \\
\hline Paper Weight: & \(52 \mathrm{~g} / \mathrm{m}^{2} \sim 135 \mathrm{~g} / \mathrm{m}^{2}, 16 \mathrm{lb} \sim 42 \mathrm{lb}\) \\
\hline Power Source: & DC24 V, 5 V (from the copier/printer) \\
\hline Dimensions (W x D \(\times\) H): & \(413 \times 435 \times 126 \mathrm{~mm}\) \\
\hline Weight & 3.0 kg ( 6.6 lbs ) \\
\hline
\end{tabular}

\subsection*{1.2 MECHANICAL COMPONENT LAYOUT}

1. Upper Exit Roller
6. 2nd Transport Roller
2. Tray Exit Sensor
7. 3rd Transport Roller
3. Junction Gate
8. Left Exit Roller
4. Cooling Fan
9. Relay Sensor
5. 1st Transport Roller
10. Paper Tray

\subsection*{1.3 ELECTRICAL COMPONENT LAYOUT}

1. Left Guide Switch
2. Right Guide Switch
3. Junction Gate Solenoid
4. Tray Exit Sensor
5. Cooling Fan Motor
6. Relay Sensor
7. Bridge Unit Drive Motor
8. Bridge Unit Control Board

\subsection*{1.4 ELECTRICAL COMPONENT DESCRIPTION}
\begin{tabular}{|c|c|c|c|}
\hline Symbol & Name & Function & Index No. \\
\hline \multicolumn{4}{|l|}{Motors} \\
\hline M1 & Cooling Fan & Cools the transport unit. & 5 \\
\hline M2 & Bridge Unit Drive & Drives the bridge unit. & 7 \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{Sensors} \\
\hline S1 & Tray Exit & Checks for misfeeds. & 4 \\
\hline S2 & Relay & Checks for misfeeds. & 6 \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{Switches} \\
\hline SW2 & Right Guide & Detects when the right guide is opened. & 2 \\
\hline SW3 & Left Guide & Detects when the left guide is opened. & 1 \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{Solenoids} \\
\hline SOL1 & Junction Gate & Moves the junction gate to direct the paper to the upper tray (on top of the bridge unit) or to the finisher. & 3 \\
\hline \multicolumn{4}{|l|}{PCBs} \\
\hline PCB1 & Bridge Unit Control Board & Controls the bridge unit. & 8 \\
\hline
\end{tabular}

\subsection*{1.5 DRIVE LAYOUT}

1. Left Exit Roller
2. 2nd Transport Roller
3. 1st Transport Roller
4. Upper Exit Roller
5. 3rd Transport Roller
6. Bridge Unit Drive Motor

\section*{2. DETAILED DESCRIPTION}

\subsection*{2.1 JUNCTION GATE MECHANISM}


The junction gate \([B]\) directs any paper reaching the bridge unit to either the upper tray (on top of the bridge unit) or to the finisher, depending on which has been selected.

If the junction gate solenoid \([A]\) has been activated, the junction gate [B] points downward and directs the paper to the upper tray [D] (dotted line path in illustration). When the solenoid is off, the junction gate points upward and the paper is fed out to the finisher [C] by the transport and exit rollers (solid line).

\section*{3. REPLACEMENT AND ADJUSTMENT}

NOTE: When taking apart the bridge unit, first take the unit out of the copier.

\subsection*{3.1 BRIDGE UNIT DRIVE MOTOR REPLACEMENT}

1. Remove the bridge unit from the copier. (See the Installation Procedure in the base copier manual.)
2. Remove the rear cover [C] (2 screws).
3. Remove the bridge unit drive motor [D] ( 2 screws, 1 connector).

\subsection*{3.2 TRAY EXIT SENSOR REPLACEMENT}

1. Remove the bridge unit from the copier. (See the Installation Procedure in the base copier manual.)
2. Remove the rear cover (2 screws). See Bridge Unit Drive Motor Replacement.
3. Remove the paper tray [A].
4. Remove the exit guide \([\mathrm{B}]\) (2 screws).
5. Remove the tray exit sensor [C] (1 connector).

\subsection*{3.3 RELAY SENSOR REPLACEMENT}

1. Remove the bridge unit from the copier. (See the Installation Procedure in the base copier manual.)
2. Stand the bridge unit up as shown in the illustration and remove the sensor [D].

\section*{DUPLEX UNIT AD3000 \\ D369}
\begin{tabular}{|c|c|ll|}
\hline \multicolumn{4}{|l|}{ DUPLEX UNIT AD3000 REVISION HISTORY } \\
\hline Page & Date & \multicolumn{1}{l|}{ Added/Updated/New } \\
\hline & & None & \\
\hline
\end{tabular}

\section*{DUPLEX UNIT AD3000 D369 TABLE OF CONTENTS}
1. REPLACEMENT AND ADJUSTMENT ..... 1
1.1 UNIT AND COVER ..... 1
1.1.1 DUPLEX UNIT ..... 1
1.1.2 BY-PASS TRAY ..... 2
1.1.3 RIGHT DOOR COVER ..... 4
1.2 ELECTRICAL COMPONENT ..... 5
1.2.1 DUPLEX ENTRANCE SENSOR ..... 5
1.2.2 DUPLEX EXIT SENSOR ..... 6
1.2.3 DUPLEX TRANSPORT MOTOR ..... 7
1.3 BY-PASS UNIT ..... 9
1.3.1 PAPER END SENSOR (BYPASS) ..... 9
1.3.2 BY-PASS FEED ROLLER ..... 9
1.3.3 SEPARATION PAD ..... 10
2. DETAILED SECTION DESCRIPTIONS ..... 12
2.1 COMPONENT LAYOUT ..... 12
2.1.1 MECHANICAL COMPONENT ..... 12
2.1.2 DUPLEX DRIVE ..... 13
2.2 OVERVIEW ..... 14
2.2.1 INVERTER MECHANISM ..... 14
2.2.2 DUPLEX OPERATION ..... 15

\section*{Read This First}

\section*{Safety, Conventions, Trademarks}

\section*{SAFETY}

\section*{PREVENTION OF PHYSICAL INJURY}
1. Before disassembling or assembling parts of the printer and peripherals, make sure that the printer and peripheral power cords are unplugged.
2. The power source should be near the printer and easily accessible.
3. Note that some components of the printer and the paper tray unit are supplied with electrical voltage even if the main power switch is turned off.
4. If any adjustment or operation check has to be made with exterior covers off or open while the main switch is turned on, keep hands away from electrified or mechanically driven components.
5. If the Start key is pressed before the copier completes the warm-up period (the Start key starts blinking red and green alternatively), keep hands away from the mechanical and the electrical components as the copier starts making copies as soon as the warm-up period is completed.
6. The inside and the metal parts of the fusing unit become extremely hot while the printer is operating. Be careful to avoid touching those components with your bare hands.
7. To prevent a fire or explosion, keep the machine away from flammable liquids, gases, and aerosols.

\section*{HEALTH SAFETY CONDITIONS}
1. Never operate the copier without the ozone filters installed.
2. Always replace the ozone filters with the specified ones at the specified intervals.
3. Toner and developer are non-toxic, but if you get either of them in your eyes by accident, it may cause temporary eye discomfort. Try to remove with eye drops or flush with water as first aid. If unsuccessful, get medical attention.

\section*{OBSERVANCE OF ELECTRICAL SAFETY STANDARDS}
1. The copier and its peripherals must be installed and maintained by a customer service representative who has completed the training course on those models.

\section*{SAFETY AND ECOLOGICAL NOTES FOR DISPOSAL}
1. Do not incinerate toner bottles or used toner. Toner dust may ignite suddenly when exposed to an open flame.
2. Dispose of used toner, developer, and organic photoconductors in accordance with
local regulations. (These are non-toxic supplies.)
3. Dispose of replaced parts in accordance with local regulations.
4. When keeping used lithium batteries in order to dispose of them later, do not put more than 100 batteries per sealed box. Storing larger numbers or not sealing them apart may lead to chemical reactions and heat build-up.

\section*{\(\triangle\) CAUTION}
- The danger of explosion exists if a battery of this type is incorrectly replaced. Replace only with the same or an equivalent type recommended by the manufacturer. Discard used batteries in accordance with the manufacturer's instructions.

\section*{CONVENTIONS AND TRADEMARKS}

\section*{CONVENTIONS}
\begin{tabular}{|c|c|}
\hline Symbol & What it means \\
\hline GTI & Core Tech Manual \\
\hline \({ }^{(1)}\) & Screw \\
\hline E\#l & Connector \\
\hline (6) & E-ring \\
\hline (3) & C-ring \\
\hline 包 & Clamp \\
\hline FFC & Flexible Film Connector \\
\hline
\end{tabular}


Short Edge Feed (SEF)


Long Edge Feed (LEF)

The notations "SEF" and "LEF" describe the direction of paper feed. The arrows indicate the direction of paper feed.

\section*{WARNINGS, CAUTIONS, NOTES}

In this manual, the following important symbols and notations are used.

\section*{©WARNING}
- A Warning indicates a potentially hazardous situation. Failure to obey a Warning could result in death or serious injury.

\section*{©CAUTION}
- A Caution indicates a potentially hazardous situation. Failure to obey a Caution could result in minor or moderate injury or damage to the machine or other property
\(\pm\) Imporiant
- Obey these guidelines to avoid problems such as misfeeds, damage to originals, loss of valuable data and to prevent damage to the machine

\section*{\(\downarrow\) Wote}
- This information provides tips and advice about how to best service the machine.

\section*{TRADEMARKS}
- Microsoft \({ }^{\circledR}\), Windows \({ }^{\circledR}\), and MS-DOS \({ }^{\circledR}\) are registered trademarks of Microsoft Corporation in the United States and /or other countries.
- PostScript \({ }^{\circledR}\) is a registered trademark of Adobe Systems, Incorporated.
- \(P C L^{\circledR}\) is a registered trademark of Hewlett-Packard Company.
- Ethernet \({ }^{\circledR}\) is a registered trademark of Xerox Corporation.
- PowerPC \({ }^{\circledR}\) is a registered trademark of International Business Machines Corporation.
- Other product names used herein are for identification purposes only and may be trademarks of their respective companies. We disclaim any and all rights involved with those marks.

\section*{1. REPLACEMENT AND ADJUSTMENT}

\subsection*{1.1 UNIT AND COVER}

\subsection*{1.1.1 DUPLEX UNIT}
1. Open the right door and right door of the optional paper tray unit or LCT..

2. Connector cover \([A]\left(\mathcal{B}^{3} \times 1\right)\).
3. Disconnect the cable \([B]\).
4. Release the rear link [C] ( \((3) \times 1)\).

5. Release the front link [D] and remove the duplex unit [E].

\section*{Unit and Cover}

\subsection*{1.1.2 BY-PASS TRAY}
1. Duplex unit ( Duplex Unit)

2. Inner rear cover \([A]\left(\begin{array}{l}\text { 雨 }\end{array}\right.\) )

3. Paper guide unit \([\mathrm{B}]\) (tabs \(\times 4\) )

4. Disconnect the by-pass tray cable [C] (绿 X 1 ).

5. Remove the front and rear pins [D] ( \(53 \times 1\) each).


\section*{Unit and Cover}
6. By-pass tray [E]

\subsection*{1.1.3 RIGHT DOOR COVER}
1. Duplex unit ( Duplex Unit)
2. By-pass tray ( By-pass Tray)

3. Right door cover ( \(\left(\hat{\mathcal{F}^{2}} \times 4\right)\)

\subsection*{1.2 ELECTRICAL COMPONENT}

\subsection*{1.2.1 DUPLEX ENTRANCE SENSOR}
1. Duplex unit ( \(\sim\) Duplex Unit)

2. Open the duplex inner guide unit \([A]\).

3. Duplex outer guide \([B]\left(\hat{\xi^{3}} \times 1\right)\)

\section*{Electrical Component}

d369r511
4. Duplex entrance sensor bracket [C] (
5. Duplex entrance sensor [D] (hooks)

\subsection*{1.2.2 DUPLEX EXIT SENSOR}
1. Duplex unit ( \(\sim\) Duplex Unit)
2. Paper guide unit ( By-pass Tray)

3. Duplex exit sensor bracket \([A]\left(\mathcal{S}^{(1)} \times 2\right)\)

4. Duplex exit sensor \([B]\) (hooks)

\subsection*{1.2.3 DUPLEX TRANSPORT MOTOR}
1. Duplex unit ( Duplex Unit)
2. Right door cover ( Right Door Cover)

3. Duplex transport motor bracket \([A](\hat{\xi} \times 3\), 氯 \(\times 1\), 気 \(\mathrm{Cl} \times 1\) )

\section*{Electrical Component}

4. Duplex transport motor \([\mathrm{B}](\underset{\mathcal{E}}{ } \times 2)\)

\subsection*{1.3 BY-PASS UNIT}

\subsection*{1.3.1 PAPER END SENSOR (BYPASS)}
1. Duplex unit ( \(\sim\) Duplex Unit)
2. By-pass Tray ( By-pass Tray)
3. Right door cover ( \(\sim\) Right Door Cover)

4. Release the hook [A].
5. Sensor base [B] (気 \(\mathrm{ll} \times 1\) )
6. Paper end sensor (bypass) [C] (hooks)

\subsection*{1.3.2 BY-PASS FEED ROLLER}
1. Duplex unit ( \(\infty\) Duplex Unit)
2. By-pass Tray ( By-pass Tray)
3. Right door cover ( - Right Door Cover)
4. Sensor base (mePaper End Sensor (Bypass))


\section*{By-pass Unit}
5. By-pass feed roller [A] (hook)

\subsection*{1.3.3 SEPARATION PAD}
1. Duplex unit ( Duplex Unit)
2. By-pass Tray ( By-pass Tray)
3. Right door cover ( Right Door Cover)
4. By-pass feed roller ( - By-pass Feed Roller)
5. By-pass transport motor bracket ( \(\sim\) By-pass Transport Motor)

6. By-pass feed gear \([\mathrm{A}](\mathbb{S} \times 1\), bushing \(\times 1)\)

7. By-pass feed shaft \([B](\mathcal{E} \times 1\), bushing \(\times 1)\)

By－pass Unit


8．By－pass tray bar［C］（息 \(\times 4\) ，燃 \(\times 1\) ，気 \(\mathrm{Cl} \times 1\) ）


9．Paper guide［D］（ \(\hat{\xi}^{2} \times 2\) ）


1．Separation pad \([E]\)（hook \(\times 2\) ，spring \(\times 1\) ）

\section*{2. DETAILED SECTION DESCRIPTIONS}

\subsection*{2.1 COMPONENT LAYOUT}

\subsection*{2.1.1 MECHANICAL COMPONENT}

\begin{tabular}{|l|l|}
\hline 1. Paper exit/ inverter roller & 6. Duplex exit sensor \\
2. Junction gate & 7. Duplex transport roller 3 \\
3. Duplex entrance sensor & 8. Standard tray \\
4. Duplex transport roller 1 & 9. Inverter tray \\
5. Duplex transport roller 2 & \\
\hline
\end{tabular}
- To print on the second side, the paper exit/ inverter roller inverts the paper from the fusing unit and feeds it to the duplex unit.
- The duplex unit feeds the inverted paper back to the paper feed section.
- When both sides have been printed, the duplex inverter unit feeds the paper out to the standard tray.

\subsection*{2.1.2 DUPLEX DRIVE}


The interchange motor [A] drives the following:
- Paper exit/ inverter roller [B]

The duplex/bypass motor [C] drives the following:
- Duplex transport roller 1 [D]
- Duplex transport roller 2 [E]
- Duplex transport roller 3 [F]

The duplex entrance sensor [G] and duplex exit sensor [H] control the interleave movement and detect paper jams.

\section*{Overview}

\subsection*{2.2 OVERVIEW}

\subsection*{2.2.1 INVERTER MECHANISM}


This machine uses the above switch back system for duplex printing. The drawing above right shows the paper feed for duplex printing.
The junction gate solenoid, which is in the interchange unit, opens or closes the junction gate \([A]\). If the duplex mode is selected, the junction gate closes the exit path and opens the duplex inverter path.

\subsection*{2.2.2 DUPLEX OPERATION}

\section*{Up to A4/LT ( \(8^{1} / 2^{\prime \prime} \times 11^{\prime \prime}\) ) LEF}

d369d162

There are three sheets of paper in the paper feed path at the same time. The interleave method is used.

The drawing above shows the paper movement with the interleave method for three sheets of paper. The printing is done as follows:


\section*{Overview}

\section*{From A4/LT ( \(8^{1} / 2^{\prime \prime} \times 11\) ") LEF to 400 mm length}


There are two sheets of paper in the paper feed path at the same time. The interleave method is used. For sheets longer than 400 mm , there is no interleaving.

The drawing above shows the paper movement with the interleave method for two sheets of paper. The printing is done as follows:


\section*{BYPASS TRAY BY3000 \\ D370}
\begin{tabular}{|c|c|ll|}
\hline \multicolumn{4}{|l|}{ BYPASS TRAY D370 REVISION HISTORY } \\
\hline Page & Date & & Added/Updated/New \\
\hline & & None & \\
\hline
\end{tabular}

\section*{BYPASS TRAY BY3000 D370 TABLE OF CONTENTS}
1. REPLACEMENT AND ADJUSTMENT ..... 1
1.1 TRAY ..... 1
1.1.1 BY-PASS TRAY UNIT ..... 1
1.1.2 BY-PASS TRAY ..... 1
1.2 ELECTRICAL COMPONENTS ..... 3
1.2.1 PAPER SIZE SENSOR (BYPASS) ..... 3
1.2.2 PAPER END SENSOR (BYPASS) ..... 4
1.2.3 BY-PASS TRAY MOTOR. ..... 5
1.3 FEED ..... 6
1.3.1 BY-PASS FEED ROLLER ..... 6
1.3.2 SEPARATION PAD ..... 6
2. DETAILED SECTION DESCRIPTIONS ..... 8
2.1 COMPONENT LAYOUT ..... 8
2.1.1 COMPONENT LAYOUT ..... 8
2.2 OVERVIEW ..... 9
2.2.1 BASIC OPERATION ..... 9
2.2.2 BY-PASS PAPER SIZE DETECTION ..... 9

\section*{Read This First}

\section*{Safety and Symbols}

\section*{REPLACEMENT PROCEDURE SAFETY ©CAUTION}
- Turn off the main power switch and unplug the machine before beginning any of the replacement procedures in this manual.

\section*{Symbols Used in this Manual}

This manual uses the following symbols.
- : See or Refer to

组: Screws
Elll: Connector
(3): Clip ring

E: E-ring
氯: Clamp

\section*{1．REPLACEMENT AND ADJUSTMENT}

\section*{1．1 TRAY}

\section*{1．1．1 BY－PASS TRAY UNIT}

Basic Model

d370r100

1．Connector cover \([\mathrm{A}]\left(\begin{array}{c}\hat{8}\end{array} \times 1\right)\)
2．By－pass tray unit \([B](\mathbb{Z} \times 4\), 気 \(\times 2)\)

\section*{Duplex ModeI}

1．Remove the connector cover \((\hat{\xi} \times 1)\) ．
2．Disconnect the cable．
3．Release the front and rear link（ \(3 \times 1\) ）．
4．Remove the duplex unit．
5．Remove the inner rear cover（ \(\hat{\xi} \times 2\) ）．
6．Remove the paper guide unit
7．Disconnect the by－pass tray cable（玉気 \(\times 1\) ）．
8．Remove the front and rear pins（ \(3 \times 1\) each）．
9．By－pass tray unit

\section*{1．1．2 BY－PASS TRAY}

1．By－pass tray unit（ By－pass Tray Unit）

\section*{Tray}

2. Remove the pins \([A]\) ( \((3) \times 1\) each).
3. By-pass tray \([\mathrm{B}](\mathrm{E}] \mathrm{d} \times 1)\)

\subsection*{1.2 ELECTRICAL COMPONENTS}

\subsection*{1.2.1 PAPER SIZE SENSOR (BYPASS)}
1. By-pass tray unit ( By-pass Tray Unit)
2. By-pass tray ( Paper Tray)

3. \(\operatorname{Pin}[A](\mathbb{C}) \times 1)\)
4. Pin cover [B]
5. By-pass tray top cover [C]

6. Paper size sensor (bypass) [D] (hook, \(\hat{\xi} \times 1\), ground cable \(\times 1\) )

\section*{Electrical Components}

\section*{When reinstalling this switch}

1. Adjust the projection [A] of the left side fence bar (it must be centered).
2. Install the by-pass paper size detection switch so that the hole \([B]\) in this switch faces the projection \([A]\) of the left side fence bar.
3. Reassemble the copier.
4. Plug in and turn on the main power switch.
5. Check this switch operation with SP5803-030 (By-pass paper size < Input Check).

Display on the LCD
\begin{tabular}{|c|c|c|c|}
\hline Paper Size & Display & Paper Size & Display \\
\hline A3 SEF & 10010000 & B5 SEF & 11100000 \\
\hline B4 SEF & 11010000 & B6 SEF & 00110000 \\
\hline A4 SEF & 11000000 & A6 SEF & 10110000 \\
\hline
\end{tabular}

\subsection*{1.2.2 PAPER END SENSOR (BYPASS)}
1. By-pass tray unit ( By-pass Tray Unit)



3. Sensor base [B] (E』ll \(\times 1\), hooks)
4. Paper end sensor (bypass) [C] (hooks)

\subsection*{1.2.3 BY-PASS TRAY MOTOR}
1. By-pass tray unit ( By-pass Tray Unit)
2. By-pass feed unit ( Paper End Sensor (Bypass))

3. By-pass tray motor \([\mathrm{A}]\left(\hat{\mathcal{F}^{2}} \times 2\right)\)

\section*{Feed}

\subsection*{1.3 FEED}

\subsection*{1.3.1 BY-PASS FEED ROLLER}
1. By-pass tray unit ( By-pass Tray Unit)
2. By-pass paper feed unit ( - Paper End Sensor (Bypass))
3. Sensor base ( Paper End Sensor (Bypass))

4. By-pass feed roller [A]

\subsection*{1.3.2 SEPARATION PAD}
1. By-pass tray unit ( By-pass Tray Unit)
2. By-pass paper feed unit ( \(\curvearrowleft\) Paper End Sensor (Bypass))

3. By-pass tray motor bracket \([A](\hat{\xi} \times 3)\)
4. Gear \([\mathrm{B}](\mathrm{G} \times 2\), bushing \(\times 1)\)
5. Paper guide unit \([C](\hat{\xi} \times 2, \mathrm{E} \mathbb{\#} \times 1)\)

6. Separation pad \([\mathrm{D}](\) spring \(\times 1)\)

\section*{2. DETAILED SECTION DESCRIPTIONS}

\subsection*{2.1 COMPONENT LAYOUT}

\subsection*{2.1.1 COMPONENT LAYOUT}

\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Component } & \multicolumn{1}{c|}{ Description } \\
\hline 1. By-pass Tray Motor & Drives the paper feed roller. \\
\hline 2. Paper End Sensor (Bypass) & \begin{tabular}{l} 
Informs the copier/printer when the by-pass tray \\
runs out of paper.
\end{tabular} \\
\hline 3. By-pass Feed Roller & Feeds paper from the by-pass tray. \\
\hline 4. Paper Size Sensor (Bypass) & Detects the paper width. \\
\hline 5. Separation Pad & \begin{tabular}{l} 
Separates a sheet of paper from the paper stack \\
on the by-pass tray.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{2.2 OVERVIEW}

\subsection*{2.2.1 BASIC OPERATION}


When the paper end sensor [A] detects paper and the machine gets a by-pass printing job, the by-pass tray motor [B] starts to rotate the by-pass feed roller [C] via the gear.
The by-pass tray has the separation pad system. The spring [D] under the separation pad [E] pushes the paper against the feed roller. As a result, the by-pass feed roller [C] and separation pad [E] feed the top sheet of paper stack on the by-pass tray.

\subsection*{2.2.2 BY-PASS PAPER SIZE DETECTION}


There are two paper side plates [A] on the by-pass tray. These connect with the paper size sensor [B] through a rack-and-pinion mechanism.

\section*{Overview}

The pattern for each paper width is unique. Therefore, the copier/printer determines which paper has been placed in the bypass tray by the signal output from the board. However, the copier cannot determine the paper length from the by-pass tray hardware.

Display on the LCD
\begin{tabular}{|c|c|c|c|}
\hline Paper Size & Display & Paper Size & Display \\
\hline A3 SEF & 10010000 & B5 SEF & 11100000 \\
\hline B4 SEF & 11010000 & B6 SEF & 00110000 \\
\hline A4 SEF & 11000000 & A6 SEF & 10110000 \\
\hline
\end{tabular}

\title{
INTERCHANGE UNIT TYPE 3350 \\ D371
}
\begin{tabular}{|c|c|l|}
\hline \multicolumn{4}{|l|}{ INTERCHANGE UNIT TYPE 3350 REVISION HISTORY } \\
\hline Page & Date & Added/Updated/New \\
\hline & & None \\
\hline
\end{tabular}

\section*{INTERCHANGE UNIT TYPE 3350 D371 TABLE OF CONTENTS}
1. REPLACEMENT AND ADJUSTMENT ..... 1
1.1 ELECTRICAL COMPONENT ..... 1
1.1.1 INTERCHANGE MOTOR. ..... 1
1.1.2 JUNCTION GATE JAM SENSOR ..... 2
2. DETAILED SECTION DESCRIPTIONS ..... 3
2.1 COMPONENT LAYOUT ..... 3
2.1.1 MECHANICAL COMPONENT LAYOUT ..... 3
2.1.2 DRIVE LAYOUT ..... 4
2.2 JUNCTION GATE MECHANISM ..... 5

\section*{Read This First}

\section*{Safety and Symbols}

\section*{REPLACEMENT PROCEDURE SAFETY}

\section*{©CAUTION}
－Turn off the main power switch and unplug the machine before beginning any of the replacement procedures in this manual．

\section*{Symbols Used in this Manual}

This manual uses the following symbols．
＊：See or Refer to
解：Screws
気开：Connector
（3）：Clip ring
（b：E－ring
完：Clamp

\section*{1. REPLACEMENT AND ADJUSTMENT}

\subsection*{1.1 ELECTRICAL COMPONENT}

\subsection*{1.1.1 INTERCHANGE MOTOR}

1. Open the right cover [A] or right door if the duplex unit is installed.
2. Right upper cover \([B](\hat{\xi} \times 3)\)
3. Front right cover [C] (hook)

4. Interchange unit [D] (

\section*{Electrical Component}

5. Interchange motor bracket \([E]\) ( \(\mathcal{S}^{(1)} \times 3\), gear \(\times 1\), timing belt \(\times 1\) )
6. Interchange motor \([F](\hat{B} \times 2)\)

\subsection*{1.1.2 JUNCTION GATE JAM SENSOR}
1. Interchange unit ( Interchange Motor)

2. Sensor bracket \([\mathrm{A}](\hat{\mathrm{E}} \times 1)\)
3. Junction gate jam sensor \([\mathrm{B}]\) ( \(\mathrm{E}_{\mathrm{ll}} \times 1\), hooks)

\section*{2. DETAILED SECTION DESCRIPTIONS}

\subsection*{2.1 COMPONENT LAYOUT}

\subsection*{2.1.1 MECHANICAL COMPONENT LAYOUT}

1. Junction Gate Solenoid
2. Paper Exit/ Inverter Roller
3. Junction Gate Jam Sensor
4. Paper Transport Roller

\section*{Component Layout}

\subsection*{2.1.2 DRIVE LAYOUT}

\begin{tabular}{|l|l}
\hline 1. Interchange Motor & 4. Junction Gate Solenoid \\
2. Paper Exit/ Inverter Roller & 5. Junction Gate Jam Sensor \\
3. Paper Transport Roller
\end{tabular}

The interchange motor drives the paper exit/inverter roller and paper transport roller through the gears and timing belt. This motor exits paper to the 1-bin tray if it is installed and 1-bin tray is selected as an output location. However, this motor also transports paper to the duplex path if the duplex unit is installed and the machine gets a duplex job.

\subsection*{2.2 JUNCTION GATE MECHANISM}


Depending on the selected mode, the copies are directed to the output tray/ bridge unit path or 1-bin tray/duplex path by the exit junction gate \([A]\). These are controlled by the junction gate solenoid \([B]\).
- To the Exit Tray or Bridge Unit

The exit junction gate solenoid stays off and the paper is directed to the copier exit unit.
- To the 1-bin Tray

The junction gate solenoid turns on. The paper is directed to the 1-bin tray.
- To the Duplex Unit

The junction gate solenoid turns on. When the junction gate jam sensor [C] detects a trailing edge of a sheet of paper, the machine stops the paper exit/inverter roller [D] and then drives its roller reversely. As a result, a sheet of paper is transported to the duplex path.

\title{
500-SHEET FINISHER SR3050 D372
}
\begin{tabular}{|c|c|l|}
\hline \multicolumn{4}{|l|}{ 500-SHEET FINISHER SR3050 REVISION HISTORY } \\
\hline Page & Date & \multicolumn{1}{c|}{ Added/Updated/New } \\
\hline & & None \\
\hline
\end{tabular}
500-SHEET FINISHER SR3050 D372
TABLE OF CONTENTS
1. REPLACEMENT AND ADJUSTMENT ..... 1
1.1 COMMON PROCEDURES ..... 1
1.1.1 DISCONNECTING, REMOVING THE FINISHER ..... 1
1.1.2 FRONT COVER ..... 2
1.1.3 REAR COVER ..... 2
1.1.4 TRANSPORT UNIT ..... 3
1.2 SENSORS ..... 6
1.2.1 ENTRANCE SENSOR ..... 6
1.2.2 PAPER SENSOR ..... 6
1.3 MOTORS ..... 8
1.3.1 TRAY LIFT MOTOR ..... 8
1.3.2 TRANSPORT MOTOR ..... 8
1.3.3 POSITIONING ROLLER ARM MOTOR ..... 9
1.3.4 STAPLER MOVEMENT MOTOR ..... 10
1.3.5 FRONT FENCE MOTOR ..... 11
1.3.6 FEED-OUT BELT MOTOR, REAR FENCE MOTOR ..... 11
1.4 BOARDS ..... 13
1.4.1 MAIN BOARD ..... 13
1.5 OTHERS ..... 14
1.5.1 STAPLER ..... 14
1.5.2 POSITIONING ROLLER ..... 14
2. DETAILED SECTION DESCRIPTIONS ..... 16
2.1 OVERVIEW ..... 16
2.1.1 IMPORTANT PARTS ..... 16
2.1.2 EXTERNAL DIMENSIONS ..... 17
2.1.3 GENERAL OPERATION ..... 17
2.1.4 INITIALIZATION: WHAT HAPPENS AT POWER ON ..... 19
2.2 PAPER TRANSPORT ..... 21
2.2.1 OVERVIEW ..... 21
2.2.2 TRANSPORT ROLLERS ..... 22
2.2.3 POSITIONING ROLLER ..... 23
2.2.4 POSITIONING ROLLER INITIALIZATION ..... 25
2.3 JOGGING (PAPER ALIGNMENT) ..... 26
2.3.1 OVERVIEW ..... 26
2.3.2 SIDE FENCE OPERATION ..... 27
2.3.3 SIDE FENCE INITIALIZATION ..... 30
2.3.4 SIDE FENCE MOTOR ERRORS ..... 30
2.3.5 SIDE FENCE OPERATION ADJUSTMENT ..... 31
2.4 STAPLING ..... 33
2.4.1 OVERVIEW. ..... 33
2.4.2 STAPLER MOVEMENT MOTOR INITIALIZATION ..... 35
2.4.3 STAPLER ERRORS ..... 36
2.5 PAPER OUTPUT ..... 37
2.5.1 OVERVIEW. ..... 37
2.5.2 FEED-OUT ..... 40
2.5.3 FEED-OUT BELT INITIALIZATION ..... 41
2.5.4 FEED-OUT BELT ERRORS ..... 41
2.5.5 FEED-OUT EXTENSION ..... 42
2.6 TRAY OPERATION ..... 44
2.6.1 OVERVIEW. ..... 44
2.6.2 TRAY LIFT CONTROL ..... 45
2.6.3 TRAY INITIALIZATION ..... 48
2.6.4 TRAY LIFT ERRORS. ..... 49
2.7 ELECTRICAL COMPONENTS ..... 51
2.7.1 COMPONENT LAYOUT ..... 51
2.7.2 SUMMARY OF ELECTRICAL COMPONENTS ..... 52
2.7.3 TIMING CHARTS ..... 55
2.7.4 ERROR LIST ..... 56
3. SPECIFICATIONS ..... 62
3.1 SPECIFICATIONS ..... 62

\section*{Read This First}

\section*{Safety, Conventions, Trademarks}

\section*{SAFETY}

\section*{PREVENTION OF PHYSICAL INJURY}
1. Before disassembling or assembling parts of the printer and peripherals, make sure that the printer and peripheral power cords are unplugged.
2. The power source should be near the printer and easily accessible.
3. Note that some components of the printer and the paper tray unit are supplied with electrical voltage even if the main power switch is turned off.
4. If any adjustment or operation check has to be made with exterior covers off or open while the main switch is turned on, keep hands away from electrified or mechanically driven components.
5. If the Start key is pressed before the copier completes the warm-up period (the Start key starts blinking red and green alternatively), keep hands away from the mechanical and the electrical components as the copier starts making copies as soon as the warm-up period is completed.
6. The inside and the metal parts of the fusing unit become extremely hot while the printer is operating. Be careful to avoid touching those components with your bare hands.
7. To prevent a fire or explosion, keep the machine away from flammable liquids, gases, and aerosols.

\section*{HEALTH SAFETY CONDITIONS}
1. Never operate the copier without the ozone filters installed.
2. Always replace the ozone filters with the specified ones at the specified intervals.
3. Toner and developer are non-toxic, but if you get either of them in your eyes by accident, it may cause temporary eye discomfort. Try to remove with eye drops or flush with water as first aid. If unsuccessful, get medical attention.

\section*{OBSERVANCE OF ELECTRICAL SAFETY STANDARDS}
1. The copier and its peripherals must be installed and maintained by a customer service representative who has completed the training course on those models.

\section*{SAFETY AND ECOLOGICAL NOTES FOR DISPOSAL}
1. Do not incinerate toner bottles or used toner. Toner dust may ignite suddenly when exposed to an open flame.
2. Dispose of used toner, developer, and organic photoconductors in accordance with
local regulations. (These are non-toxic supplies.)
3. Dispose of replaced parts in accordance with local regulations.
4. When keeping used lithium batteries in order to dispose of them later, do not put more than 100 batteries per sealed box. Storing larger numbers or not sealing them apart may lead to chemical reactions and heat build-up.

\section*{\(\triangle\) CAUTION}
- The danger of explosion exists if a battery of this type is incorrectly replaced. Replace only with the same or an equivalent type recommended by the manufacturer. Discard used batteries in accordance with the manufacturer's instructions.
CONVENTIONS AND TRADEMARKS CONVENTIONS
\begin{tabular}{|c|c|}
\hline Symbol & What it means \\
\hline CTIT & Core Tech Manual \\
\hline 狊 & Screw \\
\hline E(ll & Connector \\
\hline 8 & E-ring \\
\hline (3) & C-ring \\
\hline 玸 & Clamp \\
\hline FFC & Flexible Film Connector \\
\hline
\end{tabular}


The notations "SEF" and "LEF" describe the direction of paper feed. The arrows indicate the direction of paper feed.

\section*{WARNINGS, CAUTIONS, NOTES}

In this manual, the following important symbols and notations are used.

\section*{©WARNING}
- A Warning indicates a potentially hazardous situation. Failure to obey a Warning could result in death or serious injury.

\section*{©CAUTION}
- A Caution indicates a potentially hazardous situation. Failure to obey a Caution could result in minor or moderate injury or damage to the machine or other property
\(\pm\) Imporiant
- Obey these guidelines to avoid problems such as misfeeds, damage to originals, loss of valuable data and to prevent damage to the machine

\section*{\(\downarrow\) Wote}
- This information provides tips and advice about how to best service the machine.

\section*{Trademarks}
- Microsoft \({ }^{\circledR}\), Windows \({ }^{\circledR}\), and MS-DOS \({ }^{\circledR}\) are registered trademarks of Microsoft Corporation in the United States and /or other countries.
- PostScript \({ }^{\circledR}\) is a registered trademark of Adobe Systems, Incorporated.
- \(\mathrm{PCL}^{\circledR}\) is a registered trademark of Hewlett-Packard Company.
- Ethernet \({ }^{\circledR}\) is a registered trademark of Xerox Corporation.
- PowerPC \({ }^{\circledR}\) is a registered trademark of International Business Machines Corporation.
- Other product names used herein are for identification purposes only and may be trademarks of their respective companies. We disclaim any and all rights involved with those marks.

\section*{1. REPLACEMENT AND ADJUSTMENT}

\subsection*{1.1 COMMON PROCEDURES}

\subsection*{1.1.1 DISCONNECTING, REMOVING THE FINISHER}

\section*{Important}
- The finisher must be removed from the machine for these procedures. The front and rear covers cannot be removed while the finisher is attached to the side of the machine.

1. Disconnect the finisher \(I / F\) cable \([A]\) on the left side of the machine.
2. Remove the lock plate \([B]\left(\hat{\xi}^{2} \times 1\right)\).
3. Press the spring release [C] toward the rear of the finisher, then lift the finisher off its center post.

\section*{Common Procedures}

\subsection*{1.1.2 FRONT COVER}


\section*{Preparation}
- Disconnect the finisher.
- Remove the finisher from the side of the machine.
1. Open the stapler door [A].
2. Remove the front cover \([B]\left(\begin{array}{l}\text { 为 }\end{array}\right.\) )

Release tab [C] after removing the screws, then raise the bottom of the front cover to remove it.

\subsection*{1.1.3 REAR COVER}


\section*{Preparation}
- Disconnect the finisher.
- Remove the finisher from the side of the machine.
1. Remove the rear cover \([A]\left(\mathcal{E}^{2} x 2\right)\)

Release tab [B] after removing the screws, then raise the bottom of the rear cover to remove it.

\subsection*{1.1.4 TRANSPORT UNIT}

\section*{Preparation}

Remove:
- Front cover
- Rear cover

1. Remove the paper output tray \([A](x 2)\).

2. Remove the left top cover \([A]\left(\hat{E}^{2} \times 2\right)\).
3. Remove the tray support \([B](\hat{\xi} \times 2)\).

\section*{Common Procedures}

4. Remove the screws of the end fence [A] ( \(x 3\) ).
5. Release tabs [B] and [C].
6. Remove the end fence.

d372r108
7. Remove the main board [A] (

8. Remove the positioning roller arm motor bracket \([A]\left(\mathcal{S}^{2} \times 2\right)\).



\section*{Sensors}

\subsection*{1.2 SENSORS}

\subsection*{1.2.1 ENTRANCE SENSOR}


\section*{Preparation}
- Disconnect the finisher.
- Remove the finisher from the side of the machine.
1. Remove the sensor bracket \([A]\) ( \(\mathcal{F}^{\beta} \times 1\) ).
2. Disconnect the entrance sensor \([B]\) (Pawls \(\times 4\), \(E_{[l l}^{l l} \times 1\) ).

\subsection*{1.2.2 PAPER SENSOR}


\section*{Preparation}
- Disconnect the finisher.
- Remove the finisher from the side of the machine.
- Remove the transport unit


\section*{Motors}

\subsection*{1.3 MOTORS}

\subsection*{1.3.1 TRAY LIFT MOTOR}


\section*{Preparation}
- Disconnect the finisher.
- Remove the finisher from the side of the machine.
- Remove the front cover
1. Remove the tray lift motor \([A]\left(\mathcal{E}^{2} \times 2\right.\), \(\left.⿷_{\# l}^{\#} \times 1\right)\).

\subsection*{1.3.2 TRANSPORT MOTOR}

\section*{Preparation}
- Disconnect the finisher.
- Remove the finisher from the side of the machine.
- Remove the rear cover.

d372r110


2. Remove:
[A] 1st bracket (Timing belt \(\times 1, \mathcal{E}^{2} \times 2\) )
[B] 2nd bracket ( \({ }^{(1)} \times 2\) )
[C] 3rd bracket

\section*{Reinstallation}
- After reattaching the motor, rotate its drive gear and confirm that the timing belt is set correctly.
- Rotate the motor drive gear by hand and confirm that these rollers are turning: 1) entrance roller, 2) positioning roller, and 3 ) return rollers. (The return rollers are the two small sponge rollers below the positioning roller.)

\subsection*{1.3.3 POSITIONING ROLLER ARM MOTOR}

d372r109

\section*{Preparation}
- Disconnect the finisher.
- Remove the finisher from the side of the machine.
- Remove the rear cover.
1. Remove the positioning roller arm motor \([A]\) (

\section*{Motors}

\subsection*{1.3.4 STAPLER MOVEMENT MOTOR}

\section*{Preparation}
- Disconnect the finisher.
- Remove the finisher from the side of the machine.
- Remove the rear cover.

d372r108
1. Remove the main board [A] (

2. Remove the stapler movement motor \([A]\left(\mathcal{E}^{2} \times 2\right.\), \(\mathrm{El} \mathrm{E} \times 1\) ).
3. Remove the bracket \([B]\left(\hat{\xi}^{(1)} \times 2\right)\).

\subsection*{1.3.5 FRONT FENCE MOTOR}


\section*{Preparation}
- Disconnect the finisher.
- Remove the finisher from the side of the machine.
- Remove the transport unit


\subsection*{1.3.6 FEED-OUT BELT MOTOR, REAR FENCE MOTOR}

\section*{Preparation}
- Disconnect the finisher.
- Remove the finisher from the side of the machine.
- Remove the transport unit

1. Remove the feed-out belt motor mount \([A]\) (1), (2) ( \(\left.\hat{B}^{2} \times 2\right)\).
2. Remove:

\section*{Motors}
[B] 1st bracket ( \(\hat{\xi}^{3} \times 2\) )
[C] 2nd bracket ( \(\hat{E}^{(1)}\) x2)
[D] 3rd bracket


\subsection*{1.4 BOARDS}

\subsection*{1.4.1 MAIN BOARD}


\section*{Preparation}
- Disconnect the finisher.
- Remove the finisher from the side of the machine.
- Remove the rear cover.
1. Remove the main board \([A]\left(\right.\) 気 \(\mathrm{ll} \times 14, \hat{\mathcal{F}^{2}} \times 4\) )

Others

\subsection*{1.5 OTHERS}

\subsection*{1.5.1 STAPLER}


\section*{Preparation}
- Remove the front cover.


\subsection*{1.5.2 POSITIONING ROLLER}

d372r113

\section*{Preparation}
- Disconnect the finisher.
- Remove the finisher from the side of the machine.
- Remove the front cover.
- Remove the rear cover.
1. Remove the left top cover \([A](\hat{\xi} \times 2)\)
2. Rotate drive gear \([B]\) of the positioning roller arm motor to raise the positioning roller to its highest position.
3. Remove the positioning roller [C] ( \((3) \times 1)\)

\section*{2. DETAILED SECTION DESCRIPTIONS}

\subsection*{2.1 OVERVIEW}

\subsection*{2.1.1 IMPORTANT PARTS}

\begin{tabular}{|l|l|l|l|}
\hline 1. & Stack Edge Depressors (x2) & 10. & Bottom Fences \\
\hline 2. & Tray Upper Limit Switch & 11. & Feed-out Belt \\
\hline 3. & Positioning Roller & 12. & Feed-out Belt Pawls (x2) \\
\hline 4. & Exit Roller & 13. & Tray Lift Motor \\
\hline 5. & Return Roller & 14. & End Fence \\
\hline 6. & Entrance Roller & 15. & Paper Sensor \\
\hline 7. & Entrance Sensor & 16. & Output Tray \\
\hline 8. & Mobile Fence (x1) & 17. & Tray Extension (Middle) \\
\hline 9. & Stapler & 18. & Tray Extension (End) \\
\hline
\end{tabular}

\subsection*{2.1.2 EXTERNAL DIMENSIONS}


\subsection*{2.1.3 GENERAL OPERATION}


Here is a brief summary of what happens inside the finisher. For more details, see the other sections of this manual.

First, the operator pulls out the tray extension [1], and selects the paper size and operation mode for the job (Normal, Shift, or Stapling).

\section*{Paper Transport}

The entrance sensor [2] detects the paper when it enters the finisher. The entrance rollers [3] feed the paper to the exit rollers [4]. The paper falls between the front and side fences [5].

\section*{Overview}

\section*{Positioning}

The paper sensor [6] detects the paper on the tray. The positioning roller [7] (mounted on a free-swinging arm) descends and touches the paper. The positioning roller (turning counterclockwise) and the return roller [8] push the trailing edge of the paper against the two bottom fences and the mobile fence at [9]. (The mobile fence is centered between the stationary bottom fences.)

\section*{Jogging}

The front and side fences move in to align the sheets for stacking.

\section*{Stapling}

The stapler [10] staples the stack with one or two staples.

\section*{Paper Output}

The feed-out belt motor switches on, moves the mobile fence forward and rotates the feed-out belt with the feed-out belt pawls [11]. The mobile fence pushes the stack from (1) to (2), then the pawls come around and push the stack out of the finisher. Before the next stack exits, the edge depressor solenoid [12] switches on and retracts the edge depressors just before the feed-out belt pawls push the stack out. The two stack edge depressors [13] lightly push down on the trailing edge of the stack to keep it down against the end fence. The edge depressors are attached to the paper height sensor, so this action checks if it is necessary to move the tray up or down.

\section*{Tray Operation}

The tray lift motor [14] raises and lowers the output tray [15] to keep the tray at the correct height. The readings of the paper height sensor [16] are used to control the raising and lowering of the tray with the tray lift motor.
The tray-full sensor [17] located at the bottom of the tray rail at the back of the finisher switches on after the tray descends to its lowest point. This signals that the tray is full. A spring-loaded bar [18] and its push-switch also signal tray full if the top of the paper load in the tray pushes this bar up and trips the switch. (This is a backup device to signal tray full if the tray-full sensor fails.)

\subsection*{2.1.4 INITIALIZATION: WHAT HAPPENS AT POWER ON}


Here is a summary of what happens during the initialization of the finisher after the system power is turned on.
- The initialization halts if the entrance sensor or paper sensor on the stapling tray detects paper inside the finisher.
\begin{tabular}{|c|l|}
\hline No. & \multicolumn{1}{|c|}{ What Happens } \\
\hline 1 & The transport motor roller switches on and off. \\
\hline 2 & \begin{tabular}{l} 
The edge depressor solenoid switches on, retracts the edge depressors, and then \\
switches off to allow the depressors to lower.
\end{tabular} \\
\hline 3 & \begin{tabular}{l} 
The tray lift motor switches on, lowers the tray slightly, raises it to the start position \\
and switches off.
\end{tabular} \\
\hline 4 & \begin{tabular}{l} 
The front and side fence motors switch on and off to position both side fences at \\
their home positions (both retracted).
\end{tabular} \\
\hline 5 & \begin{tabular}{l} 
The positioning roller arm motor switches on and off to bring the positioning roller to \\
its home position (up).
\end{tabular} \\
\hline 6 & \begin{tabular}{l} 
The feed-out belt motor switches on and moves the belt pawls to their home \\
positions below the paper sensor on the stapling tray.
\end{tabular} \\
\hline 7 & The stapler movement motor switches on, reverses, and then switches off to make \\
\hline
\end{tabular}

Overview
\begin{tabular}{|l|l|}
\hline No. & \multicolumn{1}{c|}{ What Happens } \\
\hline & sure that the stapler is at its home position. \\
\hline
\end{tabular}

\subsection*{2.2 PAPER TRANSPORT}

\subsection*{2.2.1 OVERVIEW}

d372d040
\begin{tabular}{|r|l|r|l|}
\hline 1. & Stack Edge Depressors & 9. & Entrance Sensor \\
\hline 2. & Positioning Roller & 10. & Mobile Fence \\
\hline 3. & Exit Roller & 11. & Bottom Fences (x2) \\
\hline 4. & Return Rollers & 12. & Feed-Out Belts (x2) \\
\hline 5. & Entrance Roller & 13. & Feed-Out Belt Pawls (x2) \\
\hline 6. & Bridge Unit (Copier) & 14. & End Fence \\
\hline 7. & Transport Roller (Main Machine) & 15. & Output Tray \\
\hline 8. & Exit Roller (Main Machine) & & \\
\hline
\end{tabular}

\section*{Paper Transport}

\subsection*{2.2.2 TRANSPORT ROLLERS}

\section*{Paper Feed Rollers}

\begin{tabular}{|c|l|}
\hline 1. & Transport Motor \\
\hline 2. & Entrance Rollers \\
\hline 3. & Exit Rollers (Teflon) \\
\hline 4. & Return Rollers (Sponge) \\
\hline
\end{tabular}

The transport motor [1] uses timing belts to drive all the rollers in the unit.
The entrance rollers [2] take the paper from the copier and feed it to the exit rollers [3], where the paper drops onto the jogging and stapling tray. The return rollers [4] rotate in the opposite direction and feed each sheet against the bottom fences inside the finisher. The positioning roller (described in the next section) assists the return rollers in feeding each sheet against the end fences.

\subsection*{2.2.3 POSITIONING ROLLER}

\section*{Positioning Roller Mechanism}


The positioning roller [1] (driven by the transport motor) is mounted on the positioning roller arm [2] that swings freely on the shaft [3].

The positioning roller arm motor [4] drives a cam [5]. The eccentric rotation of this cam raises and lowers the coupler [6] that pushes against the positioning roller arm [7]. This motion raises and lowers the rotating positioning roller as the cam turns through one full rotation.

An actuator [8] attached to the cam wheel deactivates the positioning roller HP sensor [9] and stops the motor. This stops the positioning roller arm and positioning roller at the highest point (home position).

When the positioning roller is lowered:
- The transport motor slows down to match the speed of the main machine's exit roller.
- At the same time, the positioning roller motor accelerates briefly, lowers the positioning roller arm and then stops.

When the positioning roller touches the paper:
- The positioning roller (driven by the transport roller) continues to rotate.
- The positioning roller (and the smaller two sponge rollers), rotating against the direction of paper feed, touch the paper and send it back against the bottom fences.
- The number of sheets that stack on the staple tray while the positioning roller motor is stopped is different for each job.
- To meet the requirement for the increasing number of sheets, the length of prescribed time that the positioning roller is in contact with each sheet of paper is very short, regardless of the size of the stack.
- The positioning roller arm motor remains off just long enough for the positioning roller to send the sheet against the bottom fences.

\section*{Paper Transport}

When the positioning roller is raised:
- The motor switches on again, raises the positioning roller arm, slows down slightly, and then the arm stops at the home position.
- The motor slows down slightly before reaching the home position to reduce the impact and noise of the arm returning to the home position.
This cycle of lowering the positioning roller, touching the paper with the positioning roller and return rollers, and then lifting them again and stopping at the home position, is done for each sheet of paper.

\section*{Transport Motor Control}

The transport motor drives all the rollers inside the finisher and controls the line speed of the finisher.

\begin{tabular}{|l|l|}
\hline (1) & \begin{tabular}{l} 
The transport motor accelerates to match the line speed of the main machine (150 \\
\(\mathrm{mm} / \mathrm{s})\).
\end{tabular} \\
\hline (2) & \begin{tabular}{l} 
The transport motor speed accelerates to \(600 \mathrm{~mm} / \mathrm{s}\) after the leading edge of the \\
sheet passes the entrance sensor and feeds 21.5 mm.
\end{tabular} \\
\hline (3) & \begin{tabular}{l} 
After the trailing edge goes 96 mm past the entrance sensor, the transport motor \\
slows the line speed to \(200 \mathrm{~mm} / \mathrm{s}\) for paper shorter than 300 mm , or to \(300 \mathrm{~mm} / \mathrm{s}\) for \\
paper longer than 300 mm.
\end{tabular} \\
\hline (4) & \begin{tabular}{l} 
After the paper sensor detects that the trailing has fed 45 mm past the exit roller, the \\
transport motor slows the line speed to \(200 \mathrm{~mm} / \mathrm{s}\) so that the sheet can be \\
positioned for jogging. At this time, the positioning roller arm motor switches on and \\
starts to lower the positioning roller arm and positioning roller.
\end{tabular} \\
\hline (5) & \begin{tabular}{l} 
The transport motor slows the line speed in the finisher to match the line speed of \\
the paper path in the main machine. The positioning roller reaches the end of its \\
downward stroke and remains in that position long enough to feed the sheet back \\
against the bottom fences. The positioning roller arm motor reverses and raises the
\end{tabular} \\
\hline
\end{tabular}
\(\square\) positioning roller arm to the end of its upward stroke and stops at the home position. While the sheet is being jogged between the front and rear side fences, the cycle repeats from (2) when the next sheet feeds.

\subsection*{2.2.4 POSITIONING ROLLER INITIALIZATION}

The following sequence occurs when the system is switched on:

\section*{Paper in Paper Path (Jam)}

If paper is detected in the paper path between the copier exit roller and finisher entrance roller, the transport motor switches on then immediately switches off.

\section*{Normal Startup}

The transport motor switches on and rotates the positioning roller to home position. The positioning roller arm motor switches on, lowers the positioning roller arm, raises the positioning roller to the up position and then stops when the actuator of the positioning roller HP sensor switches off the sensor.
- If the HP sensor does not go OFF within the prescribed time, this indicates an error.
- If the HP sensor does not go ON after the motor has switched on, this also indicates an error.

In either case, the positioning roller arm motor is switched off. The first occurrence causes a jam error. An SC code is issued if the error occurs again.
This initialization sequence is executed:
- When the copier is powered on
- When the stapler door is opened or closed
- When the top cover of the finisher is opened or closed to remove a jam

\section*{Jogging (Paper Alignment)}

\subsection*{2.3 JOGGING (PAPER ALIGNMENT)}

\subsection*{2.3.1 OVERVIEW}

Two side fences, a rear fence and a front fence, move in and out to align the sides of the paper stack. Each fence is controlled by an independent timing belt and motor.


The front fence motor [1] and timing belt [2] move the front fence [3] backward and forward. The rear fence motor [4] and timing belt (not shown) move the rear fence [5] forward and backward.


The diagram above shows the positions of the side fences.
1. When the copier exit sensor signals that that a sheet of paper has been sent from the copier to the finisher, both fence motors switch on and move the side fences to the start position.

The start position for each fence is set wider than the paper size selected for the job:
- 15 mm wider than the paper for shift mode.
- 7 mm wider than the paper for staple mode
- 10 mm wider than 12 -in. paper for oblique stapling
- 12 mm wider than 12 -in. paper for straight stapling
2. The paper is fed onto the output tray. The transport motor slows down the rotation of

\section*{Jogging (Paper Alignment)}
the positioning roller and return rollers. The positioning roller descends. The positioning roller and return rollers feed the trailing edge of the paper to the right against the bottom fences. The side fence motors switch on and jog the edges of the sheet so that the first sheet is properly aligned.
3. The side fences return to the start position after the next sheet has feed 50 mm past the entrance sensor.
4. Steps 2 and 3 are repeated for the next sheet.
5. In stapling mode: After the last page of the document has fed and been aligned on top of the stack by the rear and front fences, the side fences retract and advance two more times against the sides of the complete stack.
6. The stack is now ready to be output from the finisher. The side fences stop at the sides of the stack and wait for the stack to be output. After output, the side fence motors switch on and move the fences to the jog start position.
- As soon as 10 sheets stack on the jogging tray in shift mode, the stack is output regardless of whether the document has finished printing or not.
- In stapling mode, the side fence that jogs the side of the stack stops and waits for stapling to end. After stapling, the side fence motor switches on and retracts the side fence 0.5 mm . (If the stack is centered, both fences retract 0.25 mm ).
- After the stack is output by the feed-out belt, the side fence motors switch on and once again move the fences to the jog start position.
7. In the shift mode: The rear side fence does the jogging against the side of the stack, and the front fence does not move. For the next stack, the roles of the side fences are reversed: the front fence does the jogging and the rear fence does not move. The operation continues to alternate for the next stacks so that each stack is shifted to the front (or back) depending how it was jogged between the side fences. (Steps 2, 3, 6 repeat.)

In the staple mode, the steps are done in sequence (2), (3), (5), (6).
8. After the last stack of the job has been output, the main machine sends a STOP signal to end the job, and the front and rear side fence motors switch on and the side fences retract to their home positions.

\subsection*{2.3.2 SIDE FENCE OPERATION}

\section*{Shift Mode}

\author{
Side Fence Operation: Shift Mode
}

\section*{Jogging (Paper Alignment)}


The diagram above illustrates the operation of the side fences in shift mode with no stapling.
- Every sheet of the first set is pushed by the front fence [A] against the rear fence, which does not move.
- Every sheet of the second set is pushed by the rear fence [B] against the front fence, which does not move.
- The sequence alternates for every set in the print job. At the end of the job, every set is stacked on the output tray neatly offset by 30 mm , making them easy to separate.

\section*{Normal (Non-Shift) Mode}

The diagram above illustrates the operation of the side fences in normal (non-shift) mode.
The operation is slightly different, depending on the paper size. There are three cases:
- Standard paper sizes (other than "wide" or "small" paper
- Wide paper sizes ( 133 to 147 mm )
- Small paper sizes (up to 133 mm )

\section*{Standard Paper Sizes}

d372d180a
Every time a sheet is fed the front fence \([A]\) and rear fence \([B]\) both push against the sides of the stack within the space of 7 mm on each side.

\section*{Wide and Small Paper Sizes}


Every time a wide sheet \([A]\) is fed, the front fence and rear fence both push against the sides of the stack within the space of 7 mm on each side.

Every time a smaller sheet \([B]\) is fed, the front fence and rear fence both push against the sides of the fence with the space of 93 mm on each side.

\section*{Staple Mode}

The operation of the side fences is slightly different, depending on the type of stapling selected for the job:
- One staple (front/oblique, front/straight, rear/oblique, rear straight)
- Two staples at two positions

\section*{Staple Mode: 1 Staple}


In the One-Staple Mode, one side fence jogs one side of the stack. The diagram above illustrates the operation of the side fences for stapling at one position (front/oblique, front/straight, rear/oblique, or rear/straight).
- Every time a sheet \([A]\) is fed, the front fence pushes the sheet against the rear fence, which does not move.
- After the last sheet \([B]\) is pushed against the rear fence, the front fence moves front to back twice ( 5 mm ) to align the side of the stack for stapling.

\section*{Staple Mode: 2 Staples}

\section*{Jogging (Paper Alignment)}

[A]

[B]

In the Two-Staple Mode, both side fences jog the sides of the stack. The diagram above illustrates the operation of the side fences for stapling at two positions.
- Every time a sheet [A] is fed, the front and rear side fences push the sheet to center it.
- After the last sheet \([B]\) is centered, the front and side fences push and retract twice (5 mm ) to align the sides of the stack centered for stapling.

\subsection*{2.3.3 SIDE FENCE INITIALIZATION}

Initialization of the front and rear side fence positions at power on is determined by the states of the front fence HP sensor and rear fence HP sensor. The descriptions below apply to both HP sensors.
- Paper on Stapling Tray

Initialization is not executed if the paper sensor on the stapling tray detects paper present.
- Fence HP Sensor OFF

The fence motor switches on until the HP sensor goes ON, advances 0.25 mm , then switches OFF. This is the home position.
- Fence HP sensor ON

The fence motor drives the fence toward the center until the HP sensor goes OFF, advances 15 mm , then switches off. The motor switches ON again, advances the fence 0.25 mm , then switches off. (This is the home position.)

\subsection*{2.3.4 SIDE FENCE MOTOR ERRORS}

A side fence motor error can occur in two cases:
- The HP sensor does not go OFF even after the side fence has run long enough to advance the fence 12.5 mm from the fence home position, far enough to deactivate the fence HP sensor.
- The HP sensor does not go ON even after the motor has run long enough for the side fence to retract 105.0 mm , far enough for the fence to reach the side fence HP sensor.

When an error occurs the finisher ceases to operate (all motors are switched off with the exception of the stapler movement motor).

Errors for the front fence and rear fence motors are counted separately.
- The first occurrence of an error issues a paper jam alert.
- The second occurrence of an error issues an SC code. SC721 is issued for the front fence motor and SC722 for the rear fence motor.

To recover from an error:
- At the first occurrence of the error after a paper jam error, opening and closing either the top cover or the stapler door triggers the initial check and restores normal operation if no problems are detected.
- At the second occurrence after an SC code is issued, cycling the main machine off/on may restore full operation if no problems are detected.

\subsection*{2.3.5 SIDE FENCE OPERATION ADJUSTMENT}

The distance between the front and rear side fences can be adjusted with DIP SW100. The DIP SW adjustment is done in increments of 0.5 mm (Max. Range: \(\pm 3.5 \mathrm{~mm}\) ).
- The adjustment is halved for center jogging. If the adjustment is 0.5 mm , for example, this means the position adjustment 0.25 mm for each side fence.
The table below shows the adjustments done with DIP SW100 on the main board of the finisher.


DIP SW
\begin{tabular}{|c|c|c|c|c|}
\hline \(\boldsymbol{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) & Adjustment (mm) \\
\hline ON & ON & ON & ON & -3.5 \\
\hline ON & ON & ON & OFF & -3.0 \\
\hline ON & ON & OFF & ON & -2.5 \\
\hline
\end{tabular}

Jogging (Paper Alignment)
\begin{tabular}{|c|c|c|c|c|}
\hline \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) & Adjustment (mm) \\
\hline ON & ON & OFF & OFF & -2.0 \\
\hline ON & OFF & ON & ON & -1.5 \\
\hline ON & OFF & ON & OFF & -1.0 \\
\hline ON & OFF & OFF & ON & -0.5 \\
\hline ON & OFF & OFF & OFF & 0.0 \\
\hline OFF & ON & ON & ON & 3.5 \\
\hline OFF & ON & ON & OFF & 3.0 \\
\hline OFF & ON & OFF & ON & 2.5 \\
\hline OFF & ON & OFF & OFF & 2.0 \\
\hline OFF & OFF & ON & ON & 1.5 \\
\hline OFF & OFF & ON & OFF & 1.0 \\
\hline OFF & OFF & OFF & ON & 0.5 \\
\hline OFF & OFF & OFF & OFF & 0.0 \\
\hline
\end{tabular}

\subsection*{2.4 STAPLING}

\subsection*{2.4.1 OVERVIEW}

\section*{Stapler Movement}

\begin{tabular}{|r|l|r|l|}
\hline 1. & Stapler Unit & 5. & Trip Plate - Rear \\
\hline 2. & Guide Rail & 6. & Trip Plate - Center \\
\hline 3. & Driver Gear, Timing Belt & 7. & Trip Plate - Front \\
\hline 4. & Stapler Movement Motor & 8. & Stapler HP Sensor \\
\hline
\end{tabular}

The illustration below shows how the stapler moves during each stapling mode.
Note
- When the plate on the bottom of the stapler unit strikes a trip plate, this swivels the stapler unit from straight to oblique or vice versa.

\section*{Stapling}

\section*{Staple Positions}
(1)



437243003
\begin{tabular}{|l|l|}
\hline\((1)\) & Front Oblique Stapling: 1 Staple \\
\hline\((2)\) & Front Straight Stapling: 1 Staple \\
\hline\((3)\) & Rear Straight Stapling: 1 Staple \\
\hline (4) & 2 Staples (Rear then Front) \\
\hline
\end{tabular}

\section*{Stapler EH-530}

d372d440a
\begin{tabular}{|r|l|r|l|}
\hline 1. & Faceplate & 8. & Staple Supply Pawl \\
\hline 2. & Clincher & 9. & Staple Sheet \\
\hline 3. & Cartridge & 10. & Base \\
\hline 4. & Stapler Motor & 11. & Plunger \\
\hline 5. & Homing Plates & 12. & Driver Plate \\
\hline 6. & Driver Plate & 13. & Homing Plates \\
\hline 7. & Cartridge & & \\
\hline
\end{tabular}

The stapler motor (4) drives both the driver plate (12) and homing plates (13) toward the clincher. The driver plate and homing plates separate and feed the staples to the clincher (2) that performs the stapling.

The pressure of the plunger (11) feeds the next staple for firing. A staple supply pawl below the staple sheet moves to the front and back to assist in staple supply. The plunger feeds only one staple at a time, but the staple supply pawl can feed up to 10 staples.

\subsection*{2.4.2 STAPLER MOVEMENT MOTOR INITIALIZATION}

Initialization of the stapler unit position is determined by the state of the stapler HP sensor. One of the following sequences occurs at power on, depending on the state of the stapler HP sensor.
- Stapler HP sensor OFF

\section*{Stapling}

The motor turns on and brings the stapler forward until the stapler HP sensor goes ON. Then the motor remains on to move the stapler an additional 1.2 mm , then stops. This is the home position.
- Stapler HP sensor ON

The stapler movement motor turns on and moves the stapler to the rear until the stapler HP sensor goes OFF. The motor stays on to move the stapler 12 mm , then stops. Next, the motor turns on again and brings the stapler forward until the stapler HP sensor goes ON, the motor stays on to move the stapler 1.2 mm , then stops. This is the home position.

\subsection*{2.4.3 STAPLER ERRORS}

A stapler position error can occur in two cases:
- Stapler HP sensor does not go OFF.

The stapler HP sensor does not go OFF even after the stapler movement motor has been on long enough to move the stapler away from the home position.
- Stapler HP sensor does not go ON

While the stapler is out of the home position, the stapler HP sensor does not go ON even after the stapler movement motor has been on long enough to move the stapler into the home position.
- Stapler is out of staples.

At power on, if staples are not detected in the stapler, the staple detection sequence executes up to 10 times until "staples present" is detected. If staples cannot be detected after 10 attempts, then the staples out alert is issued.

When one of these errors occurs, the exciter current to the stapler motor is switched off.
Both of the HP sensor errors described above are counted as the same error. In either case, the first occurrence of the error is considered a jam, and the second occurrence issues SC742 (Stapler Movement Motor Error).

To recover from an error:
- At the first occurrence of a stapler HP sensor error, removing the jam then opening and closing either the top cover or the stapler door triggers the initial check and restores normal operation if no problems are detected.
- At the second occurrence after SC742 is issued, cycling the main machine power off/on may restore full operation if no problems are detected.

\subsection*{2.5 PAPER OUTPUT}

\subsection*{2.5.1 OVERVIEW}

\section*{Feed-Out Mechanism}

\begin{tabular}{|l|l|l|l|}
\hline 1. & Feed-Out Belt Motor & 7. & Mobile Fence Drive Shaft \\
\hline 2. & Feed-Out Belt Drive Shaft & 8. & Mobile Fence Cam \\
\hline 3. & Rear Feed-Out Belt & 9. & Mobile Fence Follower \\
\hline 4. & Rear Feed-Out Belt Pawl & 10. & Mobile Fence Link and Slider \\
\hline 5. & Front Feed-Out Belt & 11. & Mobile Fence \\
\hline 6. & Front Feed-Out Belt Pawl & 12. & Feed-Out Belt HP Sensor \\
\hline
\end{tabular}

The feed-out belt motor [1] drives the timing belt and shaft [2] that rotates the feed-out belts [3] and [4]. The rear pawl [5] and front pawl [6] attached to the rear and front belts push the stack out of the finisher after stapling.

The feed-out belt motor also drives the timing belt and shaft [7] that rotates the mobile fence cam [8]. The mobile fence follower [9] converts the rotary movement of the cam to rectilinear movement (left-to-right) and transmits this movement via the link/slider [10] to the mobile fence [11]. The mobile fence is moved forward to start pushing the stack out of the finisher. The pawls on the rapidly moving feed-out belt complete pushing the stack out of the finisher. After the cam releases the follower, a spring pulls the mobile fence back to its home position.

\section*{Paper Output}

When the actuator attached to the mobile fence cam switches the feed-out belt HP sensor [12] ON, this stops the feed-out belt motor with the pawls at their home positions.

\section*{Bottom Fences}


There are three bottom fences. A mobile fence (1) resides between two stationary bottom fences (2) and (3). When the mobile fence (1) is at its home position, the positioning roller and return rollers feed the trailing edge of each sheet against these fences.
When the stack is ready to be moved to the output tray, the mobile fence (6) pushes the stack to the right. The rear pawl (4) and front pawl (5), mounted on the rear and front feed-out belts, swing up from below and push the stack onto the tray. The mobile fence (6) returns to its home position between the stationary bottom fences.
Feed-Out Mechanism: Right and Front View

\begin{tabular}{|l|l|l|l|}
\hline 1. & Stapling Tray & 6. & Rear Feed-Out Belt Pawl \\
\hline 2. & Mobile Fence & 7. & Mobile Fence HP \\
\hline 3. & Front Feed-Out Belt & 8. & Mobile Fence (Forward Position) \\
\hline 4. & Rear Feed-Out Belt & 9. & Feed-Out Pawls (HP) \\
\hline 5. & Front Feed-Out Belt Pawl & 10. & Bottom Fences x2 \\
\hline
\end{tabular}

In the left illustration, just before that stack is output:
- The stack is on the stapling tray (1).
- The mobile fence (2) has pushed the stack forward to start moving it out of the finisher.
- The front and rear feed-out belts (3) and (4) have rotated the front and rear pawls (5) and (6) behind the stack so they can push the stack out of the finisher.
In the right illustration, after stack output:
- The mobile fence (driven by its cam, follower, and lever below) moved from its home position (7) to (8) to start pushing the stack out of the finisher.
- The feed-out belt pawls pushed the stack out of the finisher then stopped at their home positions (9).
- A long spring pulled the mobile fence back to its home position between the stationary bottom fences (10)

\section*{Paper Output}

\subsection*{2.5.2 FEED-OUT}

The diagram below shows how the feed-out belt and mobile fence work together to push the stack to the output tray.
(1)

(2)

(3)

(4)

(5)

d372d260
\begin{tabular}{|l|l|}
\hline (1) & \begin{tabular}{l} 
Document stacking has finished and the stack is ready to be output. The output belt \\
pawls are at their home positions [A]. The mobile fence [B] is at its home position \\
between the front and rear bottom fences [C].
\end{tabular} \\
\hline\({ }^{(2)}\) & The mobile fence pushes the stack to the right and stops. \\
\hline\({ }^{(3)}\) & The feed-out belt pawls rapidly swing up and push the stack toward the output tray. \\
\hline (4) & \begin{tabular}{l} 
The feed-out belt pawls push the stack onto the output tray. A spring (not shown) \\
retracts the mobile fence.
\end{tabular} \\
\hline
\end{tabular}

Paper Output
(5)

The actuator on the mobile fence cam activates the feed-out belt pawl HP sensor. This switches the motor off and the pawls stop at the home position.

\subsection*{2.5.3 FEED-OUT BELT INITIALIZATION}

Initialization of the positions of the feed-out belt pawls at power on is determined by the state of the feed-out belt HP sensor. This operation does not affect the mobile fence because it is held in its home position by a spring.

One of the following sequences occurs at power on, depending on the state of the feed-out belt HP sensor.
- Feed-out belt HP sensor ON

The feed-out belt motor switches on and rotates clockwise until the HP sensor goes OFF. The motor reverses for 50 ms until the HP sensor goes ON again and stops. This is the home position.
- Feed-out belt HP sensor OFF The feed-out belt motor rotates counter-clockwise until the HP goes ON and then stops. This is the home position.

\subsection*{2.5.4 FEED-OUT BELT ERRORS}

A feed-out belt error can occur in two cases:
- The feed-out belt HP sensor does not go OFF even after the motor has started.
- The feed-out belt does not go ON after the feed-out belt motor has started at power on and the finisher is ready to operate.
- Stapler out of staples

When an error occurs, the feed-out belt motor is switched off.
Either of the errors caused by the states of the feed-out belt HP sensor is counted as the same error.
- The first occurrence of an error issues a paper jam alert.
- The second occurrence of an error issues an SC723 (Feed-out Belt Motor Error).

To recover from an error:
- At the first occurrence of the error after a paper jam error, opening and closing either the top cover or the stapler door triggers the initial check and restores normal operation if no problems are detected.
- At the second occurrence after SC723 is issued, cycling the main machine power off/on may restore full operation if no problems are detected.

\section*{Paper Output}

\subsection*{2.5.5 FEED-OUT EXTENSION}


A retractable extension is attached to the center of the stapling tray. The operator can pull it out manually if the trailing edges of the stacks are catching on the end fence and not falling straight down onto the tray.

d372d391
When the feed-out belt pawls [A] push a stack of paper [B] onto the tray [C], a bend [D] forms at the trailing edge. With some types of paper (especially larger paper such as A3), this bend can cause the edge of the stack to catch on the end fence \([E]\) when it falls into the tray.

d372d392

Pulling the stapling tray extension [A] out by hand extends by 6 mm the distance that the pawls must push the trailing edge of the stack. The extra 6 mm forces the edge of the stack to bend more so it will snap down with more force and not catch on the end fence. This prevents the trailing edge of the stack \([B]\) from catching on the end fence when it falls into the tray.

\section*{Tray Operation}

\subsection*{2.6 TRAY OPERATION}

\subsection*{2.6.1 OVERVIEW}

\begin{tabular}{|r|l|}
\hline 1. & Tray Lift Motor \\
\hline 2. & Output Tray \\
\hline 3. & Edge Depressors \\
\hline 4. & Tray Full Sensor \\
\hline 5. & Upper Limit Push-bar \\
\hline 6. & Tray Upper Limit Switch \\
\hline
\end{tabular}

The tray lift motor (1) raises and lowers the output tray (2).
The edge depressors (3) lightly press down on the trailing edges of stacks already on the tray to keep them down against the end fence.
When the actuator on the bottom of the rear rail switches the tray full sensor (4) ON, this means that the tray is at its lowest point and the tray is full.

If the tray becomes overloaded, the top of the stack pushes up the spring-loaded push-bar
(5). This will turn on the tray upper limit switch (6) and turn off the tray lift motor. This is a safety device to signal tray full in case the tray full sensor fails.

\subsection*{2.6.2 TRAY LIFT CONTROL}

d372d340
\begin{tabular}{|l|l|}
\hline 1. & Edge Depressors \\
\hline 2. & Rotating Shaft \\
\hline 3. & Edge Depressor Solenoid \\
\hline 4. & Actuator \\
\hline 5. & Paper Height Sensor \\
\hline
\end{tabular}

While the feed-out belt motor is running, the tray lift motor switches on ( 300 ms for shift mode, 500 ms for stapling mode), lowers the output tray, stops, then waits to receive the stack.

Just before a stack falls onto the output tray, the edge depressor solenoid (3) switches ON and retracts the edge depressors (1) away from the top of the stack already on the tray so that the next stack can fall freely.
The feed-out belt motor stops immediately after the stack has fallen between the side fences. The edge depressor solenoid switches OFF, and the edge depressors fall onto the trailing edge of the stack against the end fence.

\section*{Tray Operation}

The edge depressors touch the top of the stack, and they are connected to the paper height sensor [5], so this action checks if it is necessary to move the tray up or down.


ON


OFF
- After 200 ms if the paper height sensor is ON, the tray lift motor switches ON and raises the tray.
- If the paper height sensor is OFF, the tray lift motor lowers the tray until the paper height sensor switches ON, pauses for 100 ms , switches on again briefly to raise tray to the prescribed position to receive the next stack.

The diagram below shows how the feed-out belt pawls, output tray, and edge depressors operate together.

\section*{Stack Output to Tray}
(1)

(5)

(2)

(3)

(7)

(4)

(8)

d372d360
\begin{tabular}{|l|l|}
\hline (1) & \begin{tabular}{l} 
The feed-out motor switches on and starts to move the feed-out belts and pawls, \\
pushing the stack toward the output tray. The tray motor switches on and lowers the \\
tray until the paper height sensor switches on.
\end{tabular} \\
\hline (2) & The motor stops briefly to stop the pawls. \\
\hline
\end{tabular}

\section*{Tray Operation}
\begin{tabular}{|l|l|}
\hline (3) & \begin{tabular}{l} 
The motor starts, and just as the pawls start to push the stack onto the tray the edge \\
depressor solenoid switches on and retracts the edge depressors
\end{tabular} \\
\hline (4) & \begin{tabular}{l} 
The stack is on the tray. The solenoid switches off, and the depressors move \\
forward and press down lightly on the trailing edge of the stack. \\
- If the paper height sensor is OFF, go to (5) \\
- If the paper height sensor is ON, go to (6)
\end{tabular} \\
\hline (5) & \begin{tabular}{l} 
The tray lift motor switches on, lowers the tray, and then stops when the paper \\
height sensor goes ON.
\end{tabular} \\
\hline (6) & The tray lift motor reverses for 100 ms to raise the tray to the start position.
\end{tabular} \begin{tabular}{|l|l|}
\hline (7) & The pawls move to their home positions and stop. \\
\hline (8) & The sequence starts again with the next finished stack,. \\
\hline
\end{tabular}

\subsection*{2.6.3 TRAY INITIALIZATION}

The following sequence occurs at power on depending on the states of the paper height sensor and tray full sensor:
\begin{tabular}{|l|l|}
\hline (1) & The edge depressor solenoid switches from ON to OFF. \\
\hline (2) & \begin{tabular}{l} 
- If paper height sensor ON, then go to (3.) \\
Paper height sensor OFF. \\
If the tray full sensor is ON and the paper height sensor is OFF, this signals \\
that the output tray is full. Removing the paper from the tray will switch the \\
paper height sensor ON. The tray lift motor switches on, lowers the tray, \\
reverses for briefly to raise the tray to the start position, then switches OFF.
\end{tabular} \\
\hline (3) & \begin{tabular}{l} 
The tray lift motor continues to lift the tray until the paper height sensor goes OFF, \\
continues to run 100 ms, and stops.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{2.6.4 TRAY LIFT ERRORS}

\section*{Tray Lift Motor Error}


If the tray becomes overloaded and the paper pushes and raises the push-bar [1], this will switch ON the upper limit switch [2] (a push-switch). Activating this switch switches off the tray lift motor. This is a backup device that will switch off the tray lift motor if the tray full sensor or paper height sensors fail.

The table below shows how the state of the two sensors and one switch signal an error.
\begin{tabular}{|c|c|c|l|}
\hline \begin{tabular}{c} 
Tray Upper Limit \\
SW
\end{tabular} & Tray Full Sn & \begin{tabular}{c} 
Paper Hgt \\
Sn
\end{tabular} & \multicolumn{1}{|c|}{ What Happens } \\
\hline ON & OFF & OFF & \begin{tabular}{l} 
Tray Full. One or both sensors has \\
failed.
\end{tabular} \\
\hline OFF & ON & OFF & Tray Full \\
\hline OFF & ON & ON & Lift motor starts to raise tray \\
\hline OFF & OFF & OFF & Lift motor starts to lower tray \\
\hline OFF & OFF & ON & Lift motor starts to raise tray. \\
\hline
\end{tabular}

The machine issues a tray-full alert when the tray becomes full:
- Tray full sensor ON

The tray has reached its lowest position.

\section*{Tray Operation}
- Paper height sensor OFF (full upright)

The paper on the tray has pushed the edge depressors to the full upright position. Normally, removing the paper from the tray restores normal operation. The actuator falls and the paper height sensor switches ON. This signals the lift motor to raise the tray to the start position.
An error will occur if an abnormal condition exists:
- After the paper height sensor switches ON and the tray lift motor raises the tray, if paper height sensor does not go OFF after 20 sec., this signals an error and the tray lift motor will switch OFF.
- With the paper height sensor OFF and the tray full sensor OFF, the tray lift motor lowers the tray. The tray lift motor will switch off if the paper height sensor does not go ON within 3 sec.

These two errors are counted as the same error. The first occurrence of the error is considered a jam, and at the second occurrence SC750 (Tray Lift Motor Error) is issued. To recover from an error:
- At the first occurrence of the error after a paper jam error, opening and closing either the top cover or the stapler door triggers the initial check and restores normal operation if no problems are detected.
- At the second occurrence after SC750 is issued, cycling the main machine off/on may restore full operation if no problems are detected.

\section*{Edge Depressor Solenoid Error}

At power on, or while the stack starts being output to the tray (the solenoid starts to go OFF), if the paper height sensor remains OFF this indicates a solenoid error. When this error occurs:
- All motors switch off.
- The error is logged.

The first occurrence is considered a jam, and the second occurrence causes SC751 (Edge Depressor Solenoid).
To recover from an error:
- At the first occurrence of the error after a paper jam error, opening and closing either the top cover or the stapler door triggers the initial check and restores normal operation if no problems are detected.
- At the second occurrence after SC750 is issued, cycling the main machine off/on may restore full operation if no problems are detected.

\subsection*{2.7 ELECTRICAL COMPONENTS}

\subsection*{2.7.1 COMPONENT LAYOUT}

\begin{tabular}{|l|l|l|l|}
\hline 1. & Positioning Roller Motor & 14. & Stack Depressor Solenoid \\
\hline 2. & Transport Motor & 15. & Feed-Out Belt HP Sensor \\
\hline 3. & Rear Fence HP Sensor & 16. & Paper Height Sensor \\
\hline 4. & Stapler Movement Motor & 17. & Feed-Out Belt Motor \\
\hline 5. & Entrance Sensor & 18. & Output Tray Full Sensor \\
\hline 6. & Stapling Tray Paper Sensor & 19. & Rear Fence Motor \\
\hline 7. & Front Fence HP Sensor & 20. & Positioning Roller HP Sensor \\
\hline 8. & Tray Upper Limit Switch & 21. & Main Board \\
\hline 9. & Top Cover Switch & 22. & Stapler \\
\hline 10. & Stapler Door Switch & 23. & Stapler Motor \\
\hline 11. & Stapler HP Sensor & 24. & Staple Cartridge Set Sensor \\
\hline 12. & Tray Lift Motor & 25. & Stapler Hammer HP Sensor \\
\hline 13. & Front Fence Motor & 26. & Staple End Sensor \\
\hline & & \\
\hline
\end{tabular}

\section*{Electrical Components}

\subsection*{2.7.2 SUMMARY OF ELECTRICAL COMPONENTS}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|l|}{ Motors } & M1 \\
\hline Feed-Out Belt Motor & \begin{tabular}{l} 
Drives the two feed-out belts (1 pawl each). The \\
pawls push the finished stack out of the finisher.
\end{tabular} \\
\hline M2 & Front Fence Motor & Moves the front fence to the back and front. \\
\hline M3 & \begin{tabular}{l} 
Positioning Roller Arm \\
Motor
\end{tabular} & \begin{tabular}{l} 
Lowers and raises the positioning roller arm and \\
positioning roller.
\end{tabular} \\
\hline M4 & Rear Fence Motor & Moves the rear fence to the front and back. \\
\hline M5 & \begin{tabular}{l} 
Stapler Movement \\
Motor
\end{tabular} & Moves the stapler to the front and back. \\
\hline M6 & Transport Motor & \begin{tabular}{l} 
Drives all the rollers in the finisher: entrance \\
roller, positioning roller, return rollers, exit roller
\end{tabular} \\
\hline M7 & Tray Lift Motor & Raises and lowers the output tray. \\
\hline M8 & Stapler Motor & \begin{tabular}{l} 
The motor inside the stapler that drives staple \\
supply and stapling.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|l|}{ Board } & \\
\hline PCB1 & Main Board & \begin{tabular}{l} 
Controls operation of the finisher. DIP switches \\
can be changed to adjust the positions of the \\
front and rear side fences.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|}
\hline \multicolumn{2}{|l|}{ Sensors } & S1 \\
\hline Entrance Sensor & \begin{tabular}{l} 
Detects the leading edge of the paper when it \\
enters the finisher. Readings of this sensor are \\
used for timing of finisher operation. Also detects \\
jams.
\end{tabular} \\
\hline S & \begin{tabular}{l} 
Feed Out Belt HP \\
Sensor
\end{tabular} & \begin{tabular}{l} 
Detects the HP of the feed-out belt pawls on the \\
two feed-out belts (one pawl on each belt).
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|r|l|l|}
\hline \multicolumn{2}{|l|}{ Sensors } & Front Fence HP Sensor \\
\hline S3 & \begin{tabular}{l} 
Detects the HP of the front fence at the front of \\
the finisher.
\end{tabular} \\
\hline Output Tray Full Sensor & \begin{tabular}{l} 
Located at the bottom left corner of the finisher. \\
When the actuator on the tray rail switches this \\
sensor ON, this signals tray full.
\end{tabular} \\
\hline S5 & Paper Height Sensor & \begin{tabular}{l} 
Positioning Roller HP \\
Sensor
\end{tabular} \\
\begin{tabular}{l} 
Used to monitor the positions of the edge \\
depressors that press down on the trailing edge \\
the stack pushes the depressors up, this \\
switches the sensor OFF and signals the tray lift \\
motor to lower the tray.
\end{tabular} \\
\hline S6 & Rear Fence HP Sensor & \begin{tabular}{l} 
Detects the HP of the positioning roller when it is \\
up. \\
the finisher.
\end{tabular} \\
\hline S7 & Stapler HP Sensor & \begin{tabular}{l} 
Detects HP of the stapler at the front of the \\
finisher.
\end{tabular} \\
\hline S8 & \begin{tabular}{l} 
Stapling Tray Paper \\
Sensor
\end{tabular} & Detects paper on the stapling tray, \\
\hline
\end{tabular}

\section*{Solenoid}
\begin{tabular}{|l|l|l|}
\hline SOL & & \begin{tabular}{l} 
When a stack is output, the tray lift motor lowers \\
the tray slightly. At this time, the stack depressor \\
solenoid switches ON and retracts the edge \\
Stack Depressor \\
Solenoid \\
stack can fall onto the tray. The solenoid then \\
switches OFF and lowers the arms against the \\
trailing edge of the stack to keep it down against \\
the end fence.
\end{tabular} \\
\hline
\end{tabular}

\section*{Electrical Components}

Switches
\begin{tabular}{|l|l|l|}
\hline SW1 & Stapler Door Switch & \begin{tabular}{l} 
Detects when the stapler top cover is open or \\
closed.
\end{tabular} \\
\hline SW2 & Top Cover Switch & Detects when the top cover is opened or closed. \\
\hline SW3 & Tray Upper Limit Switch & \begin{tabular}{l} 
If the tray becomes full, the top of the stack will \\
push up a plate that activates this switch and \\
switches off the finisher. This is a backup feature \\
that will shut down operation if the tray full \\
sensor or paper height sensor fails with the \\
output tray full.
\end{tabular} \\
\hline
\end{tabular}

\section*{Other}

Stapler \(\quad\) Stapler Unit \(\quad\) Staples sheets stacked on the stapling tray.

\subsection*{2.7.3 TIMING CHARTS}

The first flowchart below is the operational timing chart for shift mode, the second chart is for stapling mode.

\section*{Shift Mode}


\section*{Electrical Components}

\section*{Staple Mode: Rear/Oblique}


\subsection*{2.7.4 ERROR LIST}

Here is a comprehensive list of finisher errors.

\section*{Solution Key}
\begin{tabular}{|c|c|}
\hline Symbol & Solution \\
\hline (1) & \begin{tabular}{l}
1. Open top cover (or stapler door). \\
2. Remove jammed paper (or staple). \\
3. Close the top cover (or stapler door).
\end{tabular} \\
\hline (2) & \begin{tabular}{l}
1st Occurrence (Jam Error): \\
1. Open top cover (or stapler door). \\
2. Remove jammed paper (or staple). \\
3. Close the top cover (or stapler door). \\
2nd Occurrence (SC Code): \\
1. Cycle the machine power off/on \\
2. If this does not solve the problem, refer to Section "4. Troubleshooting". \\
3. Look up the SC code in table and do the service procedure.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline No. & Error & Problem/Solution \\
\hline 1 & Entrance sensor & \begin{tabular}{l}
Problem: \\
Lag errorOccurs during paper feed. \\
A paper exit signal (ON) was received from the main machine, but the entrance sensor did not switch ON after the finisher transport motor ran long enough to feed paper 500 mm . \\
Solution:
\end{tabular} \\
\hline 2 & Entrance sensor & \begin{tabular}{l}
Problem: \\
Late errorOccurs during paper feed. \\
The entrance detected the paper, but the entrance sensor did not go OFF after the finisher transport motor ran long enough to feed 1.5 times the length of the paper size signaled by the main machine. \\
Solution:
\end{tabular} \\
\hline 3 & Paper in paper path & \begin{tabular}{l}
Problem: \\
Occurs at power on, or after the top cover or stapler door has been closed. \\
After the top or stapler cover switch is closed, the stapler cover switch goes OFF but the entrance sensor remains ON for longer than 50 ms . \\
Solution:
\end{tabular} \\
\hline 4 & No paper present & \begin{tabular}{l}
Problem: \\
Occurs during stapling, stapling mode WAIT. \\
The paper sensor on the stapling tray remains OFF for more than 50 ms . \\
Solution: No action required.
\end{tabular} \\
\hline 5 & Positioning roller motor error & \begin{tabular}{l}
Problem: \\
Occurs during initialization or during operation of the positioning roller motor. \\
- During initialization or while the positioning roller arm was being lowered, the HP sensor remained ON did
\end{tabular} \\
\hline
\end{tabular}

\section*{Electrical Components}
\begin{tabular}{|c|c|c|}
\hline No. & Error & Problem/Solution \\
\hline & & \begin{tabular}{l}
not go OFF within the prescribed time. \\
- During initialization, the positioning roller HP sensor remained OFF did not go ON within the prescribed time. \\
- When the positioning roller arm is raised from the down position, the HP sensor does not go ON even after the positioning roller motor remained on for 450 pulses. \\
Solution: (2)
\end{tabular} \\
\hline 6 & Front side fence motor error & \begin{tabular}{l}
Problem: \\
Occurs at power on, when the paper moves to the start position in the finisher, or in standby mode. \\
- The front side fence HP sensor did not switch from ON to OFF after the front side fence motor remained on for 50 pulses to move the fence toward the rear. \\
- The front side fence HP sensor did not switch from OFF to ON after the front side fence motor remained on for 420 pulses. \\
Solution: \\
(2)
\end{tabular} \\
\hline 7 & Rear side fence motor error & \begin{tabular}{l}
Problem: \\
Occurs at power on, when the paper moves to the start position in the finisher, or in standby mode. \\
- The rear side fence HP sensor did not switch from ON to OFF after the rear side fence motor remained on for 50 pulses to move the fence forward. \\
- The front side fence HP sensor did not switch from OFF to ON after the front side fence motor remained on for 420 pulses to move the fence toward the rear.
\end{tabular} \\
\hline 8 & Feed-out belt motor & \begin{tabular}{l}
Problem: \\
Occurs at initialization or during feed-out belt operation. \\
- The feed-out belt HP sensor did not switch from ON to
\end{tabular} \\
\hline
\end{tabular}

Electrical Components
\begin{tabular}{|c|c|c|}
\hline No. & Error & Problem/Solution \\
\hline & & \begin{tabular}{l}
OFF after the feed-out belt motor ran for 100 pulses. \\
- The feed-out belt HP sensor did not switch from OFF to ON after the feed-out belt motor ran for 1000 pulses. \\
Solution: \\
(2)
\end{tabular} \\
\hline 9 & \begin{tabular}{l}
Stapler movement \\
motor error 1
\end{tabular} & \begin{tabular}{l}
Problem: \\
Occurs at initialization or while the paper is being fed to the start position in the finisher. \\
- The stapler HP sensor did not switch from ON to OFF after the stapler movement motor ran for 200 pulses. \\
- The stapler HP sensor did not switch from OFF to ON after the stapler movement motor ran for 5600 pulses. \\
Solution: (2)
\end{tabular} \\
\hline 10 & Stapler motor error & \begin{tabular}{l}
Problem: \\
Occurs during staple supply to the stapler. \\
The stapler operation (stapling) did not end after 600 ms . \\
A staple jam can also cause this error.
\end{tabular} \\
\hline 11 & Tray lift motor error & \begin{tabular}{l}
Problem: \\
Occurs at initialization, after return to standby, or during feed-out belt operation. \\
- The paper height sensor did not go OFF after the tray lift motor ran for 3 sec . to lower the tray. \\
- The paper height sensor did not go OFF after the tray lift motor ran for 20 sec . to raise the tray. \\
Solution: (2)
\end{tabular} \\
\hline 12 & \begin{tabular}{l}
Edge depressor \\
solenoid
\end{tabular} & \begin{tabular}{l}
Problem: \\
Occurs at initialization or during feed-out belt operation. \\
- The paper height sensor remained ON after the solenoid went OFF. \\
Solution:
\end{tabular} \\
\hline 13 & Tray full sensor & Problem: \\
\hline
\end{tabular}

\section*{Electrical Components}
\begin{tabular}{|c|c|c|}
\hline No. & Error & Problem/Solution \\
\hline & & \begin{tabular}{l}
The tray full sensor went ON with the edge depressor solenoid OFF and paper height sensor OFF. \\
Solution: Tray full, remove paper.
\end{tabular} \\
\hline 14 & Staple out & \begin{tabular}{l}
Problem: \\
Occurs during standby or during stapling. \\
- The staple near-end sensor went ON, or during staple supply the self-priming sensor did not go ON, even after 10 attempts to supply more staples to the stapler. \\
Solution: Replace the empty staple cartridge.
\end{tabular} \\
\hline 15 & Top cover open & \begin{tabular}{l}
Problem: \\
The top cover remained open longer than 2 ms . Solution: Close the top cover.
\end{tabular} \\
\hline 16 & Stapler cover open & \begin{tabular}{l}
Problem: \\
The stapler cover remained open longer than 2 ms . \\
Solution: Close the stapler cover.
\end{tabular} \\
\hline 17 & Tray upper limit switch is ON & \begin{tabular}{l}
Problem: \\
The tray upper limit switch remained on longer than 2 ms . \\
Solution: Before determining that an error has occurred: \\
- Lower the safety lever. \\
- Cycle the machine power off/on
\end{tabular} \\
\hline 18 & System error & \begin{tabular}{l}
Problem: \\
An abnormal condition was detected and existed longer than 60 sec . \\
Solution: DFU
\end{tabular} \\
\hline 19 & Exceeded system limitation & \begin{tabular}{l}
Problem: \\
Occurs when the number of command requests received has exceeded the limit. The entrance detected the paper, but the entrance sensor did not go OFF after the finisher transport motor ran long enough to feed 1.5 times the length of the paper size signaled by the main machine.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|}
\hline No. & \multicolumn{1}{|c|}{ Error } & \multicolumn{1}{|c|}{ Problem/Solution } \\
\hline 20 & & Solution: DFU \\
\hline Abnormal data \\
transfer
\end{tabular} \begin{tabular}{l} 
Problem: \\
A problem has been detected at ASAP during data \\
transmission. \\
Solution: (1)
\end{tabular}

\section*{3. SPECIFICATIONS}

\subsection*{3.1 SPECIFICATIONS}
\begin{tabular}{|c|c|c|c|c|}
\hline Target Line Speed & \multicolumn{4}{|l|}{\(77 \mathrm{~mm} / \mathrm{sec}\). to \(205 \mathrm{~mm} / \mathrm{sec}\)} \\
\hline Target CPM & \multicolumn{4}{|l|}{35 cpm} \\
\hline Face-down Output Size & \multicolumn{4}{|l|}{\begin{tabular}{l}
12"x18", A3 SEF to A6 SEF, DLT to HLT SEF Shift sizes: A3 SEF to B5 SEF \\
A5, B6, A6 SEF labels possible
\end{tabular}} \\
\hline Paper Thickness & \multicolumn{4}{|l|}{\(52 \mathrm{~g} / \mathrm{m}^{2}(45 \mathrm{~K})\) to \(157 \mathrm{~g} / \mathrm{m}^{2}\) ( 135 K ) Up to \(253 \mathrm{~g} / \mathrm{m}^{2}\) (220K) without shift} \\
\hline Stapling & & & & \\
\hline Stack Height for Stapling & \multicolumn{4}{|l|}{50 sheets: A4, LT and smaller 30 sheets: B4, LG and larger} \\
\hline Size & \multicolumn{4}{|l|}{A3 SEF to B5 SEF (can be mixed if same width)} \\
\hline Stack Thickness & \multicolumn{4}{|l|}{64g/m \({ }^{2}\) ( 45 K ) to \(157 \mathrm{~g} / \mathrm{m}\) ( 135 K )} \\
\hline Stapling Positions & \multicolumn{4}{|l|}{\begin{tabular}{l}
Front/Oblique: 1, Front/Parallel: 1 \\
Rear/Oblique: 1, Rear/Parallel: 1, 2 locations
\end{tabular}} \\
\hline \multicolumn{5}{|l|}{Output Tray Capacity} \\
\hline \multicolumn{2}{|l|}{Non-staple Mode} & \multicolumn{3}{|l|}{500 sheets: A4, LT and smaller} \\
\hline \multicolumn{2}{|r|}{Staple Mode} & \begin{tabular}{l}
250 sheets: B4, LG \\
and larger \\
Stack Size \\
(Stapling)
\end{tabular} & Stacks & Size \\
\hline & \[
\begin{gathered}
2 \text { to } 9 \\
\text { Sheets }
\end{gathered}
\] & & 55 to 46 & \begin{tabular}{l}
A4, B5, LT \\
LEF
\end{tabular} \\
\hline
\end{tabular}

Specifications


\title{
PRINTERISCANNER OPTION D383
}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{ PRINTERISCANNER OPTION REVISION HISTORY } \\
\hline Page & Date & Added/Updated/New \\
\hline 3 & \(05 / 28 / 2008\) & Controller Board Slots \\
\hline
\end{tabular}

\section*{PRINTER/SCANNER OPTION D383 \\ TABLE OF CONTENTS}
1. INSTALLATION ..... 1
1.1 CONTROLLER BOARD SLOTS ..... 1
1.1.1 INTERFACE BOARD, SD CARD SLOTS ..... 1
1.2 PRINTER AND P/S OPTIONS ..... 5
1.2.1 OVERVIEW ..... 5
1.2.2 KIT CONTENTS ..... 6
1.2.3 PRINTER, PRINTER/SCANNER UNIT INSTALLATION ..... 8
1.2.4 PRINTER, SCANNER ENHANCE OPTIONS ..... 11
1.3 INSTALLING CONTROLLER OPTIONS ..... 14
1.3.1 IEEE 1284 INTERFACE BOARD (B679) ..... 14
1.3.2 IEEE 802.11A/G (D377) ..... 15
1.3.3 BLUETOOTH UNIT (B826) ..... 19
1.3.4 POSTSCRIPT 3 UNIT (D383) ..... 20
1.3.5 GIGABIT ETHERNET (G831) ..... 1
1.4 CHECK ALL CONNECTIONS ..... 2
2. SERVICE TABLES ..... 3
2.1 PRINTER SERVICE TABLES ..... 3
2.2 SCANNER SERVICE TABLES ..... 5
3. SPECIFICATIONS ..... 7
3.1 SPECIFICATIONS ..... 7
3.1.1 PRINTER CONTROLLER (GENERAL) ..... 7
3.1.2 USB SPECIFICATIONS ..... 8
3.1.3 IEEE 802.11A/G, G SPECIFICATIONS ..... 8
3.1.4 BLUETOOTH SPECIFICATIONS ..... 8
3.1.5 SCANNER SPECIFICATIONS ..... 9
3.1.6 SOFTWARE ACCESSORIES ..... 10

\section*{Read This First}

\section*{Safety, Conventions, Trademarks}

\section*{SAFETY}

\section*{PREVENTION OF PHYSICAL INJURY}
1. Before disassembling or assembling parts of the machine and peripherals, make sure that the machine and peripheral power cords are unplugged.
2. The plug should be near the machine and easily accessible.
3. Note that some components of the machine and the paper tray unit are supplied with electrical voltage even if the main power switch is turned off.
4. If any adjustment or operation check has to be made with exterior covers off or open while the main switch is turned on, keep hands away from electrified or mechanically driven components.
5. If the [Start] key is pressed before the machine completes the warm-up period (the [Start] key starts blinking red and green ), keep hands away from the mechanical and the electrical components as the machine starts making copies as soon as the warm-up period is completed.
6. The inside and the metal parts of the fusing unit become extremely hot while the machine is operating. Be careful to avoid touching those components with your bare hands.
7. To prevent a fire or explosion, keep the machine away from flammable liquids, gases, and aerosols.

\section*{HEALTH SAFETY CONDITIONS}
1. Never operate the machine without the ozone filters installed.
2. Always replace the ozone filters with the specified types at the proper intervals.
3. Toner and developer are non-toxic, but if you get either of them in your eyes by accident, it may cause temporary eye discomfort. Try to remove with eye drops or flush with water as first aid. If unsuccessful, get medical attention.

\section*{OBSERVANCE OF ELECTRICAL SAFETY STANDARDS}
1. The machine and its peripherals must be installed and maintained by a customer service representative who has completed the training course on those models.

\section*{SAFETY AND ECOLOGICAL NOTES FOR DISPOSAL}
1. Do not incinerate toner bottles or used toner. Toner dust may ignite suddenly when exposed to an open flame.
2. Dispose of used toner, developer, and organic photoconductors in accordance with
local regulations. (These are non-toxic supplies.)
3. Dispose of replaced parts in accordance with local regulations.
4. When keeping used lithium batteries in order to dispose of them later, do not put more than 100 batteries per sealed box. Storing larger numbers or not sealing them apart may lead to chemical reactions and heat build-up.

\section*{\(\triangle\) CAUTION}
- The danger of explosion exists if a battery of this type is incorrectly replaced. Replace only with the same or an equivalent type recommended by the manufacturer. Discard used batteries in accordance with the manufacturer's instructions.

\section*{Conventions and Trademarks}

\section*{CONVENTIONS}
\begin{tabular}{|c|c|}
\hline Symbol & What it means \\
\hline CTIT & Core Tech Manual \\
\hline \(\mathcal{F}^{1}\) & Screw \\
\hline E\#J & Connector \\
\hline (6) & E-ring \\
\hline (3) & C-ring \\
\hline 岛 & Harness clamp \\
\hline FFC & Flexible Film Connector \\
\hline
\end{tabular}


SEF (Short Edge Feed)


LEF (Long Edge Feed)

The notations "SEF" and "LEF" describe the direction of paper feed. The arrows indicate the direction of paper feed.


In this manual "Horizontal" means the "Main Scan Direction" and "Vertical" means the "Sub Scan Direction" relative to the paper feed direction.

\section*{WARNINGS, CAUTIONS, NOTES}

In this manual, the following important symbols and notations are used.

\section*{©WARNING}
- A Warning indicates a potentially hazardous situation. Failure to obey a Warning could result in death or serious injury.

\section*{\(\triangle\) CAUTION}
- A Caution indicates a potentially hazardous situation. Failure to obey a Caution could result in minor or moderate injury or damage to the machine or other property.

\section*{Important}
- Obey these guidelines to avoid problems such as misfeeds, damage to originals, loss of valuable data and to prevent damage to the machine

\section*{\(\downarrow\) Note}
- This information provides tips and advice about how to best service the machine.

\section*{TRADEMARKS}
- Microsoft \({ }^{\circledR}\), Windows \({ }^{\circledR}\), and MS-DOS \({ }^{\circledR}\) are registered trademarks of Microsoft Corporation in the United States and /or other countries.
- PostScript \({ }^{\circledR}\) is a registered trademark of Adobe Systems, Incorporated.
- \(\mathrm{PCL}^{\circledR}\) is a registered trademark of Hewlett-Packard Company.
- Ethernet \({ }^{\circledR}\) is a registered trademark of Xerox Corporation.
- PowerPC \({ }^{\circledR}\) is a registered trademark of International Business Machines Corporation.
- Other product names used herein are for identification purposes only and may be trademarks of their respective companies. We disclaim any and all rights involved with those marks.

\section*{1. INSTALLATION}

\subsection*{1.1 CONTROLLER BOARD SLOTS}

The following items are standard (not options) for the Color Scanner Unit on the D018/D020.
- Printer/Scanner Unit
- 256 MB memory

These items are available as options for the Monochrome Scanner Unit D017/D019.

\subsection*{1.1.1 INTERFACE BOARD, SD CARD SLOTS}

The machine controller box has one board slot and two SD card slots.
- Only one interface board option can be installed.
- Only two SD cards are available for applications and maintenance.


\section*{Controller Board Slots}

\section*{Board Slots}
\begin{tabular}{|l|l|l|}
\hline No. & Name & \multicolumn{1}{c|}{ Description } \\
\hline (1) & ISDN & Jack for ISDN connection (Japan Only) \\
\hline (2) & Line 3 & \begin{tabular}{l} 
Not used. (G4 is not available for installation outside \\
Japan at this time.)
\end{tabular} \\
\hline (3) & Line 1 & \begin{tabular}{l} 
Jack for the main telephone line from the outside for \\
connection to Fax Option (D361).
\end{tabular} \\
\hline (4) & TEL1 & Line 2 \\
\hline (5) & \begin{tabular}{l} 
Jack for telephone connection a 2nd line connection to the Fax Interface Unit \\
(D361) (G3) when this option is installed.
\end{tabular} \\
\hline (6) & Board Slot & Optional interface boards are installed here. \\
\hline (7) & SD Card Slot 1 & \begin{tabular}{l} 
For options provided on SD cards. The application SD \\
card (with the exception of the HDD Encryption unit or VM \\
SD card) should be installed in Slot 1. If more than one \\
application is to be used, move the applications to the
\end{tabular} \\
same SD card with SP5873.
\end{tabular}\(\left|\begin{array}{lll|}\hline \text { For options provided on SD cards and servicing. The } \\
\text { HDD Encryption unit SD card and VM card must be }\end{array}\right|\)\begin{tabular}{l} 
(8) \\
\hline installed in Slot 2.
\end{tabular}
- Only two SD Card slots are available for applications.
- To install more applications, they must be moved onto one SD Card. (See 1.2.4 Printer, Scanner Enhance Options for specific instructions)

\section*{Board Slot}

The following optional interface boards are available. There is only one board slot so only one can be installed.
\begin{tabular}{|c|l|}
\hline No. & \multicolumn{1}{|c|}{ Interface Board } \\
\hline B679 & IEEE1284 Interface Board Type A (B679) \\
\hline B826 & Bluetooth Interface Unit Type 3245 (B826) \\
\hline D377 & File Format Converter Type E (D377) \\
\hline D377 & IEEE802.11a/g Interface Unit Type J/K (D377) \\
\hline G831 & Gigabit Ethernet Type 7300 (G831) \\
\hline
\end{tabular}

\section*{SD Card Slots}

The following options are provided on SD cards.
- Two SD card slots are available.
- The VM application SD card and HDD Encryption Unit SD Card must be installed in Slot 2 (lower).
- Other applications should be installed in Slot 1 (upper). If more than one application is required, move the applications onto one SD card with SP5873-1.
- Due to copyright restrictions, the PostScript Unit (D383) cannot be moved to another SD card. However, other applications can be moved onto the PostScript 3 SD card.
\(\Rightarrow\)\begin{tabular}{|c|l|}
\hline No. & \multicolumn{1}{c|}{ SD Card Appliacations } \\
\hline D362 & Data Overwrite Security Unit Type I (D362) \\
\hline D377 & Browser Unit Type D (D377) \\
\hline D377 & HDD Encryption Unit (D377) \\
\hline & D377 \\
\hline & VM Card Type F (D377) \\
\hline D383 & PostScript3 Unit Type 3350 (D383) \\
\hline D383 & Printer Enhance Option Type 3350 (D383) \\
\hline
\end{tabular}

\section*{Controller Board Slots}
\begin{tabular}{|l|l|}
\hline No. & \multicolumn{1}{|c|}{ SD Card Appliacations } \\
\hline D383 & Printer Unit Type 3350 (D383) \\
\hline D383 & Printer/Scanner Unit Type 3350 (D383) \\
\hline D383 & RPCS Printer Unit Type 3350 (D383) \\
\hline D383 & Scanner Enhance Option Type 3350 (D383) \\
\hline
\end{tabular}

\subsection*{1.2 PRINTER AND PIS OPTIONS}

\subsection*{1.2.1 OVERVIEW}

This section describes the installation of the following items:
- RPCS Printer Unit
- Printer Unit
- Printer/Scanner Unit
- 256 MB Memory. Optional memory is required for each unit.
- HDD unit
- Printer Enhance Option
- Scanner Enhance Option


\section*{Main Units}

The three main units are:
- RPCS Printer Unit Type 3350. For customers who require only basic copying and printing and the RPCS printer language. The HDD is not required but the 256 MB memory must be installed.
- Printer Unit Type 3350. For customers who do not require the extended scanning features but need more printing capability (both RPCS and PCL printer languages are provided). The 256 MB memory is required.
- Printer/Scanner Unit Type 3350. For customers who require the full range of DS features (advanced scanning and printing features such as "scan-to" solutions, virtual mailboxes, PCL, etc.). The 256 MB memory unit is required.

\section*{Printer and P/S Options}

\section*{Separate Options}

There are three separate options: HDD, 256 MB memory and PS3.
- HDD. Provided with the following kits: Printer Enhance Option, Printer Unit, and Printer/Scanner Unit. Refer to the illustration above. If an HDD has already been installed as a separate item, the HDD unit in the machine does not need to be replaced with the HDD from the kit.
- 256 MB memory. Not provided with any option. However, every unit (RPCS, Printer Unit, P/S unit) requires installation of the 256 MB memory.
- PostScript 3 Unit. The PS3 option can be used with the RPCS Unit, the Printer Unit, or the Printer/Scanner Unit.

\section*{Enhance Options}

There are two enhance options:
- Printer Enhance Option Type 3350. Updates the RPCS unit by adding PCL.
- Scanner Enhance Option Type 3350. Updates the RPCS unit or Printer Unit by adding the advanced scanning features.

\subsection*{1.2.2 KIT CONTENTS}

Check the accessories and their quantities against the list below and the illustration on the next page. This is a common list for all the kits.

\section*{Common Accessory Table}

This common accessory table lists all the items of the following units and options for the D007/D008:
- RPCS: RPCS Printer Unit
- PU: Printer Unit
- P/S: Printer/Scanner Unit
- PEO: Printer Enhance Unit
- SEO: Scanner Enhance Unit
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \multirow{2}{*}{Description} & \multirow{2}{*}{Qty} & \multicolumn{5}{|c|}{Kit Contents} \\
\hline & & & RPCS & PU & P/S & PEO & SEO \\
\hline & 256 MB Memory*1 & 1 & No & No & No & No & No \\
\hline 1. & HDD*2 & 1 & No & Yes & Yes & Yes & No \\
\hline 2. & Screws & 2 & No & Yes & Yes & Yes & \\
\hline
\end{tabular}

Printer and P/S Options
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline & \multirow{3}{*}{ Description } & \multirow{3}{*}{ Qty } & \multicolumn{5}{|c|}{ Kit Contents } \\
\cline { 4 - 9 } & \multirow{2}{|c|}{} & & RPCS & PU & P/S & PEO & SEO \\
\hline \multirow{2}{*}{ 3. } & SD Card & NA Keytop Set*3 & 1 & Yes & Yes & Yes & Yes \\
\hline & & & Yes \\
\hline & EU Keytop Set*3 & 1 & Yes & Yes & Yes & Yes & Yes \\
\hline 5. & Ferrite Core & 1 & No & Yes & Yes & Yes & Yes \\
\hline
\end{tabular}
*1: The 256 Memory is a separate option and it is not provided in the kits. However, one memory unit is required for the installation of every print unit.
*2: The HDD can be installed anytime as a separate option. If an HDD unit has already been installed, it does not need to be replaced with the HDD unit from the Printer Enhance Option, Printer Unit, or Printer/Scanner Unit kit.
*3: The number of keytops provided varies:
\begin{tabular}{|l|c|c|c|c|}
\hline \multirow{2}{*}{ Kit } & \multicolumn{4}{|c|}{ Keytops } \\
\cline { 2 - 5 } & Copy & Document Server & Printer & Scanner \\
\hline RPCS Unit & 1 & & 1 & \\
\hline Printer Unit & 1 & 1 & 1 & \\
\hline Printer/Scanner Unit & 1 & 1 & 1 & 1 \\
\hline Printer Enhance Unit & & 1 & & 1 \\
\hline Scanner Enhance Unit & & & & \\
\hline
\end{tabular}


\section*{Printer and P/S Options}

\subsection*{1.2.3 PRINTER, PRINTER/SCANNER UNIT INSTALLATION \(\triangle\) CAUTION}
- Turn off the main power switch and disconnect the power supply cord.

d017r960
1. Remove the application cover \([A]\) ( \(\hat{\xi}^{2} \times 1\) ).
2. Remove the controller board \([B](\hat{\xi} \times 3)\).

d017i501
3. Install the 256 MB memory [A].

4. Attach the HDD unit [A] to the controller board bracket (
5. Reinstall the controller board with the HDD.

d017i502a
6. Insert the SD card [A] in SD card Slot 1 (upper).
7. Cycle the machine power off/on.
8. Format the HDD with SP5832-1.
9. Do SP5853 to copy the preset stamp data from the firmware to the hard disk.
10. Do SP5846-040 to copy the address book to the hard disk from the controller board.
11. Do SP5846-041 to let the user get access to the address book.
12. Reattach the application cover ( \(\hat{\xi}^{(1)} \times 1\) ).

\section*{Printer and PIS Options}

13. Attach the ferrite core \([A]\) to the LAN cable \([B]\).
14. Connect the LAN cable to the "NIC" connection.
15. Connect the USB cable to the "USB" connection.

16. Remove the 1st, 2nd, 4th, and 5th blank key tops.
\(\downarrow\) Nole
- The 3rd blank keytop from the top is reserved for the "Fax" keytop. Do not remove it at this time.
17. Replace the blank keytops with the keytops received in the kit from top to bottom:
- 1st Copy
- 2nd Document Server
- 4th Printer
- 5th Scanner
18. Connect the machine power cord and turn the main power switch on.
19. Enable the NIB and/or USB function.
- To enable the NIB function, enter the SP mode and set SP5985-001 (On Board NIC) to "1" (Enable).
- To enable the USB function, enter the SP mode and set SP5985-002 (On Board USB) to "1" (Enable).
20. If there was no HDD in the machine before you installed the Printer Enhance Option, Printer Unit, or Printer/Scanner Unit:
- Do SP5846 41 so the user can use the address book.
- Do SP5853 to copy the preset stamp data to the hard disk. Then turn the main power switch off/on
- These SPs must be done immediately after installation of an HDD unit in a machine that previously had no HDD.
- The first time the machine power is turned on with the new HDD installed, the system automatically takes the address book from the NVRAM and writes it on the new HDD. However, only the system administrator can use the new address book on the HDD at this time.
- If you do SP5846 41 immediately after power on, then all users can use the address book.

\section*{\(\downarrow\) Note}
- It is not necessary to format the new hard disk after installation.

\subsection*{1.2.4 PRINTER, SCANNER ENHANCE OPTIONS}

\section*{Accessory Check}

Refer to the "Common Accessory Table"

\section*{Installation}

The installation of the printer enhance option and scanner enhance option is done with SP5873 001 (Application Move).
- If you are going to update the RPCS unit with both the printer and scanner enhance options, the order of execution is not important.
1. Turn off the copier.
2. Remove the cover ( \({ }_{(1)} \times 1\) ).
3. Confirm that the RPCS Unit or Printer Unit SD card is in the upper slot.

\section*{Printer and PIS Options}
4. Put the option SD Card (Printer Enhance Option or Scanner Enhance Option) in the lower slot.
5. Turn the copier on.
6. Go into the SP mode and select SP5873-1.
7. Touch "Execute".
8. Obey the instructions on the display and touch "Execute" to start.
9. When the display tells you copying is completed, touch "Exit", then turn the machine off.
10. Remove the option SD card from the lower slot.
11. Turn the copier on.
12. Go into the User Tools mode and confirm that update was successful. User Tools> System Settings> Administrator Tools> Firmware Version> Next
13. Turn the copier off and reattach the SD card slot cover.
14. Return the copied SD card to the customer for safekeeping, or tape it to the faceplate of the controller.

\section*{To undo an option update}
1. Turn the main switch off.
2. Confirm that the RPCS Unit or Printer Unit SD card is in SD card the upper slot
3. Put the empty SD card (Printer Enhance Option or Scanner Enhance Option D383) in the lower slot.
4. Turn the main switch on.
5. Go into the SP mode and do SP5873-2 (Undo Exec).
6. Obey messages on the operation panel to complete the procedure.
7. Turn the main switch off.
8. Remove the restored SD card from the lower slot..
9. Turn the main switch on.
10. Go into the User Tools mode and confirm that undo was successful. User Tools> System Settings> Administrator Tools> Firmware Version> Next
11. Turn the copier off again, then reattach the cover.

\section*{Important Notes About SD Cards}

Here are some basic rules about moving an application to another SD card.
- The authentication data is moved with the application program to the target SD card.
- Once an application has been moved from the original SD card, the original SD card cannot be used unless the application is restored to the SD card with SP5873-2 (Undo Execute).
- SD cards must be stored in a safe location at the customer site The empty SD card
serves as proof of purchase and is the only evidence that the customer is licensed to use the application program.
- Before storing the card from which an application has been copied, label it carefully so that you can identify it easily if you need to do the undo procedure later.

\section*{If PostScript3 is not used...}

Move all applications which the customer wants onto one SD card. The destination card should have the largest amount of space available so it can hold as many other applications as possible.

\section*{\(\star\) Important}
- The VM Card can be neither merged nor moved to another SD card. This card must be installed in Slot 2 (lower).
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ SD Card Options } & SD Card Size & Module Size \\
\hline Printer/Scanner Unit Type 3350 & 32 MB & 9.3 MB \\
\hline RPCS Printer Unit Type 3350 & 32 MB & 6.3 MB \\
\hline Printer Unit Type 3350 & 32 MB & 8.3 MB \\
\hline Printer Enhance Option Type 3350 & 16 MB & 4 MB \\
\hline Scanner Enhance Option Type 3350 & 16 MB & 3 MB \\
\hline DataOverwriteSecurity Unit Type I & 64 MB & 4 MB \\
\hline PostScript3 Unit Type 3350 & 14.6 MB \\
\hline
\end{tabular}

\section*{If PostScript3 is used...}

Move all applications to the PostScript3 SD card.

\section*{Installing Controller Options}

\subsection*{1.3 INSTALLING CONTROLLER OPTIONS}

\subsection*{1.3.1 IEEE 1284 INTERFACE BOARD (B679)}

\section*{Accessories}

Check the accessories and their quantities against the following list:
\begin{tabular}{|l|c|l|}
\hline No & \multicolumn{1}{|c|}{ Description } & Quantity \\
\hline 1 & IEEE 1284 Interface Board B679 & 1 \\
\hline
\end{tabular}

\section*{Installation}

\section*{\(\triangle\) CAUTION}
- Turn off the main power switch and disconnect the power supply cord.

d017i503
1. Remove the application cover ( \(\hat{\xi}^{(1)} \times 1\) ).
2. Remove the cover \([A]\) of the board slot ( \((\hat{\xi} \times 1)\).
3. Install the interface board \([B]\) ( \({ }^{(1)} \times 2\) knob screws).

\section*{\(\downarrow\) Nole}
- Use a screwdriver to tighten the knob-screws. Do not tighten manually, because this can disconnect the board.
4. Reattach the application cover ( \(\times 1\) ).
- If the 500-Sheet Finisher is installed, remove it before you attach the parallel cable. Install the finisher again after you connect the parallel cable.

\subsection*{1.3.2 IEEE 802.11A/G (D377)}

\section*{Accessories}

Check the accessories and their quantities against the following list:
\begin{tabular}{|l|l|c|}
\hline No & \multicolumn{1}{|c|}{ Description } & Quantity \\
\hline 1 & IEEE 802.11a/b Interface Board & 1 \\
\hline 2 & Antenna Cables & 2 \\
\hline 3 & Antenna Clamps & 8 \\
\hline
\end{tabular}

\section*{Installation}

\section*{ACAUTION}
- Turn off the main power switch and disconnect the power supply cord.

d017i507
1. Remove the plastic application cover (
2. Remove the cover \([A]\) of the board slot ( \(\hat{\xi}^{3} \times 1\) ).
3. Insert the interface card [B] as shown above.

- Use a screwdriver to tighten the knob-screws. Do not tighten manually, because this can disconnect the board.
1. Look at the markings on the antenna bracket.

\section*{Installing Controller Options}
- ANT1. Antenna 1 transmits and receives. It must be installed on the front left corner of the main machine. (The core on the Antenna 1 cable is black.)
- ANT2. Antenna 2 only receives. It is installed on the rear right corner of the machine.


\section*{Important}
- To assure reliable data sending and receiving, Antenna 1 must be installed on the front left corner of the machine.

2. Remove the seals from of the cable clamps and attach them to the left side of the machine as shown above.
3. Attach Antenna \(1[\mathrm{~A}]\) to the left front corner of the machine. (The core on the Antenna 1 cable is black.)
4. Set the cable of Antenna 1 in the clamps and close them.
5. Remove the seals from the cable clamps and attach them to the rear of the machine as shown above.
6. Attach Antenna \(2[B]\) to the right rear corner of the machine.
7. Set the cable of Antenna 2 in the clamps and close them.

\section*{User Tool Settings for IEEE 802.11a/g}

Go into the User Tools mode and do the procedure below. These settings take effect every time the machine is powered on.

\section*{\(\downarrow\) Note}
- You cannot use IEEE 802.11a/g if you use Ethernet.
1. Press the "User Tools" key.
2. On the touch panel, touch "System Settings".
- The Network I/F (default: Ethernet) must be set for either Ethernet or wireless LAN.
3. Select "Interface Settings"> "Network"> "Network I/F Setting"
4. Press "IEEE 802.11". Only the wireless LAN options show.
5. Set the Communication Mode. Select either "802.11 Ad hoc", "Ad hoc" or "Infrastructure".
6. Enter the SSID setting. (The setting is case sensitive.)
7. Set the Channel. You need this setting when Ad Hoc Mode is selected.
- Range: 1 to 14 (default: 11)
- The allowed range for the channel settings may vary for different countries.
8. Do the WEP (Encryption) Setting.
- The WEP (Wired Equivalent Privacy) setting is designed to protect wireless data transmission. The same WEP key is required on the receiving side in order to unlock encoded data. There are 64 bit and 128 bit WEP keys.
- WEP: Select "Active" or "Inactive". ("Inactive" is the default.)
- Range of Allowed Settings: 64-bit (10 characters) or 128-bit (26 characters)
9. Set the Transmission Speed.
- Press the Next button to show more settings. Then select the transmission speed for the mode: Auto, \(11 \mathrm{Mbps}, 5.5 \mathrm{Mbps}, 2 \mathrm{Mbps}, 1 \mathrm{Mbps}\) (default: Auto). This setting should match the distance between the closest machine or access point. This depends on which mode is selected.
- For the Ad Hoc Mode, this is the distance between the machine and the closest PC in the network. For the Infrastructure Mode, this is the distance between the machine and the closest access point.

\section*{Installing Controller Options}
\begin{tabular}{|l|l|}
\hline 11 Mbps & 140 m (153 yd.) \\
\hline 5.5 Mbps & \(200 \mathrm{~m}(219\) yd.) \\
\hline 2 Mbps & \(270 \mathrm{~m}(295\) yd.) \\
\hline 1 Mbps & \(400 \mathrm{~m}(437\) yd.) \\
\hline
\end{tabular}
10. Press "Return to Default" to initialize the wireless LAN settings. Press "Yes" to initialize the following settings:
- Transmission mode
- Channel
- Transmission Speed
- WEP
- SSID
- WEP Key

\section*{SP Mode Settings for IEEE 802.11b Wireless LAN}

The following SP commands and UP modes can be set for IEEE 802.11b
\begin{tabular}{|c|l|l|}
\hline SP No. & \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Function } \\
\hline 5840006 & Channel MAX & \begin{tabular}{l} 
Sets the maximum range of the channel settings for the \\
country.
\end{tabular} \\
\hline 5840007 & Channel MIN & \begin{tabular}{l} 
Sets the minimum range of the channels settings \\
allowed for your country.
\end{tabular} \\
\hline 5840011 & WEP Key Select & Used to select the WEP key (Default: 00). \\
\hline \multirow{4}{*}{ UP mode } & Name & Function \\
\cline { 2 - 4 } & SSID & Used to confirm the current SSID setting. \\
\cline { 2 - 4 } & WEP Key & Used to confirm the current WEP key setting. \\
\cline { 2 - 4 } & WEP Mode & \begin{tabular}{l} 
Used to show the maximum length of the string that can \\
be used for the WEP Key entry.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{1.3.3 BLUETOOTH UNIT (B826)}

\section*{Accessories}

Check the accessories and their quantities against the following list:
\begin{tabular}{|l|l|l|}
\hline No & \multicolumn{1}{|c|}{ Description } & Quantity \\
\hline 1 & Bluetooth Unit B826 & 1 \\
\hline 2 & PCl Card & 1 \\
\hline 3 & Cap & 1 \\
\hline
\end{tabular}

\section*{Installation}

\section*{ACAUTION}
- Turn off the main power switch and disconnect the power supply cord.


d017i504
1. Remove the plastic application cover ( \(\mathrm{E}=\) ).
2. Remove the cover \([A]\) of board slot ( \(\hat{\xi}^{\beta} \times 1\) ).
3. Attach the interface board \([B]\) to the controller board ( \(\mathcal{E}^{(1)} \times 2\) knob screws).

- Use a screwdriver to tighten the knob-screws. Do not tighten manually, because this can disconnect the board.
4. Install the Bluetooth card [C] in the slot in the Bluetooth unit.
5. Insert the antenna [D] into the Bluetooth card.
6. Attach the antenna cap [E].

\section*{Installing Controller Options}

\subsection*{1.3.4 POSTSCRIPT 3 UNIT (D383)}

\section*{Accessories}

Check the accessories and their quantities against the following list:
\begin{tabular}{|l|l|c|}
\hline No & \multicolumn{1}{|c|}{ Description } & Quantity \\
\hline 1 & PostScript 3 Emulation SD Card (D383) & 1 \\
\hline 2 & Decal & 1 \\
\hline
\end{tabular}

\section*{Installation}

\section*{©CAUTION}
- Turn off the main power switch and disconnect the power supply cord.

d017i502
1. Remove the plastic application cover [A] ( \(\mathrm{E} \times 1\) ).
2. Insert the SD card \([B]\) into Slot 1 (upper slot).
3. Reattach the plastic application cover ( \(\hat{\xi}^{(1)} \times 1\) ).
4. Attach the "Adobe PostScript 3" decal to the front cover.

\subsection*{1.3.5 GIGABIT ETHERNET (G831)}

\section*{Accessories}

Check the accessories and their quantities against the following list:
\begin{tabular}{|l|l|l|}
\hline No & \multicolumn{1}{|c|}{ Description } & Quantity \\
\hline 1 & Gigabit Ethernet (G381) & 1 \\
\hline 2 & Ferrite Core & 1 \\
\hline
\end{tabular}

\section*{Installation}
1. Switch the machine off.

2. Remove the plastic application cover ( \(\times 1\) ).
3. Remove the board cover \([A]\left(\mathcal{K}^{( } \times 2\right)\).
4. Insert the Gigabit Ethernet Board \([B]\) into the slot and fasten it with the screws.
5. Switch the machine on.
6. Print a configuration page to confirm that the machine recognizes the installed board for USB2.0:

User Tools > Printer Features > List/Test Print > Configuration Page

\section*{Check All Connections}

\subsection*{1.4 CHECK ALL CONNECTIONS}
1. Connect the machine's power cord and turn on the main switch.
2. Go into the printer user mode and print the configuration page.
- User Tools> Printer Settings> List Test Print> Config. Page \(\downarrow\) Nole
- The same data can also be printed with printer SP1-004 - Print Summary. All installed options are listed in the "System Reference" column.

\section*{2. SERVICE TABLES}

\subsection*{2.1 PRINTER SERVICE TABLES}
\begin{tabular}{|c|c|c|c|c|}
\hline SP & & Numb & & Initial \\
\hline \multirow{9}{*}{1001} & \multicolumn{2}{|l|}{Bit Switch} & & \\
\hline & 001 & Bit SW 1 & 00H & \multirow{8}{*}{Adjusts the bit switch settings. Note: These bit switches are currently not used.} \\
\hline & 002 & Bit SW 2 & 00H & \\
\hline & 003 & Bit SW 3 & OOH & \\
\hline & 004 & Bit SW 4 & 00H & \\
\hline & 005 & Bit SW 5 & OOH & \\
\hline & 006 & Bit SW 6 & OOH & \\
\hline & 007 & Bit SW 7 & 00H & \\
\hline & 008 & Bit SW 8 & OOH & \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|l|}
\hline SP & \multicolumn{1}{|c|}{ Number/Name } & \multicolumn{1}{c|}{ Function/[Setting] } \\
\hline \multirow{4}{*}{1003} & \multicolumn{2}{|c|}{ Clear setting } & \\
\cline { 2 - 4 } & 001 & Initialize Printer System & \begin{tabular}{l} 
Initializes the settings in the printer \\
feature settings of UP mode.
\end{tabular} \\
\cline { 2 - 4 } & 002 & Clear CSS Counter & DFU \\
\cline { 2 - 4 } & 003 & Delete Program & DFU \\
\hline 1004 & Print Summary & Prints the printer summary sheet. \\
\hline 1005 & \multicolumn{2}{|l|}{ Display Version. } & \begin{tabular}{l} 
Displays the version of the controller \\
firmware.
\end{tabular} \\
\hline
\end{tabular}

Printer Service Tables
\begin{tabular}{|c|l|l|}
\hline SP & \multicolumn{1}{|c|}{ Number/Name } & \multicolumn{1}{|c|}{ Function/[Setting] } \\
\hline \multirow{3}{*}{1006} & Sample/Proof Print & {\([0 \sim 1 / 0 / 1]\)} \\
& & \begin{tabular}{l}
\(0:\) Link with Doc. Server \\
\(1:\) Enable
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SP & \multicolumn{6}{|c|}{Function/[Setting]} \\
\hline \multirow{9}{*}{7910} & \multicolumn{6}{|l|}{PDL Part No. Information} \\
\hline & \multicolumn{6}{|l|}{Returns a text string for the version.} \\
\hline & RPCS & 150 & R55 & 156 & PDF & 162 \\
\hline & PS & 151 & RTIFF & 157 & BMLinks & 163 \\
\hline & RPDL & 152 & PCL & 156 & PICTBRIDGE & 164 \\
\hline & R98 & 153 & PCLXL & 159 & FONT & 180 \\
\hline & R16 & 154 & MSIS & 160 & FONT1 & 181 \\
\hline & RPGL & 155 & MSIS (OPT) & 161 & FONT2 & 182 \\
\hline & & & & FONT3 & 183 & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline 7911 & \multicolumn{3}{|c|}{ PDL Version Information } & \multicolumn{3}{c|}{ Returns a text string for the version. } \\
\hline & RPCS & 150 & R55 & 156 & PDF & 162 \\
\hline PS & 151 & RTIFF & 157 & BMLinks & 163 & \\
\hline RPDL & 152 & PCL & 156 & PICTBRIDGE & 164 & \\
\hline R98 & 153 & PCLXL & 159 & FONT & 180 & \\
\hline R16 & 154 & MSIS & 160 & FONT1 & 181 & \\
\hline RPGL & 155 & MSIS (OPT) & 161 & FONT2 & 182 & \\
\hline & & & & FONT3 & 183 & \\
\hline
\end{tabular}

\subsection*{2.2 SCANNER SERVICE TABLES}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ SP } & \multicolumn{1}{|c|}{ Number/Name } & \multicolumn{1}{c|}{ Function/[Setting] } \\
\hline 1004 & Compression Type & \begin{tabular}{l} 
Selects the compression type for binary \\
picture processing. \\
{\([1-3 / 1 / 1]\)} \\
\(1: \mathrm{MH}, 2:\) MR, 3: MMR
\end{tabular} \\
\hline 1005 & Erase Margin & \begin{tabular}{l} 
Creates an erase margin for all edges of \\
the scanned image. \\
If the machine has scanned the edge of \\
the original, create a margin. \\
[0 - 5/0/1mm]
\end{tabular} \\
\hline 1009 & Forbid Using TWAIN & \begin{tabular}{l} 
Sets the system not to use the network \\
TWAIN scanner driver. \\
0: Not forbidden (can use TWAIN) \\
1: Forbid using TWAIN driver.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|}
\hline \multicolumn{1}{|c|}{SP} & \multicolumn{1}{|c|}{ Number/Name } & \multicolumn{1}{|c|}{ Function/[Setting] } \\
\hline \multirow{3}{*}{2021} & \multicolumn{2}{|c|}{ Compression level (grayscale) } \\
\cline { 2 - 3 } & \begin{tabular}{l} 
These SP codes set the compression ratio for the grayscale processing mode \\
that can be selected with the notch settings on the operation panel. \\
Range: 5 (lowest ratio) to 95 (highest ratio)
\end{tabular} \\
\hline 20211 & Level 3 (Middle I-Qual) & {\([5 \sim 95 / 40 / 1 /\) step] } \\
\hline 20212 & Level 2 (High I-Qual) & {\([5 \sim 95 / 50 / 1 /\) step \(]\)} \\
\hline 20213 & Level 4 (Low I-Qual) & {\([5 \sim 95 / 30 / 1 /\) step \(]\)} \\
\hline 20214 & Level 1 (Highest I-Qual) & {\([5 \sim 95 / 60 / 1 /\) step] } \\
\hline 20215 & Level 5 (Lowest I-Qual) & {\([5 \sim 95 / 20 / 1 /\) step] } \\
\hline
\end{tabular}

\section*{Scanner Service Tables}

Compression Notch Assignment

b767i910

\section*{3. SPECIFICATIONS}

\subsection*{3.1 SPECIFICATIONS}

\subsection*{3.1.1 PRINTER CONTROLLER (GENERAL)}
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Printing \\
Speed
\end{tabular} & \begin{tabular}{l} 
D017/D019: Maximum 25 ppm (A4/LT LEF) \\
D018/D020: Maximum 33 ppm (A4/LT LEF)
\end{tabular} \\
\hline Printer \\
Languages & \begin{tabular}{l} 
PCLXL/PCL5e \\
PostScript 3 \\
RPCS (Refined Printing Command Stream - an original Ricoh PDL)
\end{tabular} \\
\hline \begin{tabular}{l} 
Resolution \\
(Driver)
\end{tabular} & \begin{tabular}{l} 
RPCS 200/600 dpi \\
PS3 300/600 dpi \\
PCL5e 300/600 dpi \\
PCLXL 300/600 dpi
\end{tabular} \\
\hline \begin{tabular}{l} 
Resident \\
Fonts
\end{tabular} & \begin{tabular}{l} 
PCL: TrueType: 10, Intellifont: 35, International: 13, Bitmap: 1 \\
PS3: Option fonts PS3
\end{tabular} \\
\hline Connectivity & \begin{tabular}{l} 
Std.: RJ-45 network port (100BASE-TX, 10BASE-T, USB 2.0) \\
Option: IEEE802.11a/g, g (Wireless LAN), Bluetooth, IEEE1284 \\
(Centronics Parallel), Gigabit Ethernet
\end{tabular} \\
\hline Network & \begin{tabular}{l} 
TCP/IP, IPX/SPX, SMB (NetBIOS over TCP/IP), AppleTalk (Auto \\
Switching)
\end{tabular} \\
Protocols & \begin{tabular}{l} 
Maximum \\
MS model: 512 MB (Resident 256 MB + Additional 256 MB) \\
CS model: 768 MB (Resident 512 MB + Additional 256 MB) \\
Note: Additional 256 MB is required for all printer/scanner unit and printer \\
units. \\
Note: Additional 256 MB is required for all printer/scanner unit and printer \\
units.
\end{tabular} \\
\hline RAM
\end{tabular}

\section*{Specifications}

\subsection*{3.1.2 USB SPECIFICATIONS}

USB connectivity is built into the controller.
\begin{tabular}{|l|l|}
\hline Interface & USB 2.0 \\
\hline Data & \begin{tabular}{l}
480 Mbps (high speed), 12 Mbps (full speed), 1.5 Mbps (low \\
speed) \\
rates \\
High speed mode is only supported by USB 2.0.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{3.1.3 IEEE 802.11A/G, G SPECIFICATIONS}
\begin{tabular}{|l|l|l|}
\hline Standard applied & \multicolumn{2}{|l|}{ IEEE802.11a/g, g } \\
\hline \multirow{4}{*}{\begin{tabular}{l} 
Data transmission \\
rates
\end{tabular}} & Speed & Distance \\
\cline { 2 - 3 } & 11 Mbps & \(140 \mathrm{~m}(153 \mathrm{yd})\). \\
\cline { 2 - 3 } & 5.5 Mbps & \(200 \mathrm{~m}(219 \mathrm{yd})\). \\
\cline { 2 - 3 } & 2 Mbps & \(270 \mathrm{~m}(295 \mathrm{yd})\). \\
\cline { 2 - 3 } & 1 Mbps & \(400 \mathrm{~m}(437 \mathrm{yd})\). \\
\hline Network protocols & TCP/IP, Apple Talk, NetBEUI, IPXISPX, SMB \\
\hline \multirow{2}{*}{ Bandwidth } & \begin{tabular}{l}
2.4 GHz (divided over 14 channels, 2400 to 2497 MHz for each \\
channel)
\end{tabular} \\
\hline
\end{tabular}

\subsection*{3.1.4 BLUETOOTH SPECIFICATIONS}
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Transmission \\
Specifications
\end{tabular} & Based on Bluetooth V1.1 \\
\hline \begin{tabular}{l} 
Data Transfer \\
Speed
\end{tabular} & 1 Mbps \\
\hline Profile & Hard Copy Cable Replacement Profile (HCRP), Serial Port Profile \\
\hline
\end{tabular}

Specifications
\begin{tabular}{|l|l|}
\hline & (SPP), BIP \\
\hline \begin{tabular}{l} 
Distance Between \\
Devices
\end{tabular} & \begin{tabular}{l}
10 m (The maximum distance when using outdoors, otherwise \\
depends on the office environment.)
\end{tabular} \\
\hline
\end{tabular}

\subsection*{3.1.5 SCANNER SPECIFICATIONS}
\begin{tabular}{|c|c|}
\hline Standard Scanner Resolution: & Main scan/Sub scan 600 dpi \\
\hline Scanning Speed & \begin{tabular}{l}
MS: \\
52 ipm, E-mail/Scan-to-Folder/Network Delivery Scanner (A4 LEF, Text 200 dpi, MH Compression) CS: 25 (D018)/ 32 (D020) ipm, E-mail/Scan-to-Folder/Network Delivery Scanner (A4 LEF, Text 200 dpi, MH Compression)
\end{tabular} \\
\hline Available scanning Resolution Range: & 100 to 1200 dpi (when used as a Network TWAIN scanner) 100, 200, 300, 400, 600 dpi (when used as a network delivery scanner, Scan-to-Folder, Scan-to-Email, or Document Server storage) \\
\hline Grayscales: & 8 bits/pixel \\
\hline Interface: & Ethernet 10/100BASE TX, Wireless LAN 802.11a/g, g \\
\hline Compression Method: & MH, MR, MMR (Binary Picture Processing) JPEG (Grayscale Processing) \\
\hline Video Memory Capacity: & 384 MB \\
\hline Image Storage Capacity: & \begin{tabular}{l}
Number of originals per file: Maximum 1,000 pages \\
Maximum of files: 3000 files \\
Max. Storage on Doc. Server: 9,000 pages (B\&W (ITU-T No. 1/200 dpi MMR)
\end{tabular} \\
\hline
\end{tabular}

\section*{Specifications}

\subsection*{3.1.6 SOFTWARE ACCESSORIES}

\section*{Printer}

The printer drivers and utility software are provided on one CD-ROM. An auto-run installer allows you to select which components to install.

\section*{Printer Drivers}
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{\begin{tabular}{c} 
Printer \\
Language
\end{tabular}} & \begin{tabular}{c} 
Windows \\
\(95 / 98 / M e\)
\end{tabular} & \begin{tabular}{c} 
Windows \\
NT4.0
\end{tabular} & \begin{tabular}{c} 
Windows 2000, XP, Server \\
2003/Vista
\end{tabular} & Macintosh \\
\hline PCL 6 & Yes & Yes & Yes & No \\
\hline PCL 5e & Yes & Yes & Yes & No \\
\hline PS3 & Yes & Yes & Yes & Yes \\
\hline RPCS & Yes & Yes & Yes & No \\
\hline
\end{tabular}
- The printer drivers for Windows NT 4.0 are only for the Intel x86 platform. There is no Windows NT 4.0 printer driver for the PowerPC, Alpha, or MIPS platforms.
- The PS3 drivers are all genuine AdobePS drivers, except for Windows 2000/XP/Server 2003/Vista, which uses Microsoft PS. A PPD file for each operating system is provided with the driver.

\section*{Utility Software}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Software } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
Agfa Monotype Font Manager 2000 \\
(Win 95/98/Me, NT4, 2000)
\end{tabular} & \begin{tabular}{l} 
A font management utility with screen fonts for \\
the printer.
\end{tabular} \\
\hline \begin{tabular}{l} 
Smart Device Monitor for Admin (Win \\
95/98/Me, NT4, 2000/XP/Server \\
2003/Vista)
\end{tabular} & \begin{tabular}{l} 
A printer management utility for network \\
administrators. NIB setup utilities are also \\
available.
\end{tabular} \\
\hline \begin{tabular}{l} 
DeskTopBinder - SmartDeviceMonitor \\
for Client (Win 95/98/Me, NT4, \\
2000/XP/Server 2003/Vista)
\end{tabular} & \begin{tabular}{l} 
A printer management utility for client users. \\
Peer-to-peer printing utility and \\
parallel/recovery printing functions are \\
included.
\end{tabular} \\
\hline
\end{tabular}

Specifications
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Software } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
LAN-Fax M7 Driver (Win 95/98/Me, \\
NT4, 2000/XP)
\end{tabular} & \begin{tabular}{l} 
This driver allows use of the LAN-Fax functions \\
by installing the LAN-Fax driver, Address Book, \\
and LAN-Fax Cover Sheet Editor.
\end{tabular} \\
\hline PS Utility for Mac & \begin{tabular}{l} 
This software provides several convenient \\
functions for printing from Macintosh clients.
\end{tabular} \\
\hline Acrobat Reader & A utility that allows reading PDF files. \\
\hline
\end{tabular}

\section*{Scanner}

The scanner driver and utility software are provided on one CD-ROM.

\section*{Scanner Driver}
- Network Twain Driver for Win95/98/Me/NT4/2000/XP/Server 2003/Vista

Scanner Utilities
- DeskTopBinder Lite for 2000/XP/Server 2003

\title{
INTERNAL SHIFT TRAY SH3010 D385
}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{4}{|l|}{ INTERNAL SHIFT TRAY SH3010 REVISION HISTORY } \\
\hline Page & Date & \multicolumn{1}{c|}{ Added/Updated/New } \\
\hline & & None \\
\hline
\end{tabular}
INTERNAL SHIFT TRAY SH3010 D385
TABLE OF CONTENTS
1 OVERALL MACHINE INFORMATION ..... 1
1.1 SPECIFICATIONS ..... 1
1.2 COMPONENT LAYOUT ..... 2
2. DETAILED SECTION DESCRIPTIONS ..... 3
2.1 BASIC OPERATION ..... 3
2.2 PRIMARY MECHANISMS ..... 4
2.2.1 TRAY SHIFT ..... 4
2.2.2 HALF TURN DETECTION ..... 5
3. REPLACEMENT AND ADJUSTMENT ..... 6
3.1 TRAY COVER REPLACEMENT ..... 6
3.1.1 TRAY COVER REMOVAL ..... 6
3.1.2 TRAY COVER ATTACHMENT ..... 6
3.2 TRAY MOTOR AND HALF TURN SENSOR REPLACEMENT ..... 7
3.2.1 REPLACING THE TRAY MOTOR ..... 7
3.2.2 REPLACING THE HALF TURN SENSOR ..... 7
1 OVERALL MACHINE INFORMATION
1.1 SPECIFICATIONS
\begin{tabular}{|c|c|}
\hline Paper Size: & \begin{tabular}{l}
Standard Size: \\
A5 lengthwise to A3 \\
HLT lengthwise to DLT \\
Non-standard Size: \\
Paper Width: \(90 \sim 297 \mathrm{~mm}\) \\
Paper Length: \(148 \sim 432 \mathrm{~mm}\)
\end{tabular} \\
\hline Paper Weight: & \(60 \sim 105 \mathrm{~g} / \mathrm{m}^{2}, 16 \sim 28 \mathrm{lbs}\). \\
\hline Tray Capacity: & 125 sheets ( \(80 \mathrm{~g} / \mathrm{m}^{2}, 20 \mathrm{lbs}\).): B4 or larger 250 sheets ( \(80 \mathrm{~g} / \mathrm{m}^{2}, 20 \mathrm{lbs}\).): A4 or smaller \\
\hline Power Source: & \(5 \mathrm{VDC}, 24 \mathrm{VDC}\) (from the copier) \\
\hline Power Consumption: & 17 W \\
\hline Weight: & 1.1 kg \\
\hline Size (W x D x H) : & \(530 \mathrm{~mm} \times 410 \mathrm{~mm} \times 120 \mathrm{~mm}\) \\
\hline
\end{tabular}

\subsection*{1.2 COMPONENT LAYOUT}

1. Half Turn Sensor
2. Tray Cover
3. Slip Disc
4. Tray Motor
5. Driver PCB

\section*{2. DETAILED SECTION DESCRIPTIONS}

\subsection*{2.1 BASIC OPERATION}


The shift tray allows copies to be sorted into separate piles on one tray.
From the left-right movement of the tray cover [A], the piles of copies are offset into two positions, slightly overlapping one another.

\subsection*{2.2 PRIMARY MECHANISMS}

\subsection*{2.2.1 TRAY SHIFT}


As stated above, the shift tray cover [A] moves from left to right to create two possible positions for the copies to stack up. This motion is driven by the tray motor [B], which connects to the slip disc [C] via a small shaft. The shaft is connected at the rotational center of the disc. However, there is an off-centered white square attached to the top surface of the disc. When the tray cover is attached to the unit, this square fits into a groove [D] (approximately equal to its width) that runs lengthwise along the underside of the tray
When the motor is running, the disc rotation causes the off-centered white square to change position. Since the square only has freedom of movement along the groove [D], the only net motion of the tray is from left to right.

\subsection*{2.2.2 HALF TURN DETECTION}


Half turn detection is performed through a combination of two components: the slip disc \([A]\) and half turn sensor [C].
The slip disc has a rim extending below the top surface. However, the rim only extends \(180^{\circ}\) around the disc. The half turn sensor is below the edge of the disc, opposite the tray motor. The sensor is positioned so that the rim of the disc passes between the LED and photo diode when the disc turns.

While the motor \([B]\) is rotating the disc and moving the tray cover, the disc rim is not between the diode and LED. After the disc has turned its maximum \(180^{\circ}\), the rim passes between these two parts and blocks the signal to the LED, stopping the motor. The tray stays in place until the motor is activated again to move the tray across to receive another copy of the original.

\section*{3. REPLACEMENT AND ADJUSTMENT}

\subsection*{3.1 TRAY COVER REPLACEMENT}


\subsection*{3.1.1 TRAY COVER REMOVAL}
1. Remove the tray cover [A] by pressing on the two pawls [B] on the left side of the cover.

\subsection*{3.1.2 TRAY COVER ATTACHMENT}

NOTE: The right side of the tray cover should be attached first.
1. Fit the pawls [C] (just below the cover fin) around the thin bar [D] on the shift tray.
2. Align the square \([E]\) so that it fits into the groove in the underside of the tray cover and does not interfere with the attachment of the cover.
3. Complete the attachment by inserting the left side pawls \([B]\) into place.

\subsection*{3.2 TRAY MOTOR AND HALF TURN SENSOR REPLACEMENT}


\subsection*{3.2.1 REPLACING THE TRAY MOTOR}
1. Remove the slip disc \([A]\).
2. Remove the tray motor \([B]\) from the motor holder (1 connector).

\subsection*{3.2.2 REPLACING THE HALF TURN SENSOR}
1. Remove the half turn sensor [C] (1 connector).```

